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Abstract: In the context of the increasing frequency and intensity of natural disasters, assessing
the risk of typhoon disasters can provide significant assistance for risk control and emergency
management of typhoon disasters. In this paper, based on the three-dimensional information diffusion
method, the formal expected loss model is transformed into a computable typhoon risk assessment
model. The fuzzy information in the small sample data is deeply mined, and the typhoon disaster
risk assessment with the expected loss as the connotation is carried out, and the probability density
distribution estimation of disaster-causing factors at different levels and the functional relationship
identification between disaster-causing factors at different levels and direct economic loss rate are
realized by using the information matrix. At the same time, combined with the frequency of typhoon
occurrence, the annual risk of disasters is predicted to make up for the problem of insufficient
marine environmental data and improve the calculation accuracy of risk assessment models. Taking
Guangdong Province as an example, a typhoon risk assessment was conducted, estimating the
probability distribution, direct economic loss rate distribution, and annual loss expectation of typhoon
disasters under different wind speed scales and extreme wave heights. The results indicate that the
risk estimation value of the three-dimensional information diffusion model is higher than that of
the traditional model, which weakens the limitations of the low-dimensional information diffusion
model and makes the evaluation results more reasonable and reliable.

Keywords: information diffusion; typhoon risk assessment; expected losses

1. Introduction

Typhoon disaster is one of the main disasters in coastal areas, and its high frequency,
suddenness, wide range of influence and intensity of disaster [1–6] have brought great
losses to the development of marine resources and the economic and social development
of coastal areas. Additionally, in the climate context of global warming and sea level
rise [7–11], the frequency of typhoons has climbed year by year, causing the life property
damage is increasing year by year, and the threat to society and economy is becoming more
and more serious. For example, in July 2021, the severe Typhoon In-Fa was affected by
typhoons such as “Cempaka” and “Nepartak”, which were active at the same time and
influenced each other, causing a total of 4.82 million people across China. Zhengzhou was
the scene of a rare extreme and continuous heavy rainfall disaster triggered by “In-Fa”,
which caused economic losses of more than 65.5 billion RMB (Ren Min Bi) in just one
disaster. With the continuous growth of urban population and economy, the risk level of
typhoon disasters has further increased. Therefore, it is important to strengthen typhoon
disaster risk management and disaster prevention and mitigation by fully considering the
relationship between the risk of each disaster-causing factor and the vulnerability of the
disaster-bearing body, making scientific and reasonable quantitative calculations to realize
typhoon disaster risk assessment with expected losses in a small sample.
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The key to typhoon hazard risk assessment is to find the conditions of typhoon risk
change, and the ocean environment is harsh, and the sample data are insufficient, so it
is important to accurately quantify the typhoon hazard risk while making full use of the
incomplete information in the small sample data for typhoon hazard risk assessment [12,13].
In order to make a reasonable assessment of the risk of the causative factors of typhoon
hazards, methods such as the index system evaluation method, weighted comprehensive
evaluation method, and fuzzy mathematical method have been applied to risk assess-
ment [14–16]. Based on the natural risk index method and the weighted comprehensive
evaluation method, Chen et al. [17] constructed a risk evaluation system for typhoon haz-
ards in eastern Guangdong and used GIS technology for regional classification of hazard
levels to provide a scientific basis for formulating planning strategies for typhoon hazards
in eastern Guangdong. Wang et al. [18] used AHP hierarchical analysis and GIS technol-
ogy to establish an evaluation model with subsystems of typhoon-caused disasters, social
disaster prevention and mitigation, and natural disaster-bearing and conducted a disaster
risk assessment and disaster rating analysis for major coastal cities in China that experi-
enced severe typhoon disasters. Zhao et al. [19] used hierarchical analysis to construct
a three-level evaluation index system of population, economy, and infrastructure from
the perspective of disaster-bearing bodies. They explored the socio-economic sensitivity
and spatial and temporal distribution patterns of typhoon disasters in Zhejiang Province.
Based on the formation mechanism of natural disaster risk, Shang et al. [20] established
an evaluation index system by considering 10 indicators in three aspects, including the
sensitivity of the disaster-emitting field, the hazard of the disaster-causing force, and the
exposure of the disaster-bearing body, and used the mutation level method to construct
an evaluation model. The above models are devoted to using multiple factors and eval-
uation indicators to analyze the risk of typhoon disaster factors and the vulnerability of
disaster-bearing bodies, and then use the evaluation system to study typhoon risk losses.
The evaluation of typhoon loss amount is mostly semi-qualitative and semi-quantitative,
but there is insufficient research on the specific loss amount, and the evaluation results
are highly subjective. Liu et al. [21] used the information diffusion principle to assess the
risk of multiple natural hazards in the Yangtze River Delta assessment, the transcendent
probability distribution of risk to human life from multiple hazards, and the method was
able to use a relatively small amount of data for multi-hazard risk assessment. Based on the
stochastic process, Huang et al. [22] used a two-dimensional normal information diffusion
method to fuzzy infer typhoon disaster loss values and improved the sample function of
the stochastic process of typhoon disaster to further estimate the annual risk of typhoon
disaster, and concluded that estimating typhoon risk with a probability distribution model
could improve the estimation accuracy. Therefore, using the probability distribution model
to realize the quantitative calculation of typhoon risk and solve the problem of insufficient
information of small sample data caused by the lack of information data is important to
improve the accuracy of typhoon disaster risk assessment.

The probability distribution model risk assessment of typhoon disaster is based on
historical disaster information and quantitative expression of typhoon disaster risk using
the expected value of losses to characterize the vulnerability function relationship between
different levels of disaster-causing factors and disaster losses of typhoons. The information
diffusion method generates an information matrix by converting independent sample
points into a fuzzy set, which can effectively identify the causal function relationship be-
tween the causal factors and disaster losses and has been widely used in the risk analysis
of fire [23], drought [24], flood [25], soil erosion [26], and other disasters. Liu et al. [27]
estimated the annual disaster loss expectations of several vulnerability indicators of ty-
phoon disasters in Guangdong Province based on a two-dimensional normal information
diffusion method, and the results showed that the information diffusion method greatly
improved the efficiency of using incomplete information of small samples. Liu et al. [28]
established a super-probability assessment model for extreme typhoon disasters in South
China based on the information diffusion method and realized the risk assessment of
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extreme typhoon disasters in South China with a small sample by considering the factors
of the disaster-bearing body, and their results showed the superiority of the method. Yu
et al. [29] and others used a risk assessment model based on information diffusion theory
to assess the risk of typhoons along the southeastern coast of China based on the area of
typhoon damage, damage, and loss during the period 2001–2015. The above studies intro-
duced the information diffusion method into the risk assessment to effectively improve the
accuracy of the assessment and solve the problem of low accuracy of the model calculation
results in the case of small samples, and the calculation results are more reasonable. Due
to the limitation of data, the previous studies only focus on single causative factors, such
as the frequency of typhoons in the study area and the maximum wind level of typhoon
landing, etc. The studies on multiple causative factors are less involved and cannot provide
a more accurate description of the vulnerability of the disaster-bearing body. Therefore,
considering the combined effect of multiple disaster-causing factors and quantifying the
typhoon losses under different levels of disaster-causing factors, the multidimensional
information diffusion method can be applied to typhoon disaster risk assessment to make
the calculation results more reasonable.

Based on the above analysis, this paper proposes a multi-causal factor typhoon risk
assessment model based on the information diffusion theory, which can make full use
of the fuzzy information in small sample data to improve the calculation accuracy. At
the same time, combine multiple causal factors of typhoon occurrence to estimate the
probability density distribution under different risk source causal factors and identify the
typhoon vulnerability function, to realize the multi-causal factor risk assessment model
with expected losses in the small sample. In the second part of this paper, a normal
information diffusion model is constructed to estimate the probability distribution of
typhoon hazards under different wind speed scales and extreme wave heights. A three-
dimensional information diffusion model is used to estimate the distribution of direct
economic loss rate of typhoon hazard under the combined effect of maximum wind speed
scale and extreme wave heights. Additionally, the risk of typhoon hazard loss under
different levels of risk-causing factors is obtained by multiplicative risk coupling. The third
part uses the data of 19 typhoons affecting Guangdong Province from 2005–2016 to conduct
an example analysis of risk assessment of typhoon disasters under different wind speed
scales and extreme wave heights. The fourth part makes an analysis and conclusion of the
research in this paper.

2. Theoretical Model
2.1. Construction of Probability Distribution of Disaster-Causing Factors of Risk Sources

The hazard of typhoons lies in gales, heavy rain, huge waves, and storm surge. The
severe gale and storm waves will lead to the failure of urban protective works, so the
maximum wind speed scale and extreme wave height at typhoon landfall is selected as the
representative disaster-causing factors in this paper. To make full use of the ambiguous
information in the incomplete information of the measured small sample data, the normal
information diffusion method is used to generate a two-dimensional information matrix,
which acts similar to a probability histogram but estimates the two-dimensional probability
density distribution more accurately than a histogram, so that the probability density
function can be better estimated with fewer sample points.

Suppose the sample observations of maximum wind speed scale (rounded according to
the National Standard of “Wind Class”) and extreme wave height are X = {x1, x2, . . . , xn},
Y = {y1, y2, . . . , yn}, and the value interval [u1, uJ], [v1, vk] is determined according to
the capacity of the sample set and the maximum and minimum values of the elements.
Then, choose appropriately small step size λx and λy to obtain the set of all taken values
(theoretical domain), and generate the theoretical domain corresponding to the maximum
wind speed scale and extreme wave height U =

{
u1, u2, . . . , uJ

}
, V = {v1, v2, . . . , vk}.
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Let µijk be the two-dimensional diffusion function of the sample set X and Y on
U × V. Based on the information diffusion theory, the elements in X and Y are subjected to
two-dimensional normal information diffusion at U × V as follows:

µijk = exp[−
(
uj − xi)

2

2hx
2 −

(
vk − yi)

2

2hy
2 ] (1)

where µijk is the information content of the sample point observations on U × V. The
diffusion coefficients hx, hy are solved [30–33] as

hx =



0.8146(b− a), when n = 5
0.5690(b− a), when n = 6

0.4560(b− a), when n = 7
0.3860(b− a), when n = 8

0.3362(b− a), when n = 19
0.2986(b− a), when n = 10

2.6850(b− a), when n ≥ 11

(2)

where a and b are the minimum and maximum values in the sample set X, respectively.
Let:

qjk = ∑n
i=1 µijk (3)

qjk is the total information of the sample observations (xi, yi) on U × V.
From Equation (4), the total amount of information H over U × V for all sample

observations can be obtained.

H =
J

∑
j=1

K

∑
k=1

qjk (4)

Further from Equation (5), the discrete probability distribution estimates p of the
probability distributions of X and Y at U and V.

pjk = qjk/H (5)

The probability distribution matrices for different maximum wind speed scale and
extreme wave heights at U × V, can be obtained as

p =

v1 v2 · · · vk
u1
u2
...

uj


p11
p21

...
pj1

p12
p22

...
pj2

· · ·
· · ·
. . .
· · ·

p1k
p2k
...

pjk


(6)

With the help of the information matrix, not only the joint probability distribution of
maximum wind speed scale and extreme wave height can be estimated at discrete points,
but also the general causal function relationship can be identified at discrete points as a
way to identify the vulnerability function relationship of maximum wind speed scale-wave
height and direct economic loss rate.

2.2. Typhoon Vulnerability Function Estimation

Vulnerability represents the ability of the disaster-bearing body to cope with damage,
and its core is the vulnerability of the disaster-bearing body system, and the research
focuses on identifying the relationship of “risk source intensity—damage degree of the
bearing body”, i.e., the vulnerability function. Based on the function of information matrix,
the vulnerability function of discrete maximum wind speed scale-wave height and direct
economic loss rate is generated by the following information matrix.
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The maximum wind speed scale x, extreme wave height y and the corresponding
disaster loss rate values z are compiled from the collected disaster information to form a
sample set S:

S = {(x1, y1,z1), (x2, y2, z2), . . . , (xn, yn, zn)} (7)

Determine the maximum-minimum value taking interval of x, y, and z. Select appro-
priately small step sizes λx, λy, and λz to generate discrete theoretical domains of x, y, and
z, denoted by C, D, and W, respectively:

C =
{

a1, a2, . . . , aJ
}

(8)

D = {b1, b2, . . . , bK} (9)

W = {c1, c2, . . . , cL} (10)

The information carried by each sample point (xi, yi, zi) in S was assigned to µijkl in
the point sets C, D, and W by the amount

(
aj, bk, cl

)
using the normal information diffusion

formula [30]. Using the law of normal distribution, the points (xi, yi, zi) of the sample set S
are spread over the input and output domains C, D, and W:

µijkl =
1

(2π)
3
2 hxhyhz

exp[−
(
aj − xi)

2

2hx
2 −

(
bk − yi)

2

2hy
2 −

(
cl − yi)

2

2hz
2 ] (11)

where µijkl is the information of the sample point observations on C× D×W. The diffusion
coefficients hx, hy, hz are solved as Equation (2).

Then, let:
Qjkl = ∑n

i=1 µijkl (12)

The original information matrix Q of the sample set S on C × D × W is obtained
as shown in Equation (13), after which it is normalized in columns to obtain the fuzzy
relationship matrix R as in Equation (14). Using the fuzzy inference model, the output z0 is
obtained from the input (x 0, y0), which leads to the vulnerability function (Equation (18)).

Q =



c1

a1
a2

a3
. . .

aj



b1 b2 . . .
Q1

11 Q1
12 . . .

Q1
21 Q1

22 . . .

bk
Q1

1k
Q1

1k
Q1

31 Q1
32 . . .

. . . . . . . . .
Q1

j1 Q1
j2 . . .

Q1
1k

. . .
Q1

jk



c2

a1
a2
a3
. . .
aj


Q2

11 Q2
12 . . .

Q2
21 Q2

22 . . .
Q2

31 Q2
32 . . .

Q2
1k

Q2
2k

Q2
3k

. . .
Q2

j1

. . .
Q2

j2

. . .

. . .
. . .
Q2

jk



c3

a1
a2
a3
. . .
aj


Q3

11 Q3
12 . . .

Q3
21 Q3

22 . . .
Q3

31 Q3
32 . . .

Q3
1k

Q3
2k

Q3
3k

. . .
Q3

j1

. . .
Q3

j2

. . .

. . .
. . .
Q3

jk


. . . . . . . . . . . . . . .

cl

a1
a2
a3
. . .
aj


Ql

11 Ql
12 . . .

Ql
21 Ql

22 . . .
Ql

31 Ql
32 . . .

Ql
1k

Ql
2k

Ql
3k

. . .
Ql

j1

. . .
Ql

j2

. . .

. . .
. . .
Ql

jk





(13)
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
Hl = max

1≤j≤m
Qjkl ;

rjkl = Qjkl/Hl ;

R =
{

rjkl}j×k×l .

(14)

The inputs of the samples in this paper are the sample observations of the maximum
wind speed scale and extreme wave height at two-dimensional points (x 0, y0), and the in-
put set (x 0, y0) is fuzzified according to the one-dimensional normal information diffusion
formula shown in Equations (15) and (16) before fuzzy inference.

µx0(aj) =

{
1− |x0−aj|

∆a , |x0 − aj| ≤ ∆a
0, others.

(15)

µy0(bk) =

{
1− |x0−bk |

∆b
0, others.

, |y0 − bk| ≤ ∆b (16)

where ∆a = aj − aj−1, ∆b = bk − bk−1. According to x0, y0 and R, the fuzzy output set µz0

of the direct economic loss rate on W is obtained using the fuzzy approximate inference
Formula (17):

µz0(cl) =

∨
C, D

(µx0(aj) ∧ µy0(bk) ∧ µR(aj, bk, cl)) (17)

Using the center of gravity method again, the fuzzy set µz0 is transformed into the
fuzzy value z0 (direct economic loss rate value) as shown in Equation (18):

z0 =
∑1≤l≤L µz0(cl)× cl

∑1≤l≤L µz0(cl)
(18)

Under the small sample condition, f (x 0, y0)= z0 can better reflect the causal relation-
ship between the maximum wind speed scale-extreme wave height and the direct economic
loss rate in Equation (7) S, which is a vulnerability function with high accuracy.

By using the information diffusion method, we only need to determine the sample
value interval, choose an appropriately small step size, and substitute the original sample
data into the sequential calculation to obtain the estimated value of the direct economic
loss rate as follows (The detailed process is shown in Figure 1).

2.3. Risk Assessment Model

The probabilistic risk analysis method uses a probability distribution function to char-
acterize the intensity of the risk source, a vulnerability function to describe the vulnerability
of the risk bearer and a loss expectation as a measure of risk. A typhoon risk assessment
model that comprehensively portrays the integrated role of risk sources and risk bearers
should completely contain three basic elements: time, space, and level values (risk metric
values that indicate risk magnitude, level, etc.). Therefore, for typhoon risk assessment
models, corresponding time elements must be added to eliminate systematic errors. In this
paper, we adopt the modified method of Guo et al. [34], add corresponding time elements
to the risk assessment model to eliminate the systematic error, combine the frequency
of typhoon occurrence, and construct the typhoon disaster risk assessment model with
expected loss as the connotation. Additionally, the modified typhoon risk assessment
model is as follows:

R = λT

∫ ∫
p(x, y) f (x, y )dxdy (19)

where λT is the frequency of typhoons occurring in the study area in one year; x and y are
typhoon disaster-causing factors; p(x, y) is the probability distribution of typhoon disaster-
causing factors; and f (x, y) is the vulnerability function of typhoon disaster-causing factors.
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In this paper, a multi-hazard-causing factor typhoon risk assessment model with
expected loss as the implication is constructed based on the three-dimensional information
diffusion method, and its model structure is shown in Figure 2.
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3. Engineering Calculation Example
3.1. Data Source

Guangdong Province is bordered by the South China Sea and has 3368 km of coastline,
which is ranked first in China. This paper takes Guangdong Province as the study area
(Figure 3) and uses information diffusion technology to carry out the risk assessment of
typhoon disasters in this study area, and the data collected and used are mainly wind and
wave data, typhoon data, and basic situation data of the research area, and the wind and
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wave data and typhoon data come from the typhoon statistics set of Scammon Island and
Scammon Ocean Observatory, respectively. In addition, this paper finds information from
the China Marine Disaster Bulletin, Guangdong Provincial Marine Disaster Bulletin, and
China Meteorological Disaster Yearbook in the past years and statistics of 19 typhoons’
disaster data in the middle of 2005–2016. Additionally, considering factors such as pop-
ulation growth and inflation, data such as resident population and GDP of Guangdong
Province in the past years were collected (from the website of National Bureau of Statistics
www.stata.gov.cn (e.g., accessed on 23 July 2022)), see Figure 4.
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Based on the collected relevant typhoon and wind wave data, from which the max-
imum wind speed scale and its accompanying extreme wave height were selected as
samples, the information shows that the maximum wind speed scale at landfall of ty-
phoons affecting Guangdong Province during 2005–2016 ranged from 7 to 17 values. The
extreme wave height ranged from 1.2 to 7.0 m. The K-S test was used to statistically test the
samples. The specific calculation results are shown in Table 1.

Table 1. K-S test results of maximum wind speed scale and extreme wave height.

Distribution Extreme Wave Height Maximum Wind Speed Scale

Normal distribution 0.1279 (0.8768) 0.1632 (0.6342)

www.stata.gov.cn
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From the calculation results in Table 1, we can see that: the significance probabil-
ity p-values of extreme wave height and maximum wind speed scale using the K-S test
are 0.1279 and 0.1632, which are greater than the significance level of 0.05, respectively.
Additionally, each sample data passed the hypothesis test, so it can be considered that
the typhoon data samples obeyed the normal distribution law during 2005–2016, which
provides a theoretical basis for the following estimation based on the two-dimensional
information diffusion model. This provides a theoretical basis for the following estima-
tion of the probability distribution based on the two-dimensional information diffusion
model and the estimation of typhoon losses based on the three-dimensional information
diffusion model.

3.2. Model Calculation
3.2.1. Estimation of Probability Distribution

The sample data of 19 typhoons in Guangdong Province during 2005–2016 were
selected, and the maximum landfall wind speed scale and extreme wave height were
noted as

X = {x1, x2, . . . , x19} = {12, 15, 14 . . . 12, 13},

Y = {y1, y2, . . . , y19} = {6.5, 3.0, 4.0 . . . 3.5, 1.2}

In the above sample data, the minimum value of landing maximum wind speed scale
X is 7 and the maximum value is 17, and the minimum value of wave height extreme value
Y is 1.2 m and the maximum value is 7.0 m. Based on its maximum and minimum values,
the discrete domain can be constructed as [5.5, 17.5], [1, 7.6], respectively, at this time, the
step of landing maximum wind speed scale is 0.5 and the step of extreme wave height is
0.275. The control points are all 25, then their discrete theoretical domains are as follows

U = {u1, u2, . . . , u25} = {5.5, 6.0, 6.5, 7.0 . . . 17.0, 17.5},

V = {v1, v2, . . . , v25} = {1.0, 1.275, 1.55, 1.875 . . . 7.325, 7.6}

The calculated diffusion coefficients hx and hy are 1.4919 and 0.8652, respectively, and
the probability distributions of landing maximum wind speed scale and extreme wave
height are obtained from Equations (1)–(5) of the two-dimensional information diffusion
model as shown in Figure 5 and Table 2.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. Probability density distribution of disaster—causing factors at different levels. 

Table 2. Probability distribution of maximum wind speed scale and extreme wave height. 

Maximum 
Wind Speed 

Scale 

Extreme Wave Height (m)  

2.1 3.2 4.3 5.4 6.5 7.6 

12 0.0018 0.0036 0.0046 0.0029 0.0020 0.0008 
13 0.0026 0.0044 0.0052 0.0036 0.0026 0.0012 
14 0.0027 0.0044 0.0051 0.0034 0.0030 0.0015 
15 0.0022 0.0037 0.0043 0.0032 0.0031 0.0017 
16 0.0014 0.0027 0.0029 0.0023 0.0027 0.0016 
17 0.0009 0.0018 0.0016 0.0012 0.0017 0.0011 

From Table 2 and Figure 5, it can be seen that the typhoon has the highest probability 
of occurrence when the maximum wind speed is 13 and the extreme wave height is 4.3 m, 
followed by typhoons with a maximum wind speed of 12 and 14. The probability of oc-
currence of different maximum wind speeds and extreme wave height varies, with the 
overall change pattern increasing and then decreasing, and the overall probability value 
decreases as the intensity of typhoon risk sources increases later. However, the probability 
of occurrence of each risk factor of typhoons cannot be used as a measure of risk, for ex-
ample, the probability values of severe typhoons “Kai Tak” and “Rumbia” are large, but 
the direct economic loss rate is only 0.0449% and 0.0170%, so it is obviously unreasonable 
to take the probability value of the disaster factor as the measure of risk. 

3.2.2. Estimation of Typhoon Disaster Losses at Different Levels of Risk-Causing Factors 
Since the risk of the same direct loss is different for different regions and years, it is 

obviously unreasonable to compare the risk size by direct economic loss alone. As the 
output sample and collate the typhoon data to obtain the sample set 𝑆. 𝑆 = ൛൫𝑥ଵ, 𝑦ଵ,𝑧ଵ൯, (𝑥ଶ, 𝑦ଶ, 𝑧ଶ), … , (𝑥௡, 𝑦ଵଽ, 𝑧ଵଽ)ൟ = {(12,6.5,0.0155), (13,3.0,0.1677), (14,4.0,0.2183) … (13,1.2,0.0569)} 

The domain steps of x, y, z are chosen as 0.5, 0.275 and 0.0175, respectively, and the 
theoretical domains 𝑈, 𝑉, and 𝑊 of x, y, z are constructed as follows: 

Figure 5. Probability density distribution of disaster—causing factors at different levels.



J. Mar. Sci. Eng. 2023, 11, 1080 10 of 17

Table 2. Probability distribution of maximum wind speed scale and extreme wave height.

Maximum Wind
Speed Scale

Extreme Wave Height (m)

2.1 3.2 4.3 5.4 6.5 7.6

12 0.0018 0.0036 0.0046 0.0029 0.0020 0.0008
13 0.0026 0.0044 0.0052 0.0036 0.0026 0.0012
14 0.0027 0.0044 0.0051 0.0034 0.0030 0.0015
15 0.0022 0.0037 0.0043 0.0032 0.0031 0.0017
16 0.0014 0.0027 0.0029 0.0023 0.0027 0.0016
17 0.0009 0.0018 0.0016 0.0012 0.0017 0.0011

From Table 2 and Figure 5, it can be seen that the typhoon has the highest probability
of occurrence when the maximum wind speed is 13 and the extreme wave height is 4.3
m, followed by typhoons with a maximum wind speed of 12 and 14. The probability of
occurrence of different maximum wind speeds and extreme wave height varies, with the
overall change pattern increasing and then decreasing, and the overall probability value
decreases as the intensity of typhoon risk sources increases later. However, the probability
of occurrence of each risk factor of typhoons cannot be used as a measure of risk, for
example, the probability values of severe typhoons “Kai Tak” and “Rumbia” are large, but
the direct economic loss rate is only 0.0449% and 0.0170%, so it is obviously unreasonable
to take the probability value of the disaster factor as the measure of risk.

3.2.2. Estimation of Typhoon Disaster Losses at Different Levels of Risk-Causing Factors

Since the risk of the same direct loss is different for different regions and years, it is
obviously unreasonable to compare the risk size by direct economic loss alone. As the
output sample and collate the typhoon data to obtain the sample set S.

S = {(x1, y1,z1), (x2, y2, z2), . . . , (xn, y19, z19)}
= {(12, 6.5, 0.0155), (13, 3.0, 0.1677), (14, 4.0, 0.2183) . . . (13, 1.2, 0.0569)}

The domain steps of x, y, z are chosen as 0.5, 0.275 and 0.0175, respectively, and the
theoretical domains U,V, and W of x, y, z are constructed as follows:

C = {a1, a2, . . . , a25} = {5.5, 6.0, 6.5 . . . 17.0, 17.5},

D = {b1, b2, . . . , b25} = {1, 1.275, 1.55 . . . 7.325, 7.6},

W = {c1, c2, . . . , c25} = {0, 0.0175, 0.035 . . . 0.4025, 0.42}.

The diffusion coefficients hx, hy, and hz are calculated as 1.4919, 0.8652, and 0.0553,
respectively using Equation (2), which are processed using the three-dimensional normal
information diffusion formula of Equation (13) and then superimposed using Equation (13)
to generate the original three-dimensional information matrix Q of x, y, z:
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Q =



c1(0)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
a25(17.5)



b1(1) b2(1.275) . . .
0.0000 0.0000 . . .
0.0000 0.0000 . . .

b25(7.6)
0.5185
0.6884

0.0001 0.0001 . . .
. . . . . . . . .

0.0108 0.0118 . . .

0.8200
. . .

0.0117



c2(0.075)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
a25(17.5)


0.0000 0.0000 . . .
0.0000 0.0000 . . .
0.0001 0.0001 . . .

0.0614
0.0814
0.0967

. . .
0.0166

. . .
0.0198

. . .

. . .
. . .

0.0093



c3(0.015)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
aj(17.5)


0.0000 0.0000 . . .
0.0000 0.0000 . . .
0.0001 0.0001 . . .

0.0567
0.0752
0.0894

. . .
0.0241

. . .
0.0290

. . .

. . .
0.0159


. . . . . . . . . . . . . . . . . .

c25(0.42)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
a25(17.5)


0.0000 0.0000 . . .
0.0000 0.0000 . . .
0.0000 0.0000 . . .

0.0000
0.0000
0.0000

. . .
0.0245

. . .
0.0523

. . .

. . .
. . .

0.2890




After that, fuzzy relation inference is performed using Equation (14) to obtain the

fuzzy relation matrix R of x, y, z.

R =



c1(0)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
a25(17.5)



b1(1) b2(1.275) . . .
0.0000 0.0000 . . .
0.0000 0.0000 . . .

b25(7.6)
0.0189
0.0250

0.0000 0.0000 . . .
. . . . . . . . .

0.0034 0.0040 . . .

0.0297
. . .

0.0016



c2(0.075)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
a25(17.5)


0.0000 0.0000 . . .
0.0000 0.0000 . . .
0.0000 0.0000 . . .

0.0179
0.0238
0.0283

. . .
0.0049

. . .
0.0058

. . .

. . .
. . .

0.0027



c3(0.015)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
a25(17.5)


0.0000 0.0000 . . .
0.0000 0.0000 . . .
0.0000 0.0000 . . .

0.0169
0.0225
0.0267

. . .
0.0072

. . .
0.0087

. . .

. . .
. . .

0.0047


. . . . . . . . . . . . . . . . . .

c25(0.42)

a1(5.5)
a2(6.0)
a3(6.5)

. . .
a25(17.5)


0.0000 0.0000 . . .
0.0000 0.0000 . . .
0.0000 0.0000 . . .

0.0000
0.0000
0.0000

. . .
0.0371

. . .
0.0791

. . .

. . .
. . .

0.4370




Using the one-dimensional information distribution formula shown in Equations (15)

and (16), the maximum wind speed scale x and extreme wave height y of typhoon landfall
are fuzzified, and according to the definition of the theoretical domain, the fuzzy sets
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x0 = “typhoon maximum wind speed scale is 14” and y0 = “typhoon extreme wave height
is 7.6 m” can be expressed as follows.

µx0(a) =
0
a1

+
0
a2

+
0
a3

. . .
1

a18
. . . +

0
a25

,

µy0(b) =
0
b1

+
0
b2

+
0
b3

+
0
b4

. . . +
1

b25
.

Fuzzy approximation reasoning using Equation (17) yields the following affiliation
values for the loss set z with respect to the element c in the thesis domain W:

µz0(cl) =

∨
C, D

(µx0(aj) ∧ µy0(bk) ∧ µR(aj, bk, cl))

= µx0(14) ∧ µy0(7.6) ∧ µR(14, 7.6, 0)
= 1∧1∧ 0.0719= 0.0719

Similarly, the affiliation degrees of all elements in W can be calculated so that the fuzzy
output set µz0 of direct economic loss can be obtained by fuzzy approximate inference from
the above values µx0(a), µy0(b), and R:

µz0(c) =
0.0719

c1
+

0.0875
c2

+
0.1156

c3
+

0.1641
c4

+
0.2458

c5
. . . +

0.3028
c24

+
0.2949

c25

The center of gravity method shown in Equation (18) for µz0 is non-fuzzy to obtain its
disambiguation value z0.

z0 =
0.0719× 0 + 0.0875× 0.0175 + 0.1156× 0.035 . . . + 0.3028× 0.4025 + 0.2949× 0.42

0.0719 + 0.0875 + 0.1156 + 0.1641 + 0.2458 . . . + 0.3028 + 0.2949
= 0.2157

After defuzzifying the output fuzzy set µz0 , the fuzzy value of the output is obtained.
The direct economic loss rate is estimated to be 0.2157% for the “maximum wind speed
scale of 14 and extreme wave height of 7.6 m”. The direct economic loss values can be
obtained for all control points in the same way (due to a large number of control points,
it is not appropriate to list them all, the table only indicates the values at typical control
points, the same below). The information diffusion calculation results are shown in Table 3
and Figure 5.

Table 3. Calculation results of direct economic loss rate under different wind speed scales and
extreme wave heights.

Maximum Wind
Speed Scale

Extreme Wave Height (m)

2.1 3.2 4.3 5.4 6.5 7.6

12 0.0964 0.1009 0.1081 0.1054 0.1086 0.1195
13 0.1124 0.1342 0.1499 0.1426 0.1448 0.1627
14 0.1351 0.1739 0.1905 0.1786 0.1892 0.2157
15 0.1730 0.2187 0.2238 0.2094 0.2348 0.2654
16 0.2322 0.2685 0.2541 0.2351 0.2702 0.2993
17 0.2950 0.3131 0.2868 0.2460 0.2913 0.3174

From Table 3 and Figure 6, we can see the estimated values of losses for different
wind speed scales and extreme wave heights, and compare with the historical data, the
above-inferred values of direct economic loss rate corresponding to different maximum
wind speed scale and extreme wave heights of typhoons are basically accurate. For example,
the maximum wind speed scale of typhoon “Hagupit” was 15, the extreme wave height
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was 4.7 m, and the direct economic loss rate was 0.2109%, which was approximated by the
three-dimensional information diffusion method to be 0.2167%.
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Meanwhile, the conditional probability distribution of the extreme wave height is
calculated based on the existing probability distribution of the maximum wind speed
scale-extreme wave height (Table 2). For example, when the maximum wind speed scale is
12, the probability values of different extreme wave heights are summed by S. Then the
conditional distribution columns of different extreme wave heights are obtained by dividing
each probability value by S, respectively (see Table 4). Additionally, the direct economic
loss rates under different wind speed scales are obtained by using the risk synthesis rule
(risk = probability × loss) according to Tables 3 and 4 (see Table 5).

Table 4. Conditional probability distribution based on maximum wind speed scale.

Maximum Wind
Speed Scale

Extreme Wave Height (m)

2.1 3.2 4.3 5.4 6.5 7.6

12 0.0279 0.0550 0.0704 0.0452 0.0301 0.0176
13 0.0319 0.0546 0.0643 0.0421 0.0322 0.0201
14 0.0319 0.0522 0.0610 0.0424 0.0361 0.0241
15 0.0219 0.0501 0.0582 0.0431 0.0423 0.0303
16 0.0264 0.0507 0.0539 0.0417 0.0494 0.0376
17 0.0264 0.0559 0.0485 0.0371 0.0536 0.0427

Table 5. Estimated direct economic loss rate under different wind speed scale conditions.

Maximum Wind Speed Scale 12 13 14 15 16 17

Direct econemy loss rate (%) 0.1046 0.1376 0.1747 0.2148 0.2556 0.2915

Comparing the three-dimensional information diffusion model based on conditional
probability with the inference results of direct economic loss rate based on the two-
dimensional information diffusion model (Figure 7), when the wind speed scale is greater
than 10, the slope of the vulnerability curve increases continuously. The direct economic
loss rate increases significantly, showing an overall upward trend, which aligns with the
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cognitive law that the loss increases with the disaster level, reflecting the rationality of the
information diffusion method. When the maximum wind speed scale is greater than 12, the
projected value based on the 3D information diffusion model is slightly larger than that of
the 2D information diffusion model, while when the maximum wind speed scale is greater
than 12, the projected value is slightly smaller than that of the latter, analyzing this reason,
because the model in this paper takes into account the influence of the extreme wave height,
the extreme wave height corresponding to the sample data below level 12 is small. In
contrast, the extreme wave height corresponding to the high wind speed scale typhoon
is high, so the projected result shows the accuracy and stability of the 3-D information
diffusion model and the necessity of considering other factors such as extreme wave height.
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The advantages of the 3D information diffusion model are further analyzed, and the
results of the 2D and 3D information diffusion approximations are compared in Table 6
(the 2D information diffusion model only considers the maximum wind speed scale).

Table 6. Inference results of two-dimensional and three-dimensional information diffusion.

Number Name
Three-Dimensional

Information
Diffusion

Two-Dimensional
Information

Diffusion
Number Name

Three-Dimensional
Information

Diffusion

Two-Dimensional
Information

Diffusion

0518 Damrey 0.1069 0.0797 1306 Rumbia 0.1281 0.1251
0601 Chanchu 0.2119 0.2314 1311 Utor 0.2238 0.2314
0606 Prapiroon 0.1891 0.1780 1319 Usagi 0.3131 0.3170
0801 Neoguri 0.0532 0.0507 1409 Rammasun 0.2702 0.2799
0809 Kammuri 0.0780 0.0527 1415 Kalmaegi 0.1965 0.1780
0812 Nuri 0.1259 0.1780 1510 Linfa 0.1447 0.1251
0814 Hagupit 0.2167 0.2314 1522 Mujigae 0.2869 0.2799
0907 Goni 0.0780 0.0527 1621 Sarika 0.1037 0.0797
1003 Chanthu 0.1779 0.1780 1622 Haima 0.1031 0.1251
1213 Kai-tak 0.1500 0.1251

As can be seen from Table 6, the two-dimensional information diffusion model only
considers the maximum wind speed scale, so the inferred values of direct economic loss
rates for the same wind speed scale are the same, while the three-dimensional information
diffusion model has different results due to the consideration of the extreme wave height
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factor. The actual typhoon data show that the maximum wind speed at landfall is the
same, but the direct economic loss rate is not the same, such as Typhoon 0601 “Chanchu”
and Typhoon 0814 “Hagupit”, which maximum wind speed scale at landfall is 15, and the
direct economic loss rate is 0.1677% and 0.2109%, respectively, and the two-dimensional
information diffusion approximation is 0.2314%, while the three-dimensional information
diffusion approximation is 0.2119% and 0.2167%, which is closer to the real value. Therefore,
the estimation results of the 3D information diffusion model are more accurate and closer
to the true values than the 2D information diffusion model when estimating the losses of
typhoon disasters, which reflects the necessity of considering multiple contributing factors
for typhoon disaster risk assessment.

3.2.3. Typhoon Risk Coupling

Since the probability distributions of typhoon maximum wind speed scale and extreme
wave height and the vulnerability function of typhoon maximum wind speed scale-extreme
wave height-direct economic loss rate obtained by 3D information diffusion are discrete
distributions, the integral calculation form of the risk model is applied:

R = λT

25

∑
i=1

25

∑
j=1

p
(
xi, yj

)
f
(
xi, yj

)
The average annual frequency of typhoons from 2005–2016 λT = 1.58, then the expected

value of losses from the typhoon risk assessment model based on the update time factor
under the conditions of maximum wind speed scale Uj and extreme wave height Vk is
R1 = 0.2542%.

The arithmetic mean of the calculated direct economic loss rate is 0.1273%, which
is lower than the expected value calculated using the information diffusion technique
because the calculation of the mean value considers the probability of occurrence of each
loss value to be equal. While the probability density histogram shows that the probability
of occurrence of each class of typhoon is different, and the nonlinearity of wind speed scale
and extreme wave height sway the degree of loss, so the risk value of the disaster is not
equal to the arithmetic mean.

Rr =
1
19

19

∑
i=1

L(xi) = 0.1273%

The mean value of annual risk for typhoons is R′ = 0.2011%.
The comparison of the annual disaster loss expectation and mean value of the vulnera-

bility indicator (direct economic loss rate) using the information diffusion method is shown
in Table 7.

Table 7. Inferred values of annual loss expectations and their arithmetic mean for typhoon hazards.

Three-Dimensional
InformationDiffusion R1

Two-Dimensional
Information Diffusion R2

Mean Value R’ R1−R2
R2

R1−R′
R

R2−R′

R’

Risk Value
(%) 0.2542 0.2263 0.2011 12.33 26.40 12.53

From the above table, it is easy to see that the inferred values of expected losses
of annual typhoon disasters based on the information diffusion method are all greater
than the arithmetic mean. The inferred values of the direct economic loss rate using
the two-dimensional information diffusion model are 12.53% higher than the arithmetic
mean. The inferred values of the three-dimensional information diffusion model are 26.40%
higher than the arithmetic mean and 12.33% higher than the inferred values of the two-
dimensional information diffusion model, which shows that using the mean value as the
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risk degree of the typhoon will lead to low evaluation results. In addition, it is similar to the
expected 0.26% of direct economic loss rate of the coastal cities of south-central Guangdong
calculated in the paper [35]. Additionally, it also shows that it is more reasonable to use the
expected loss as the quantitative index of risk.

4. Conclusions

In this paper, a typhoon disaster loss risk assessment model with expected loss as the
connotation was constructed based on the three-dimensional information diffusion method,
and the following conclusions were obtained for the risk assessment of typhoon disasters
with typhoon samples in Guangdong Province from 2005 to 2016:

(1) This paper transforms the formal expected loss model into a computable typhoon
risk model based on the three-dimensional information diffusion method. It obtains
the typhoon probability distribution and direct economic loss rate distribution under
different wind speed scales and extreme wave heights. Additionally, the results
are basically consistent with reality, which can provide a reference for the practical
application of worldwide typhoon disaster risk assessment engineering.

(2) The maximum wind speed scale and extreme wave height of the typhoon at landfall
are considered, which reduces the limitation of risk assessment by a single uniform
disaster factor and improves the efficiency of using small sample data. For example,
the estimated direct economic loss rate of Typhoon Hagupit “0814” is 0.2167%, which
is closer to the real value of 0.2109%.

(3) The risk value of the multi-causal factor typhoon risk assessment model with expected
loss is slightly higher than the traditional model, and the annual expected loss risk
value is 12.33% higher than that of the traditional model, which reduces the limitations
of the low-dimensional information diffusion model and makes the evaluation results
more reasonable and reliable.
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