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Abstract: This paper combines the piecewise Cubic Hermite (CH) interpolation algorithm and the
weighted least square support vector machine (WLS-SVM) to improve identification accuracy for
marine crafts built based on the characteristic model. The characteristic model is first used to describe
the heading dynamics of marine crafts and is a superior model to the traditional response model in
both accuracy and complexity. Especially in order to improve identification accuracy, a CH-based
data preprocessing strategy is utilized to densify and smooth data for further accurate identification.
Subsequently, the combination of the linear kernel function and the Gaussian kernel function is
introduced in the conventional WLS-SVM method, which renders global and local performance
improvements compared with the conventional WLS-SVM method. Finally, informative maneuvers
composed of Zigzag and Sine are carried out to test the performance of the improved identification
method. Compared to the conventional LS-SVM method based on the response model, the root mean
square error of the proposed CH-MK-WLS-SVM method based on the characteristic model is reduced
by an order of magnitude in the presence of sensor noise.

Keywords: marine craft; parameter identification; weighted least square support vector machines;
characteristic model; piecewise Cubic Hermite interpolation algorithm

1. Introduction

In recent decades, marine crafts played a key role in various underwater applications,
including but not limited to ocean exploration [1], mapping of ocean floor [2], archaeological
survey [3], and oil-spill/pipeline tracking [4,5]. To better perform these tasks in oceanic
environments, it is increasingly important to master hydrodynamics models of marine
crafts and predict their maneuverability. Besides, the geodata fusion [6] and side scan sonar
analysis [7] for the Internet of Things field have also been successfully implemented based
on marine crafts. Geodata fusion combines data from various sources, including satellite
imagery and remote sensors, to create an integrated and accurate picture of the marine
environment. Side scan sonar analysis uses high-frequency sound waves to create detailed
images of the seafloor and the objects that lie beneath the surface. These technologies
are widely used for providing valuable insights into the ocean environment, underwater
mapping, and search and rescue operations.

Among various hydrodynamics models [8], the Abkowitz model is one of the widely
used models, which is expended with a third-order truncated Taylor series [9]. The
Abkowitz model can be used to describe the motion of marine crafts precisely, but it
is highly nonlinear and complicated. The mathematical modeling group model includes
the coupled effect of the hull, propeller, and rudder [10]. The response model focuses on the
yaw motion of marine crafts, including the 1st-order nonlinear model and the 2nd-order
nonlinear model [11]. The characteristic model takes into consideration the dynamics char-
acteristics, environmental characteristics, and performance requirements of aircraft [12].
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Recently, for the purpose of trading-off complexity and accuracy, the characteristic model
was introduced to describe the motion of marine crafts [13].

To identify hydrodynamics models, numerical calculation [14], model tests [15], and
system identification [16] are three popular methods. Yet, it is difficult to achieve the trade-
off between cost and accuracy in the numerical calculation and model tests. Comparatively,
system identification is an economically feasible and convenient method of identifying
models by giving the system inputs and outputs.

It is well known that many classical algorithms, such as the least square (LS) method,
have always been employed in system identification [17,18]. Caccia et al. [19] used the LS
method to estimate the model parameters for unmanned underwater vehicles through the
onboard sensor data. Yin et al. [20] proposed the partial LS (PLS) method to identify the
Abkowitz model, and the result showed a higher identification accuracy of the PLS method
under a small sample size. Zhong et al. [21] used the recursive LS (RLS) method to identify
the parameters of the marine robot’s horizontal motion model and the higher accuracy
of the RLS method was verified. Further, some artificial intelligence (AI) algorithms are
introduced in the LS method to identify parameters of marine craft’s motion model [22,23].
Yet, the LS method is sensitive to the data disturbed by noise [24], and it will result
in large errors in system identification. To reduce the effect of noise, the Kalman filter
(KF) method [25,26] was used to estimate model parameters for marine crafts. Sabet
et al. [27] used the extended KF (EKF) method, cubature Kalman filter (CKF) method,
and transformed UKF (TUKF) method to identify parameters of autonomous underwater
vehicles in 6-degree-of-freedoms (6-DoFs), respectively. Both the CKF nonlocal sampling
problem and the EKF linearization problem can be solved in the TUKF method, which leads
to a more accurate identification result. Although the KF method is an effective method for
system identification in the presence of sensor noise, it is only applicable to linear systems.
At present, with the development of the AI technique, some AI algorithms are employed to
obtain the parameters of marine crafts [28,29].

The support vector machines (SVM) algorithm is a type of optimization algorithm
that can minimize both the prediction error and the model complexity simultaneously [30].
Compared with the original AI algorithms, the SVM algorithm can guarantee globally
optimal solutions. And by introducing the kernel function in the SVM algorithm, the
dimensionality curse can be solved. Luo et al. [31] used the SVM algorithm to identify
response models of the ship steering, and comparative simulations demonstrated the
validity. Further, Luo and Zou [32] used the conventional least square-SVM (LS-SVM)
method to estimate the hydrodynamic coefficients of the surface ship’s model, and the
good predictive ability of the conventional LS-SVM method is verified by simulation tests.
Pei et al. [33] used Twin LS-SVM to identify the model parameters online, where the event-
triggered mechanism was introduced to reduce the calculation complexity. Additionally,
the optimal truncated LS-SVM method was proposed to identify the simplified nonlinear
ship maneuvering model [34,35], and the identification accuracy was further improved.
Further, in order to obtain a robust estimation, the weighted LS-SVM (WLS-SVM) method
was put forward by Suykens et al. [36]. Zhu et al. [37] used the conventional WLS-SVM
method to identify the motion model of unmanned surface vehicles in three DOFs, and
hyperparameters in this method were obtained by the artificial bee colony algorithm. The
superior identification performance of the conventional WLS-SVM method was verified in
simulations and experiments. In the SVM algorithm, the calculated performance largely
depends on the kernel function. However, most of the above works choose the kernel
function empirically and usually use the single kernel function, which is likely to result in
the suboptimal performance of SVM.

Motivated by the above considerations, the main work and the contributions of this
study are summarized as follows: (1) the characteristic model is introduced to describe the
marine craft’s heading dynamics. Then, a data preprocessing strategy based on the piece-
wise Cubic Hermite (CH) interpolation algorithm is proposed to densify and smooth data
for accurate identification. (2) WLS-SVM with a novel weighting method is utilized to iden-
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tify marine crafts, which improves the robustness of the proposed identification strategy.
(3) A multi-kernel function combining the linear kernel function and the Gaussian kernel
function is designed, which further renders global and local performance improvements of
the WLS-SVM method.

The rest of the paper is organized as follows. In Section 2, the characteristic model of
marine crafts is proposed. The CH-based data preprocessing strategy is designed in detail
in Section 3. Section 4 describes the hybrid system identification method, i.e., the CH-MK-
WLS-SVM method. Numerical simulation results of the CH-MK-WLS-SVM method are
shown in Section 5. The conclusion and prospect are drawn in the last section.

2. Hydrodynamics Models of Marine Crafts

The hydrodynamics model proposed by Abkowitz can describe the motion of ma-
rine crafts precisely. However, many hydrodynamics derivatives need to be obtained by
complicated experiments and fitting [38]. The response model is proposed by Nomoto.
Comparatively, the latter is more simplified, and it is widely used in marine craft maneu-
vering. It is seen that sometimes the response model has low accuracy. An accurate motion
model is crucial for various applications, including air and sea transportation, military
operations, and even everyday activities such as hiking and driving. In the navigation field,
there has always been a demand for a concise and dependable model with a reasonable
level of accuracy. A model that is both concise and reliable can save time and resources
while ensuring safety and efficiency. Therefore, researchers and engineers in the navigation
field continuously work towards developing and refining models that strike a balance
between simplicity and precision.

The characteristic model is widely applied to aircraft and is used in the parame-
ter identification of marine crafts [39]. The model compensates for the deficiencies of
both the hydrodynamic model and the response model. The characteristic model can be
described by

y(t + 1) = f1(t)y(t) + f2(t)y(t− 1) + g0(t)u(t) (1)

where f1(t), f2(t), and g0(t) are slowly time-varying, and they can be considered constant
at the short data sampling interval. y(t) and u(t) denote the output variable and input
variable, respectively. The detailed derivation process is described in [12].

Before applying the characteristic model, there are some assumptions:

Assumption 1. The rudder angle is considered the only influence on the heading angle of marine
crafts [11].

Assumption 2. Only the horizontal motion is considered in this study.

Assumption 3. External environmental interference is ignored.

Assumption 4. The surge velocity is considered a constant during the initial stage.

In this paper, the heading angle ψ(t) is considered the output variable, and the rudder
angle δ(t) is considered the input variable. First, we define intermediate variables as

y(t) = ψ(t + 1)
x(t) = [ψ(t) ψ(t− 1) δ(t)]T

θ = [ f1(t) f2(t) g0(t)]
(2)

Then, the characteristic model for marine crafts can be expressed as

y(t) = θx(t) (3)

In order to obtain the parameter matrix θ of the characteristic model, maneuvering
simulation tests are designed to collect ψ(t) and δ(t).
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3. CH-Based Data Preprocessing Strategy

In marine craft tests, the data accuracy is influenced by the onboard position and
posture sensors, which leads to the test dataset being always sparse and not smooth.
Numerical simulations based on the AUV model lead to the conclusion that the longer
the sampling period, the larger the identification error [40]. In order to improve the
identification accuracy, a CH-based data preprocessing strategy is utilized to densify and
smooth the data. The CH-based data preprocessing strategy is a promising approach for
improving data accuracy in marine craft tests. This strategy involves using the interpolation
algorithm to densify and smooth the data, which can help to reduce the impact of onboard
attitude sensors on the test dataset. By using this algorithm, researchers can obtain more
diverse and reliable data, which is essential for making informed decisions about the
maneuvering of marine craft.

One of the key advantages of the CH-based data preprocessing strategy is that it
can handle large amounts of data through acceptable computational complexity, which is
particularly important in marine craft tests. With this algorithm, researchers are able to
quickly and efficiently process the data, allowing them to focus on analyzing the results
and making informed decisions. Another advantage of the CH-based data preprocessing
strategy is that it is able to improve the accuracy of numerical simulations and experiments.
As mentioned earlier, longer sampling periods can lead to larger identification errors. By
using the CH-based algorithm, the data can be densified and smoothed, which can help to
reduce these errors and improve the accuracy of the parameter identification.

The origin time series is t = 0, ∆t, 2∆t, . . . , n∆t, the reconstructed time series is
t′ = 0, 0.25∆t, 0.5∆t, 0.75∆t, ∆t, 1.25∆t, . . . , (n − 0.25)∆t, n∆t, the CH interpolation poly-
nomial can be expressed as follows:

ψi(t′) = ai + bi(t′ − ti) + ci(t′ − ti)
2
+ di(t′ − ti)

3 (4)

with i = 0, 1, . . . , n.
Differentiating ψ yields

.
ψi(t

′) = bi + 2ci(t′ − ti) + 3di(t′ − ti)
2 (5)

Substituting (ti, ψi) and (ti+1, ψi+1) into Equations (4) and (5) yields

ai = ψ(ti)

bi =
.
ψ(ti)

ci =
3

ψ(ti+1)−ψ(ti)
∆ti

−
.
ψ(ti+1)−2

.
ψ(ti)

∆ti

di =

.
ψ(ti+1)+

.
ψ(ti)−2

ψ(ti+1)−ψ(ti)
∆ti

∆t2
i

(6)

with ∆ti = ti+1 − ti being the time interval. In addition,
.
ψ(ti) and

.
ψ(ti+1) are given by

εi =
ψ(ti+1)−ψ(ti)

∆ti

ω1 = 1
3 (1 +

∆ti−∆ti−1
∆ti+1−∆ti−1

)

ω2 = 1
3 (1 +

∆ti+1−∆ti
∆ti+1−∆ti−1

)

.
ψ(ti) =

{
εi ·εi+1

ω1εi+ω2εi+1
εi · εi+1 > 0

0 εi · εi+1 ≤ 0

(7)

Through the above equations, the heading angle and the rudder angle data can be
densified and smoothed successfully. In MATLAB 2018 Software, the phicp function is
designed based on the above CH algorithm, which can be used for data preprocessing.
Overall, the CH-based data preprocessing strategy is a valuable approach for improving
identification accuracy in numerical simulation tests and experiments.
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4. Model Identification Method Design

In this section, the conventional LS-SVM method is introduced in detail. Further, the
data is weighted in the WLS-SVM method to improve the method’s robustness. In order to
render global and local performance improvements, the multi-kernel function is introduced
in the conventional WLS-SVM method. The flowchart of the identification process is shown
in Figure 1.
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Figure 1. The flowchart of the identification process.

As can be seen from Figure 1, the workflow of the proposed identification strategy can
be described in detail as follows:

• Data collection:

The motion data are collected from the numerical simulation tests and experiments,
respectively, which include the heading angle and the rudder angle. Note the data from the
numerical simulations are always pure. Thus, the white noise is added to the simulation
data to imitate the condition in experiments and examine the robustness of the proposed
strategy, which follows the method in [22];

• CH-based interpolation:

The data from the numerical simulations and experiments are normally sparse, which
will lead to unsatisfactory identification performance. For compensating the deficiency, the
CH interpolation algorithm is introduced in the data processing phase. Through the CH
interpolation algorithm, the numerical simulation and experimental data can be denser,
which can increase the accuracy of identification. Then, the processed data can be imported
into the marine craft model for precise identification;

• Characteristic model-based identification:

The characteristic model is widely applied to aircraft and is used in the parameter
identification of marine crafts. The characteristic model can compensate for the deficiencies
of both the hydrodynamic model and the response model. Through the data processing,
the data can be imported to the characteristic model, which can obtain better performance
compared with the response model. Further, the effectiveness of the proposed strategy is
verified by the numerical simulation tests and experiments;

• Strategy validation:
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In order to validate the effectiveness of the proposed strategy, numerical simulation
tests and experiments on a marine craft are performed. The excellent identification ability
of the strategy is demonstrated.

4.1. Conventional LS-SVM Method for Model Identification

Suppose the given dataset is S = {(x0, y0), (x1, y1), . . . , (xi, yi)}n
i=0, the conventional

LS-SVM method for regression can be defined as

y = ωTφ(x) + b (8)

where x is the input vector of the system, y is the output variable of the system, ω is the
weight matrix, and b is the bias term, φ(x) is the kernel function which maps the data to
the high dimensional feature space.

Then, an optimization problem is given by

min
ω,b,ξ

{
1
2 ωTω + 1

2 C
n
∑

i=0
ξ2

i

}
subject to yi −

[
ωTφ(xi) + b

]
= ξi

(9)

where C is the penalty factor, and it is utilized to control the complexity and accuracy of
the LS-SVM method; ξi is the relaxation variable.

The Lagrange function is defined by

L(ω, b, ξ, α) =
1
2

ωTω +
1
2

C
n

∑
i=0

ξ2
i −

n

∑
i=0

αi

[
ξi − yi + ωTφ(xi) + b

]
(10)

According to Karush–Kuhn–Tucker (KKT) conditions, the derivatives of the Lagrange
function are expressed as


∂L
∂ω = 0
∂L
∂b = 0
∂L
∂ξi

= 0
∂L
∂αi

= 0

⇒


ω =
n
∑

i=0
αiφ(xi)

n
∑

i=0
αi = 0

C · ξi = αi
ωTφ(xi) + b + ξi − yi = 0

 (11)

It is straightforward to rewrite the following linear equations:
0 1 · · · 1
1 φT(x0)φ(x0) +

1
C · · · φT(x0)φ(xn)

...
...

. . .
...

1 φT(xn)φ(x0) · · · φT(xn)φ(xn) +
1
C




b
α0
...

αn

 =


0
y0
...

yn

 (12)

Generally, in order to avoid the curse of dimensionality in Equation (12), the linear
kernel function is widely used, i.e., K(xi, xj) = φT(xi)φ(xj) = xi

Txj.
Substituting the kernel function into Equation (8), the decision function is designed as

yi =

(
n

∑
j=0

αjxj

)
︸ ︷︷ ︸

θ=
n
∑

j=0
αjxj

xi + b (13)

However, equal importance is given to each error in the above LS-SVM-based iden-
tification method. In order to address this drawback, the data weighted appropriately
is a feasible method. That is, the data with a smaller error is allowed to have a bigger
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weight. This means that instead of treating all data equally, the errors are weighted based
on their magnitude. Errors with a smaller magnitude are given a bigger weight, while
errors with a larger magnitude are given a smaller weight. The weighting approach ensures
that the model is more sensitive to errors that have a greater impact on the accuracy of the
predictions. By giving more weight to data points with smaller errors, the model is able
to better make more accurate predictions. Overall, data weighting is a useful technique
for improving the performance of LS-SVM-based identification methods and ensuring that
they are more robust and accurate.

4.2. Weighted-LS-SVM Method for Model Identification

In order to meet our identification requirements, the above LS-SVM method is modi-
fied by introducing the weight factor µi (0 < µi < 1).

Define the new objective function

min
ω,b,ξ

{
1
2 ωTω + 1

2 C
n
∑

i=0
ξ2

i µi

}
subject to yi −

[
ωTφ(xi) + b

]
= ξi

(14)

Then, the Lagrange function becomes

L(ω, b, ξ, α) =
1
2

ωTω +
1
2

C
n

∑
i=0

ξ2
i µi −

n

∑
i=0

α∗i

[
ξi − yi + ωTφ(xi) + b

]
(15)

Similar to Section 4.1, the following equations are obtained based on the KKT condition.
0 1 · · · 1
1 φT(x0)φ(x0) +

1
Cµ0

· · · φT(x0)φ(xn)
...

...
. . .

...
1 φT(xn)φ(x0) · · · φT(xn)φ(xn) +

1
Cµn




b
α∗0
...

α∗n

 =


0
y0
...

yn

 (16)

Consequently, the decision function for the model is designed by

yi =
n

∑
i=0

n

∑
j=0

α∗j K(xi, xj) + b (17)

Moreover, the identification performance using the conventional WLS-SVM method
is seriously affected by the Lagrange multiplier α∗i , which indicates the significance of the
corresponding input data x. Therefore, giving a bigger weight µi to the x with a bigger
α∗i is a feasible method, and it will lead to an accurate identification result. Thus, a novel
weighting method is designed.  ν =

|α∗i |−|α∗min|
||α∗max|−|α∗min||

µi =
Zν−Z−ν

Zν+Z−ν

(18)

with a positive constant Z, the weight of the data can be controlled.

4.3. Multi-Kernel-WLS-SVM Method for Model Identification

In order to render the global and local performance improvements of the above WLS-
SVM method in Section 4.2, the combination of the linear kernel function and the Gaussian
kernel function is designed.

The linear kernel function and the Gaussian kernel function are linearly combined
as follows:

K∗(xi, xj) = a · xi
Txj + (1− a) · exp(−

∥∥xi − xj
∥∥2

ε2 ) (19)
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where ε is the Gaussian kernel parameter and a ∈ (0, 1) is designed to control the weight
of each kernel function. Finally, by substituting the multi-kernel function in Equation (19)
into the decision function in Equation (17), the parameter matrix θ can be obtained.

The linear kernel function is a simple dot product between the input vectors, which
measures the similarity between the input features. It works well when the data is linearly
separable but may not be effective in capturing complex nonlinear relationships between
the input features. On the other hand, the Gaussian kernel function measures the similarity
between two data points based on their distance in a high-dimensional feature space, which
can capture complex nonlinear relationships between the input features.

By combining the linear kernel function and the Gaussian kernel function, the resulting
kernel function can capture both linear and nonlinear relationships between the input
features and can adapt to the complexity of the data. The parameter a ∈ (0, 1) can be
tuned to balance the contribution of the linear and Gaussian kernel functions and can be
optimized using cross-validation. Before the simulations and experiments, a pseudocode
of the proposed strategy can be described as Algorithm 1:

Algorithm 1: CH-based multi-kernel WLS-SVM

Input: The heading angle Ψ and the rudder angle δ.
Output: Identified parameters and prediction accuracy.
Begin
Step 1. Data preprocessing
1.1. Import the training data to the CH algorithm.
1.2. Obtain the extended matrix of ψ and δ.
Step 2. Parameter identification
2.1. Import the extended matrix of ψ and δ to the multi-kernel WLS-SVM.
2.2. Hyperparameter selection

for C = 101 ∼ 1010

for RBFvar = 0.1 ∼ 5
Identify and export the model parameters.

end
end

Step 3. Accuracy evaluation
3.1. Calculate the RMSE according to the model parameters
3.2. if (RMSE is satisfactory) then

Export the identified parameters and prediction accuracy.
end if

End

5. Numerical Simulation and Experiment Study

In this section, in order to choose a better identification model, the 30◦ Zigzag sim-
ulation tests based on the characteristic model and the response model are designed,
respectively; Moreover, white noise is added to the simulation data, then the CH inter-
polation algorithm is utilized to preprocess the dataset, and the preprocessed dataset is
identified by using the conventional LS-SVM method, the CH-LS-SVM method, the CH-
WLS-SVM method, and the CH-MK-WLS-SVM method, respectively; At last, the predictive
ability of the CH-MK-WLS-SVM method is analyzed by experiments. The root mean square
error (RMSE) and mean absolute error (MAE) are adopted to assess the accuracy. The white
noise added to the data can be shown in Figure 2, and the control input and output can be
found in Figure 3.
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5.1. Selection of Marine Craft Motion Model

The first-order nonlinear response model is chosen as a contrastive model, which can
be described as follows:

T
.
r + r + αr3 = Kδ (20)

where K, T, r, and α denote rudder angle gain, time constant, heading angular velocity, and
Norbbin coefficient, respectively. The comparative result is shown in Figure 4.

It is observed that from Figure 4, the characteristic model can better meet the identifi-
cation demands. However, a leap occurs in the characteristic model’s identification result,
which is mainly caused by the large data sampling interval. By the numerical analysis, it
can be weakened in a short data sampling interval. Thus, the characteristic model can be
used in the system identification of marine crafts.

Further, the RMSE and MAE are introduced to assess the accuracy, and the correspond-
ing comparative results are shown in Table 1, which reveals that the characteristic model
outperforms the response model in terms of accuracy. This indicates that the characteristic
model can effectively capture the dynamics and characteristics of marine crafts and can
provide more accurate and reliable identification results.

Table 1. The RMSEs and MAEs of the response model and the characteristic model.

Response Model Characteristic Model

RMSE (◦) 7.0056 2.6748
MAE (◦) 6.1386 2.6453
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5.2. Comparison and Analysis of the Conventional LS-SVM Method and the CH-LS-SVM Method

In order to densify and smooth the dataset, a data preprocessing strategy based on the
CH interpolation algorithm is proposed. The results identified by the conventional LS-SVM
method and the CH-LS-SVM method are shown in Figure 5.
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As shown in Figure 5, the leap at the characteristic model’s identification result is
weakened by the CH-based data preprocessing strategy, and the identification performance
is further improved. It can be seen that the CH-based data preprocessing strategy is
efficient for solving the problem of low identification accuracy due to long sampling
intervals. Subsequently, the RMSEs and MAEs comparisons are listed in Table 2. Moreover,
the deficiency of sensors-induced sampling limitation can be improved in the experiments.
The results in Table 2 demonstrate the significant improvement in identification accuracy
achieved with the CH-based approach in comparison to traditional methods. Overall,
the CH-based data preprocessing strategy is a promising approach for enhancing the
accuracy and efficiency of model identification and can be applied to a wide range of ocean
engineering applications.
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Table 2. The RMSEs and MAEs of the conventional LS-SVM method and the CH-LS-SVM method.

LS-SVM CH-LS-SVM

Sampling interval (s) 0.5 0.17
RMSE (◦) 2.6798 0.2301
MAE (◦) 2.6453 0.1864

5.3. Validation of CH-WLS-SVM Method Improved by Multi-Kernel Function

It is well known that the linear kernel function is a global kernel function, and the
Gaussian kernel function is a local kernel function. Thus, the CH-MK-WLS-SVM method is
designed to render the global and local performance improvements of the above WLS-SVM
method. In the CH-MK-WLS-SVM method, the weighting control factor a in Equation (19)
is chosen as 0.15 through numerical analysis, and the RMSE is 0.0938◦. Specifically, the
RMSE is 0.1432◦ and 0.1511◦ when a is 0 or 1, respectively. The identification results based
on the characteristic model by using the CH-LS-SVM method, CH-WLS-SVM method, and
CH-MK-WLS-SVM method are shown in Figure 6.
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SVM method.

As can be seen from Figure 6, by adding the multi-kernel function into the CH-
WLS-SVM method, the identification result of the CH-MK-WLS-SVM method is the most
accurate, and it can fit well with the true values in the presence of sensor noise. And the
performance improvements between these methods can be attributed to the validity of the
proposed strategy that combines a novel weighting method with a multi-kernel function
integration. Further, the RMSEs, MAEs, Root Mean Squared Log Error (RMSLE), and
Adjusted R Squared (AR2) comparative results are listed in Table 3.

Table 3. The RMSEs and MAEs of the above methods.

CH-LS-SVM
(Linear Kernel Function)

CH-WLS-SVM
(Linear Kernel Function)

CH-WLS-SVM
(Gaussian Kernel Function)

CH-MK-WLS-SVM
(Multi-Kernel Function)

RMSE (◦) 0.2008 0.1511 0.1432 0.0938
MAE (◦) 0.1843 0.1306 0.1203 0.0781

RMSLE (◦) 0.3539 0.2707 0.2104 0.1655
AR2 0.9994 0.9995 0.9995 0.9996

The tuning of the hyperparameters for the machine learning algorithms is very im-
portant and can seriously impact the performance of the algorithms. For the parameter
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selection of the study, the data are divided into the training and testing datasets. Besides,
the hyperparameters are tuned within the set value through iterative optimization based
on the RMSE of the testing dataset. For instance, in the tuning process for the LS-SVM,
the hyperparameters (penalty factor C and RBF variable) are selected through iterative
optimization, which aims to minimize the RMSE of the prediction results in the testing
dataset. The C is tuned to 101–106, and the RBF variable is tuned to 0.1–5, which is shown
in Figure 7.
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Finally, the NN algorithm is selected as a comparative method to verify the superiority
of the proposed strategy. In NN, the number of hidden Neurons is 10. The input variables
are the heading angle and the rudder angle, in which the training data is 70% of the total,
and others are used to test. The comparative result is shown in Figure 8. Through the
numerical simulation of the 30◦ Zigzag test in MATLAB software, the RMSE is 0.0320. Com-
pared to the CH-MK-MK-WLS-SVM (RMSE = 0.0087), the latter is superior in maneuvering
prediction.
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5.4. Experimental Study on a Marine Craft

A marine craft shown in Figure 9 carried out a series of Zigzag maneuvering exper-
iments in Zhi Yuan Lake at Shanghai Jiao Tong University under relatively calm water
conditions. Table 4 illustrates the particulars of the marine craft for reference. Furthermore,
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modules such as a wireless transceiver unit, an attitude sensor (Angle resolution = 0.0055◦),
and an STM32F407 microcontroller are equipped on the marine craft. In this study, experi-
mental studies are carried out under MATLAB 2018 environment and run at 2.3 GHz (CPU)
and 24 GB memory (RAM). Then, a set of samples, including the actual rudder angle and
heading angle, are collected. Finally, the 25◦ Zigzag maneuvering experiment is used as
the training data; meanwhile, the 20◦ and 15◦ Zigzag maneuvering experiments provide
the validation data to verify the predictive ability of the method. The training data and the
identification result are shown in Figure 10.
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Table 4. Main technical characteristics of the marine craft.

Description Value

Length (m) 0.85
Mass (kg) 7.8

Rudder’s area (cm2) 40
Attitude sensor’s resolution (◦) 0.0055

Servo’s maximum torque (kg·cm) 40
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To further evaluate the performance of the CH-MK-WLS-SVM method, additional
experiments were conducted using different maneuvering angles. The prediction results
of the 20◦ and 15◦ Zigzag maneuvering experiments based on the CH-MK-WLS-SVM
method are shown in Figure 11, where the predictions are compared with the original
data. The RMSE values obtained for the 20◦ and 15◦ maneuvers were 0.2497◦ and 0.1585◦,
respectively. These low RMSE values indicate that the CH-MK-WLS-SVM method is
capable of providing highly accurate predictions of a marine craft’s heading angle during
maneuvering operations.
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Overall, the results of this study demonstrate that the CH-MK-WLS-SVM method is a
promising approach for predicting a marine craft’s heading angle under various operating
conditions. The proposed strategy is robust and accurate, making it a useful tool for marine
engineers and operators concerned with vessel navigation and maneuvering. With further
validation and refinement, this strategy could be widely deployed in the marine industry
to improve safety, efficiency, and performance.

6. Conclusions

In this work, a hybrid system identification method based on the characteristic model
named the CH-MK-WLS-SVM method is proposed for marine crafts, which provides an
offline accurate identification method for marine crafts. The CH-MK-WLS-SVM method is
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verified by numerical simulation and experiments. The following advantages and features
of the method can be summarized: Firstly, by introducing the CH-based interpolation
algorithm, the data can be effectively densified and smoothed, which can improve the
identification performance in the situation of missing data. Secondly, in order to further
accurate identification, a novel weight method for the conventional WLS-SVM is designed.
Thirdly, the linear kernel function and the Gaussian kernel function are combined to render
global and local performance improvements of the method. Finally, the predictive capability
of the CH-MK-WLS-SVM method is tested by using the data obtained from the 20◦ and 15◦

Zigzag maneuvering experiments. The results indicate that the CH-MK-WLS-SVM method
is adequate to describe and predict the marine craft’s motion. Compared with the original
identification result, the RMSE of the CH-MK-WLS-SVM method is reduced by an order of
magnitude in the numerical simulation. Meanwhile, the good identification performance
and predictive ability are verified through the experimental data.

7. Limitations and Future Studies

There are also some limitations of this study: (1) there are many parameters in the
proposed multi-kernel WLS-SVM algorithm; hence, the selection of the parameters for the
multi-kernel WLS-SVM algorithm is relatively time-consuming. (2) Although the proposed
strategy has been verified by numerical simulation tests and experiments, experimental
disturbances such as wind and wave disturbance are not considered. (3) The motion model
only describes one direction in the horizontal plane, which is hard to predict other velocities
in other DOFs.

In future studies, more work is needed to investigate techniques for choosing hyper-
parameters of the proposed method appropriately and conveniently, such as the penalty
factor and the Gaussian kernel parameter. Moreover, verifying the proposed method in the
multi-DoFs is also worthwhile to explore in the future.
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