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Abstract: Container ports are prone to delays, congestion, and logistics interruptions under the
perturbation of uncertain events inside and outside the system. This not only affects the service quality
of the system but also brings a serious blow to the whole transportation network. Therefore, this
paper aims to develop a hybrid Bayesian network (BN) model to investigate the failure mechanism
of the container port logistics system. Considering the complex coupling relationship between failure
risks, the DEMATEL and ISM methods are presented to thoroughly analyze the interdependence
and hierarchical structure of system failure factors. The failure evolution mechanism of the system is
then analyzed using BN reasoning ability. The suggested hybrid model can identify the main failure
factors, examine how factors are coupled, and produce the main propagation path resulting in system
failure. The findings indicate that the risks associated with technology, facilities, and equipment
are the most significant and immediate in the system; human risks affect all system components by
acting on other factors; organizational management risks have a fundamental impact on the stability
of the system; additionally, the uncertainty of external risks has greatly increased the variability of
each logistics link. This study provides useful insights for port logistics risk management.

Keywords: container port logistics system; failure risk; failure mechanism; risk coupling;
DEMATEL-ISM model; hybrid Bayesian network model

1. Introduction

The maritime industry plays an increasingly important role in international trade, and
about 80% of the global trade volume of goods is completed through maritime transport [1].
Container shipping is the main type of international transport service [2,3]. As a crucial
sector of the supply chain network, the port logistics system is a complex system that
organically combines logistics links such as ship entry and exit, loading and unloading,
transportation, storage, consolidation, and information services with the port as the central
platform [4]. Therefore, the safe and efficient operation of the port logistics system is a
necessary condition to guarantee the high-quality service of marine transportation. How-
ever, to adapt to the rapid development of modern logistics, the scale and business service
capacity of the port is expanding, and its system exhibits the characteristics of complexity,
environmental uncertainty, and dynamics, as well as the coupling of internal factors. Once
hit by catastrophic (uncertain) events such as natural disasters, man-made disasters, and
mechanical accidents, ports are often unable to operate normally and are plunged into
delays, disruptions, or even interruptions [5]. For example, the port labor dispute at the
U.S. West Coast Port led to the closure of the port for 11 days in 2002; the “8.12” Tianjin Port
explosion caused serious economic losses and casualties in 2015; the typhoon “Meranti”
in 2016 caused huge damage to the infrastructure and equipment of Kaohsiung Port. It
is shown that any disruption of the port logistics system can result in serious societal
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economic losses, has an immediate impact on the global supply chain [6], and can even
bring a catastrophic impact on the whole industry as the risk of disruption spreads.

Hence, how to analyze and determine the port disruption risk and effectively control
the impact of the risk is of great significance in the field of maritime logistics and has
received extensive attention from scholars. The commonly used risk analysis methods
include failure mode and effects analysis (FMEA), risk matrix, comprehensive evaluation
method, fault tree analysis (FTA) method, bow-tie model, etc. For example, Pallis [7] used
the risk matrix approach to assess port operation risks under the framework of a com-
prehensive security assessment (FSA); Loh et al. [8] used the fuzzy integrated evaluation
method to study the risk of port-centered supply chain disruption; Mokhtari et al. [9]
established a bow-tie model to conduct a risk assessment for seaport operations manage-
ment and identified the causes, impacts, and consequences of seaport risks. However,
given that traditional risk analysis methods cannot effectively deal with the uncertainty
(incompleteness and ambiguity) of risks, uncertainty analysis methods such as Bayesian
Network (BN) [10] and Evidential Reasoning (ER) [11] are gradually explored, and applied
by scholars. For instance, Alyami et al. [12] developed an improved FMEA model based on
the fuzzy rule-based Bayesian network to quantitatively analyze the security risk problem
of container ports and then combined with ER methods to aggregate the impact of each
hazardous event on the safety of the port, and proposed dynamic decision support for
container port operation system from the system perspective [13]. In summary, the current
research on port risk analysis and quantitative risk assessment techniques are relatively
systematic, and fruitful results have been achieved in the risk management of port op-
erations. Nevertheless, risk factors are often interdependent, and existing studies rarely
systematically explore the coupling relationship between the failure risk factors of the port
logistics system and the impact of the interaction mechanisms among multiple factors on
the system risk evolution. Therefore, this paper fully considers the coupled correlation
relationship of failure risk factors and studies the failure mechanism and failure probability
of the container port logistics system under the action of multi-factor coupling.

To comprehensively understand the potential risk factors of port failure and the
mechanism of inter-factor interaction, this research takes the CPL system as the research
objective and studies the failure mechanism of the system after being disturbed by uncertain
events inside and outside the system in a series of logistics activities on the port. First, based
on the literature review and expert knowledge and experience, the failure risk factors of the
CPT system are systematically identified in five dimensions, including human risk, facility
and equipment risk, technology risk, organization and management risk, and external
risk. The second objective is to explore the coupling relationships among the risk factors
and to determine the system risk hierarchy. The decision-making trial and evaluation
laboratory (DEMATEL) method is used to analyze the interdependencies among the system
components and identify the key risk factors [14]. Based on this, the interactions between
system risk factors are further explored in combination with the interpretive structural
modeling (ISM) to determine the direct and indirect causes of system risk and finally obtain
a multi-level recursive structural model of risk factors [15]. The DMEATEL-ISM integrated
model cannot only reflect the coupling degree between factors but also visually express
the hierarchical structure relationship between factors, which can sort out the coupling
relationship between failure risk factors of the system at a deeper level. The third objective
is to construct a failure risk evolution model. The BN is invoked to further quantify the
strength of coupling correlations among each factor, and its inference ability is used to
output the failure probability of the system and the possible failure propagation path of
the system. Moreover, to overcome the problem of insufficient objective data on maritime
risks, the Noisy-or Gate model is introduced to approximate the conditional parameters
of the BN [16]. The combination of DEMATEL-ISM and BN methods can both portray
the complex coupling relationships between failure risk factors and also realize the failure
deductive reasoning process of the system under the action of multi-factor coupling as a
whole. The research idea and hybrid research method proposed in this paper enrich the
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existing port logistics literature and help port managers to identify system critical failure
factors and system failure risk transmission paths so as to effectively manage port risk
events and mitigate the losses caused by port disruptions.

The remainder of the paper is organized as follows: Section 2 reviews the literature
related to port logistics risk management and summarizes the deficiencies in current
research; Section 3 introduces the research framework and specific methodological steps
for port logistics failure mechanism analysis; in Section 4, model validation is conducted
to bring in actual data to derive the results; Section 5 is a discussion based on the data
analysis results; finally, Section 6 concludes with an analysis of the overall contribution and
limitations of the article.

2. Literature Review

To fully understand the current research on risk in the field of port logistics, in this
section, a summary review of articles on risk management in port logistics is presented,
including risk analysis methods and progress in the application of BN methods. Then, all
uncertainties and possible threats related to port logistics failures are summarized. Finally,
the progress and shortcomings of the existing research are summarized. Based on the
results of current researchers, new ideas and research methods are proposed.

2.1. Research of Risk Analysis Methods for Port Logistics

Ports are an important interface between water and land transportation and an im-
portant hub node in the global supply chain. Risk management in seaports plays a crucial
role in ensuring the resilience of port operations services in the supply chain [13]. The
current research on port risk management is continuously enriched and deepened, and
researchers have proposed qualitative, quantitative, and comprehensive risk analysis meth-
ods to enrich the system of maritime risk management. A review of risk analysis methods
is summarized below.

2.1.1. Risk Analysis Methods in the Port Area

There are many methods regarding port risk management, among which the tra-
ditional risk analysis tools are the analytic hierarchy process (AHP) method, risk ma-
trix, risk map, fault tree analysis (FTA), and event tree analysis (ETA). For example,
Mokhtari et al. [9] conducted a risk assessment of seaport operations management by
constructing a risk analysis framework of the Bow-Tie model, FTA and ETA methods were
integrated for analyzing port-related risk factors, and fuzzy set theory was used to over-
come the traditional probabilistic representation methods. Pallis [7] proposed an approach
to port risk management based on the formal safety assessment (FSA) framework for
systematic risk management, where port risks are assessed by using a risk matrix approach
to describe the likelihood of occurrence and severity of consequences. Then, based on
accident data from a major container terminal in Indonesia over five years (2014–2016),
Budiyanto et al. [17] analyzed the accidents and potential risks occurring in container termi-
nals using the FTA method and risk matrix to assess the level of risk. Chang Chia-Hsun [18]
identified the risk factors of container shipping and port operations based on the logistics
perspective and then assessed the potential risk factors using risk maps. However, due to
the characteristics of port operation risks, such as complexity and uncertainty, these meth-
ods show a lack of capability in terms of uncertainty issues during practical application.

Therefore, to adequately cope with the uncertainty of risk data in port operations,
methods such as fuzzy set theory, evidential inference (ER), and Bayesian networks (BN)
have been applied to risk management. For example, Ding and Tseng [19] used a fuzzy risk
assessment approach to assess the security operational risk of a dedicated container terminal
in Kaohsiung, Taiwan. Loh et al. [8] invoked a fuzzy comprehensive evaluation approach to
analyze the port-centric supply chain disruption risks to address the uncertainty problem.
Mokhtari [11] used ER and fuzzy set theory to determine the risk level assessment of
the entire port and terminal. Secondly, to effectively address the uncertainty in seaport



J. Mar. Sci. Eng. 2023, 11, 1067 4 of 28

operations, Jhon et al. [10] combined fuzzy AHP, ER, and expected utility theory to propose
a new integrated assessment model to improve the resilience of the overall port operation
system. Additionally, combining the fuzzy rule-based BN method, Alyaim et al. [12]
proposed an improved failure mode and impact analysis (FMEA) method to assess the
severity of hazardous events in container terminals, using the probabilistic inference of
BN to update the assessment results. Based on this, ER method was proposed to be
incorporated in a complementary way into an improved FMEA model to perform risk
assessment analysis from a system perspective [13]. Moreover, Khan [20] used BNs for risk
factor inference and analysis for dangerous cargo transportation in ship berthing scenarios
and combined the binary logistic regression and expert judgment method for dangerous
cargo risk factor identification.

On the other hand, with the research on the risk of the port operation process, the
coupling and dynamic characteristics of risk factors have gradually attracted the attention
of scholars. For instance, Sarkar and Shankar [4] proposed a hierarchical system model, the
total interpretive structural modeling (TISM), to rank port logistics barriers and explain
the interdependencies between barriers and then cited the MISMAC method to classify the
factors. In response to the complex coupling and dynamic evolutionary characteristics of
ship pilotage operation risks, Guo et al. [21] combined the functional resonance analysis
method and dynamic Bayesian network to analyze the risk factors during ship port calls and
pilotage and then used DBN combination with historical and observed data to analyze the
spatial and temporal evolutionary patterns of collision risks in specific operation scenarios.

2.1.2. Application of Bayesian Network Model

The Bayesian network (BN) technique, which combines graph theory and probability
theory, can integrate domain knowledge and statistical data to achieve network learning
and probabilistic inference compilation. It can be used to examine the significance of
risk variables and the interrelationships between them due to its advantage of causal
reasoning [22]. Through the review of the above-related port risk analysis methods, it is
shown that BNs have been fully applied in port operations. In addition, BN technology has
been used in the context of shipping and supply chain networks and has been continuously
enhanced and expanded. Hanninen, M [23] analyzed the benefits of applying the BN
model in preventing maritime traffic accidents and modeling challenges. Garvey, Myles
D et al. [24] established a supply chain network disruption risk propagation model based
on the BN method to fully reflect the interdependencies among risks and the structural
characteristics of supply chain networks. For assessing maritime supply chain risks, Wang
et al. [1] constructed a fuzzy rule-based Bayesian network model (FRBN) and fused it
with the FMEA method, which can effectively handle the uncertainty problem and enable
probabilistic reasoning. Fan et al. [25] proposed a method for human factor analysis and
maritime accident prevention by incorporating BN and Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) with a multi-criteria decision system. Zhou et al. [2]
combined three models, FMEA, ER, and FRBN, to perform a risk assessment of container
shipping services. Chen et al. [26] proposed an evidence-based FBN approach to build a
maritime accident risk analysis model and quoted the Noisy-or Gate model to implement
parameter learning.

2.2. Risk Factors Associated with Port Logistics

In general, port logistics describes the logistics and distribution services provided
to goods arriving at the port, including cargo handling, storage, transportation, customs
clearance, and other logistics activities [4]. Safe and orderly port logistics activities are the
basic guarantee for maintaining the continuity of the supply chain network. However, due
to the complex coupling of the internal environment of the port logistics system and the
uncertainty of the external environment, there are various threats in the process of port
operation, such as loading and unloading accidents, worker strikes, mechanical failures,
network disruptions, natural disasters, terrorist attacks, etc. The present research on the
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identification and analysis of risks related to port logistics is constantly enriched, and based
on the existing research, the risk factors are summarized from the internal and external
environments of the system. Among them, this paper defines the internal risk as the risk
that exists in the entire port operation system and the external risk as the external natural
and social environment of port operation.

2.2.1. Internal Risk Factors of the Port Logistics

Port operations face complex internal risk factors, which have been studied in many
studies. First, port logistics is a labor-intensive activity, and human factors are key factors
in causing port accidents, where unsafe behaviors such as lack of personal competence,
poor supervision, lack of safety awareness, and irregularities are important factors that
threaten the normal and safe operation of ports [4,17,25,27]. For example, Fan et al. [25]
concluded that human factors are the main cause of maritime accidents; Budiyanto et al. [17]
believed that human factors, especially due to human work negligence in operating vehicle
equipment, are one of the most important factors causing accidents in terminal container
operations; Zhang et al. [28] found that human factors are the primary influencing factors
in port ship pilotage accidents, and discussed their impact on accident risks by studying the
coupling effects between the human organizational factors and system factors. Furthermore,
port workers’ ability to apply new technologies, work operations, and safety awareness is
closely related to professional training and safety education, indicating that management
variables are also a major source of dangerous human behavior [27,29,30]. Next, facilities
and equipment are critical materials for ensuring the smooth operation of ports. On the
one hand, port infrastructure such as quay berths, warehouses, power supply systems,
and information network facilities are necessary for delivering services such as ship access
and cargo transit. According to Loh et al. [27], port information system failure is a highly
important infrastructure threat that causes port disruption. On the other hand, aging,
failure, and inadequacy of handling and transportation equipment are also significant
causes of port dangers. Several studies determined that port equipment efficiency and
adequacy are key elements affecting port operations, which not only lower port productivity
but also may cause port accidents [7,8,12,29].

Additionally, the effective maintenance of port facilities and equipment is another
prerequisite for guaranteeing the port’s regular operation. John [9] and Alyam [13] pointed
out that a lack of facilities and equipment maintenance capabilities is an important tech-
nical risk factor during terminal container operations, which may result in facilities and
equipment failure and thus cause terminal operation accidents. Therefore, timely mainte-
nance and inspection of facilities and equipment can effectively reduce the risk of system
failure, improve service quality and operational efficiency, and thus boost the reliability of
system operation. Moreover, the port management organization system is also a crucial
component of the port logistics system. It has been suggested that proper organizational
management is a significant element in maintaining the order of the port and guaranteeing
the continuity of the system due to the complex environment of the port system and the
closely related activities of each link; otherwise, it will cause problems such as congestion
and even collision and conflict [4,10,30].

Moreover, the port is an open infrastructure resource, and the orderly operation
of the port logistics operation system is inseparable from information technology and
connectivity and coordination inside and outside the port. Gui et al. [31] believe that
the risk of “Interruption of railways/barges services” on the land side of the port may
bring collection and distribution problems, which lead to serious “stacking” problems and
cause port congestion. Furthermore, a proper port management system needs to have
integrated information and communication technology, which can improve the reliability of
port operations [4]. This paper also pointed out that proper coordination and information
sharing in port logistics are necessary to effectively improve port performance [4]. Hu
et al. [32] concluded that port authorities and terminal operators should focus on sharing
resources and coordination, and flexible outbound railway schedules and inter-terminal
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transportation will help improve container integration. In short, effective coordination
and communication, information resources, and a complete collection and distribution
system are important guarantees for port operations; otherwise, problems such as detention,
delays, and congestion may occur.

The analysis presented above focuses primarily on the risk factors affecting the relia-
bility of the port logistics system from the system’s internal environment. These elements
interact with one another in various ways, and when a risk event surpasses the system’s
resilience, the system will collapse.

2.2.2. External Risk Factors

Due to the dynamic changes in the environment that might have a more negative
influence on the port, it is also thought that the external objective environment of the
port logistics system is one of the most significant causes of uncertainty impacting the
correct operation of the system [33]. Much recent research categorizes environmental
influences primarily in two broad categories. One category is the natural environment,
which includes things such as natural disasters [2,34,35], sudden climatic changes [2,36],
severe weather [7], etc. Zhou et al. [2] defined such environmental factors as unpredictable
natural risks that have a direct impact on the dependability of container transport services.
Lam et al. [35] analyzed the interruption events of Asian ports since 1900 and concluded
that natural disasters are the main cause of port interruptions, except for port strikes.
Natural disasters and other emergencies can cause port disruptions that affect the stability
of the global supply chain network and cause serious economic losses, such as typhoon
Meranti in 2016, which severely damaged port infrastructure and equipment. The other
category is the objective social environment in which the port logistics system is situated,
such as port management policies [2], legal regulations [9], and the socio-economic trade
environment [37]. The port transportation industry may be directly impacted by changes
to the objective transportation environment, which would damage the logistics stability of
the whole shipping sector.

In addition, public health events, such as COVID-19, have received the attention
of many researchers in recent years. During the epidemic, due to international security
measures and national control management, ship entry procedures became more compli-
cated, causing congestion, which has seriously affected the efficiency of port operation
systems and even led to global supply chain disruptions [2]; Notteboom et al. [38] com-
pared COVID-19 with the 2008 global economic crisis to study the impact of the epidemic
on container ports and the container shipping industry, and the evolution of their resilience
and adaptability. Finally, some other scholars analyze the security risk factors faced by
ports and consider smuggling, smuggling, theft, and terrorist incidents as important risk
factors that threaten the security of port operations [7,27]. According to Niamat et al. [39],
cyber-attacks may also pose a threat to shipping navigation, yard operations, container han-
dling, and gate operating systems in port logistics systems. Port logistics systems are more
vulnerable to these external threats, and maintaining system resilience is more difficult.

In summary, this study defines the risk elements of the port logistics system from
both internal and external perspectives. The internal factors are divided into four cate-
gories: human factors, facilities and equipment factors, technical factors, and organizational
management factors, and the external factors are divided into two categories: natural en-
vironment factors and objective social environment. Research now focuses more on the
occurrence likelihood of the risk and the severity of consequences and then determines the
risk value. However, these risk factors are not simply linear or independent relationships,
and numerous studies have overlooked the close interaction between systemic risk factors.
Moreover, there is a complex and dynamic non-linear correlation between these elements
rather than a simple coupling. On the one hand, internal factors can interact with one
another, resulting in an unmanageable situation and internal system dysfunction. On the
other hand, internal and external elements may also be related, exposing the system’s
susceptibility and leading to operation system functional failure. Simply said, as soon as a
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risk emerges in the system, it spreads and superimposes itself due to the coupling effect
between components until it eventually exceeds the risk threshold of the system node. This
may cause transportation delays, congestion, conflicts, work accidents, etc., disrupting the
normal operation of the entire system and even causing a port business interruption.

2.3. Research Gap

Although the research on port logistics risk analysis has achieved fairly good results,
there are still some shortcomings in risk analysis techniques and research ideas. Mainly
include: (1) Traditional risk analysis methods focused more on assessing risk factors
to determine the risk level of each risk, that is, a single-factor risk assessment method.
However, fewer studies focused on the interdependence among port logistics risk factors.
(2) The Bayesian network is widely used in maritime risk assessment, which can consider
the inter-causal relationship among factors to achieve probabilistic reasoning. However,
in the absence of objective data, especially for complex topological networks, relying on
expert scoring to obtain network models is a method with low efficiency, low accuracy,
and high workload. (3) When studying the failure risk of port logistics systems, it is not
only necessary to identify the system’s influential larger failure factors but also to study the
evolution mechanism of system failure risk. This can effectively control system failure both
at its source and along the conductance path.

Because of the shortcomings in the current research, this paper proposes an improved
Bayesian network failure mechanism analysis model with the container port logistics
system as the research object. Under the coupling conditions of numerous internal and
external risk factors, the container port logistics system’s failure mechanism is examined,
and the key factors and the main propagation paths of its failure risks are identified. Finally,
the system failure mechanism is reasoned out using the GeNIe simulation software.

3. Methodology

In this paper, risk identification is performed through a detailed literature review and
pertinent accident reports in maritime logistics. Then a port logistics security risk analysis
method is chosen to explore the failure risk generation mechanism and evolution path
of the CPL system. Through the summary of relevant risk assessment techniques in the
literature review mentioned above, a Bayesian network risk analysis method based on
DEMATEL-ISM is proposed in this paper. The Bayesian network approach is being utilized
extensively in early warning, decision-making, and risk management. Bayesian network,
an uncertain causal association model, is an important tool for uncertainty inference and
data analysis of complex networks, which can efficiently obtain the network structure and
network parameters from the data set by autonomous learning [40,41]. However, there
is currently no complete risk case library for port accidents. This method still relies on
domain knowledge, and building a network model is still a complex task. Therefore, to
ascertain the interaction between system failure risk variables and create a multi-level
recursive structure model, this research offers the DEMATEL-ISM system structure analysis
approach. The network structure is then obtained by mapping the system’s hierarchical
structure to BN. Next, the network parameters (prior probabilities and conditional prob-
ability tables) are learned. Under the premise of insufficient data, expert judgment is an
important basis for determining the conditional probability distribution of nodes. However,
a huge number of parameters are needed when there are many nodes and a complicated
network topology, which significantly increases the workload of experts. Therefore, this
paper adopts the Leaky Noisy-or Gate extended model to approximately determine the
conditional parameters of the Bayesian network based on expert evaluation. Finally, the
Bayesian network simulation is performed using GeNIe software. The positive causal
reasoning of the BN method is used to simulate the change of port logistics failure risk
probability and the coupling relationship between factors when multiple risks emerge, and
reverse reasoning is applied to investigate the possible propagation path of the system
failure risk.
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The proposed method consists of four parts in total, and the relationships between
these steps, as well as the research questions corresponding to the method and the research
objectives achieved, are shown in Figure 1. For the specific research steps of the hybrid
approach, see the following subsections.
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3.1. Risk Identification

Typically, the risk is described as a combination of hazard, consequence, and uncertainty [15,42].
Risk factors can contribute to the occurrence of various emergencies, increase their occur-
rence likelihood, or expand their loss. Then, failure is a functional state, and system failure
denotes either a complete loss of original function, reduced functionality, or the presence of
hidden dangers within the system. It is first required to define the term “failure risk” to
more fully and precisely identify relevant risk factors. This paper proposes that container
port logistics system failure, in a broad sense, can be understood as the interruption of
the port logistics system, specifically referring to the situation in the container terminal,
yard, and other port scenarios where the equipment, personnel, network, and other risk
issues make abnormalities occur in logistics links such as cargo in and out, loading and
unloading, transportation and storage abnormal, which leads to the inability of the system
to operate as originally planned, with delays, congestion, and functional interruption, etc.
Based on this, the failure risk of the CPL system is defined as the potential risk factors in
the port-centered logistics activities in the system that may affect the normal operation
efficiency and cause system function failure or port operation interruption. Concerning
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relevant literature and relevant port accident cases, risk factor indicators are determined by
combining relevant expert recommendations. Finally, a multidimensional risk evaluation
index system is constructed from five dimensions: human, facilities and equipment, tech-
nology, organization and management, and external risks, with a total of 20 risk factors, as
detailed in Table 1.

Table 1. The identified failure risk factors.

Category Description Code Risk Factors Remark References

Human risks
(H)

Port activities are
labor-intensive, this paper
considers human activities
that may lead to abnormal

system operation as
human risks.

H1 labor shortages
shortage of in-port workers (dock or warehouse

workers), shortage of truck drivers; port
labor strikes

[4,9,13,17,27,
30,36]

H2 operating errors
improper operation due to misunderstanding
of instructions, negligence of personnel, poor

communication, poor condition of workers, etc.

H3 lack of security awareness
lack of relevant security awareness among port

workers and unsafe behavior during work
resulting in operational accidents

H4
insufficient professional

knowledge and skills
insufficient maintenance ability of machinery,

the port operation is not skilled.

H5 poor supervision lack of complete supervision and inspection of
port operations

Facility and
equipment risks

(F)

Facilities and equipment are
important basic guarantees
for port logistics operation

systems. Facility and
equipment risks can be

explained as factors that
cause the failure of

operations, such as loading
and unloading, transit,

and warehousing.

F1 lack of port equipment
inadequate handling equipment and transit
equipment, such as cranes, forklifts, trailers,

and trucks

[4,7,8,10,12,17,
27,29]

F2
over-aging and defects

of equipment
over-aged and defective port operation

machinery and equipment

F3
lack of

warehouse/yard space
port warehouse or a yard full of cargo with no

applicable inventory space

F4 equipment breakdown
machinery failure, including cranes; in-vehicle
equipment failure, such as trucks; the power

supply equipment failure

F5
port information technology

(IT) system failure

failure of the port logistics information network
system (navigation, communication, and

dispatching system)

Technical risks
(T)

Technologies that may cause
container operation failures

or affect operational
efficiency are defined as

technical risks.

T1
lack of

maintenance technology

insufficient technical capacity for the
maintenance of port infrastructure and
machinery equipment, and IT system. [7,9,10,29]

T2

mismatch between
technological innovation
and system capabilities

immaturity of the technology required for
technological innovation in the port, the lack of

corresponding facilities and
equipment Inadequate

Organization and
management risks

(O)

Management organization
refers to the activities that

maintain the safety and
order of port operations

O1
poor organization of port

production scheduling

improper organization and command of port
handling, pilotage, and other production
scheduling may cause production delay,

congestion, and other problems

[4,10,29,30]O2

Imperfect management
organization rules

and regulations

sound rules and regulations are the guarantees
of port operation; loopholes may lead to the

disorganization of ports

O3
lack of professional training

or safety education

staff should master the necessary professional
skills and safety knowledge to reduce

accident injuries

External risks
(E)

External risks refer to the
risks arising from changes in

the port operating
environment, mainly

including political and
economic environment,

natural disasters,
and emergencies.

E1 port management policy port security inspection policy, customs
clearance rules, yard management policy, etc.

[2,4,7,9,10,27,
29,34,36,37,43]

E2 economic and trade risks
trade policies, customs rules, global economic
states, market freight rates, and labor costs of

various countries

E3
natural disaster/

harsh climate

earthquake, tsunami, hurricane, and so on,
heavy rain, storms, and other

abrupt climate change
E4 public health event COVID-19

E5 security threats trafficking, smuggling, breaking in/theft,
terrorist attacks, cyber attack, etc.

From Table 1, it can be seen that human risks, facility and equipment risks, technical
risks, and organization and management risks are the main internal influencing factors of
port logistics activities. Moreover, external risks refer to those risks due to dynamic and
uncertain factors in the external environment faced by port operations, mainly including
port management policies, economic and trade environment, natural disasters, health
emergencies, and security threats.
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3.2. Data Collection

After identifying the systemic risk factors, the risk factor analysis is systematically
carried out according to the five dimensions classified above to explore the coupling
relationship between the various factors. This study adopts a subjective approach to this
problem, which is mainly based on experts’ expertise and experience in scoring. First,
this paper designs a questionnaire on the influence degree of failure risk factors in port
logistics and uses the Likert scale to assess the importance of system failure risk factors.
The experts used a scoring system of 0–4 to determine the direct influence of the factors,
where 0 means no influence and 1, 2, 3, and 4 mean low, medium, high, and very high
influence, respectively, as shown in Table 2. The subjective opinions from multiple experts
were then combined using arithmetic averaging.

Table 2. The scale of the degree of direct influence between factors.

Score Impact Level Description

0 No influence Factor ihas no influence on factor j
1 Low influence The occurrence of factor i has a low influence on factor j
2 Medium influence The occurrence of factor i has a 50% probability of affecting factor j
3 High influence The occurrence of factor i has a high influence on factor j
4 Very high influence The occurrence of factor i will have the greatest influence on factor j

Then, after determining the network structure by the DEMATEL-ISM system hierar-
chical analysis, the subjective probability method was used to determine the probabilities
of nodes and the relationship between the edges of nodes. A questionnaire was then used
to collect data about the probabilities of the nodes.

3.3. The DEMATEL-ISM Method

The DEMATEL (decision making trial and evaluation laboratory) method is a crucial
tool for visualizing complex causal relationships within a system through causal network
diagrams [44]. The DEMATAL method can evaluate the interdependencies between fac-
tors and convert them into structural models, and it can find the key factors of complex
structural systems through influence diagrams [45]. Furthermore, the DEMATEL technique
can demonstrate the direct or indirect effects between different factors [46], which helps
decision-makers to better understand the system structure. For example, Jiao et al. [47]
combined DEMATEL models and BN to evaluate the direct and indirect coupling re-
lationships among factors and generated BN models from the relationship matrix for
inference analysis.

Additionally, the ISM (interpretive structural model) is considered an effective method
for modeling system hierarchy. The ISM approach maps the system factor relation-
ship into a directed graph by constructing the reachability matrix, revealing the system
hierarchy [15,48]. This method is highly applicable to a system with many factors and
complexity. Some studies have combined ISM with Bayesian networks to convert structural
models into network structures to further analyze complex relationships among factors,
such as Huang et al. [49], who used the factor hierarchy graph obtained by the ISM tech-
nique can be used as the topology of Bayesian networks to effectively deal with the causal
relationships among risk factors, thus reducing the complexity of BN modeling.

Through the above analysis, the DEMATEL method can determine the degree of asso-
ciation between factors and identify the key factors in the system, but the method cannot
effectively describe the coupling mechanism and hierarchical structure of factors within the
system. Therefore, this paper proposes a system structure analysis method that combines
DEMATEL and ISM models, which can both visualize the coupling relationship between
factors and effectively identify the crucial factors in the system. By constructing a multi-
level recursive structure model, the structural relationship of system risk factors can be
analyzed visually. The procedure flow of the DEMATEL-ISM method is shown in Figure 2.
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The specific steps of the proposed DEMATEL-ISM technique are as follows:

Step 1: Generate and normalize the direct influence matrix

Analyze the interactions between different factors and the degree of influence, and
establish the direct influence matrix H. Experts score based on domain knowledge and their
own experience. Hk

[
hk

ij

]
n×n

is a direct influence matrix obtained by expert k (k = 1, 2, 3,

. . . , m), where, hk
ij denotes the degree of direct influence of the factor Fi on Fj as perceived

by expert k. The arithmetic mean method was then used to fuse the opinions of each expert
to finally obtain the direct influence matrix H.

H =

 0 . . . h1n
. . . . . . . . .
hn1 . . . 0

 =
[
hij
]

n×n (1)

where, hij =
1
m

m
∑

k=1
hk

ij, (k = 1, 2, 3, . . . , m).

hij indicates the average degree of influence of the factor Xi on Xj, if i = j and hij = 0.
Normalization:
The direct influence matrix H is normalized to obtain the normalized direct influence

matrix G,
G = µ× H (2)

µ =
1

max
n
∑

1≤i≤n
hij

, i, j = 1, 2, . . . , H (3)
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where max
n
∑

1≤i≤n
hij is denoted as the row and the maximum value. It is known that

gij ∈ [0, 1] and max
n
∑

1≤i≤n
hij = 1.

Step 2: Determine the comprehensive influence matrix

The comprehensive influence matrix T can be obtained by adding up the direct and
indirect influences between factors to determine the comprehensive influences between
factors in the system.

T = G× (I − G)−1 (4)

Step 3: Calculate the index value of all factors

Based on the comprehensive influence matrix, determine the influencing degree of
each factor on other factors and the influenced degree, and calculate the centrality and
causality of each factor.

1. Influencing degree and influenced degree

The influencing degree Di of the corresponding factor is obtained by summing the
elements of matrix T by rows, and the influenced degree Rj of the corresponding factor
is obtained by summing the elements of matrix T by columns. The calculation formula
is as follows:

Di =
n

∑
j=1

tij, i = 1, 2, . . . , n (5)

Rj =
n

∑
i=1

tij, j = 1, 2, . . . , n (6)

2. Centrality and causality

The centrality and the causality of factor i are calculated by the influencing degree
and the influenced degree of factor i. That is, Di + Rj indicates the centrality of factor i, the
greater the centrality, the more significant factor i is. The causality, denoted by Di − Rj,
reflects how factor i affects other factors. If the value of Di − Rj is positive, factor i has a
stronger influence on other factors and is called causal factor. If the value of Di − Rj is
negative, factor i is influenced by other factors to a large extent and is called the result factor.

Step 4: Determine the overall influence matrix.

The comprehensive influence matrix T can only reflect the influence relationship
between factors and the degree of influence without considering the influence of the factors
on themselves. The overall influence matrix X reflects the overall influence relationship of
system factors, including the mutual influence among factors and the influence of factors
on themselves. The overall influence matrix X is expressed as

X = T + I (7)

Step 5: Calculate the reachability matrix.

The key to obtaining the reachability matrix A is to determine the threshold λ based on
the overall influence matrix T. The system structure of the influential factors is simplified by
setting appropriate thresholds to remove the less influential factors [15]. Then reachability
matrix is determined according to Equation (8).

A =
(
aij
)

n×n

aij =

{
1, xij < λ

0, xij ≥ λ

(8)

Step 6: Classify different levels based on the reachability matrix.
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According to the reachability matrix, we determine the reachable set R, the prior
set Q, and the intersection set M of each element. R represents the set of all factors that
factor Fi can reach, and the Q denotes the set of all factors that can reach a factor Fi.
Then there is the division of the hierarchy. When Equation (9) is satisfied, the factors
satisfying the conditions are divided into the first level (I). After determining the first level,
the next division is performed, and the corresponding row and column elements in the
reachability matrix should be crossed out. The above steps are repeated until all elements
are assigned to the corresponding hierarchical levels, and the iteration ends to produce the
final hierarchical distribution.

R(ai) = R(ai) ∩Q(ai) = M(ai) (9)

Step 7: Draw the directed graph.

Based on the division of factors in each level of the system, the skeleton matrix is
extracted from the reachability matrix. If there is a strongly connected factor pair, one of the
factors is selected as the representative element. Then, after removing the transitive binary
relationship and the self-reachable binary relationship between elements in the reachability
matrix, the skeleton matrix K is finally generated. Clarify the causal relationship among
the factors, and finally, draw a multi-level hierarchical structure diagram of the failure risk
factors of the CPL system.

3.4. Noisy-Or Gate Bayesian Network Model
3.4.1. Bayesian Network Model

Bayesian Network (BN) is a probabilistic network model and one of the effective
theoretical models in the field of uncertain knowledge representation and inference. BN
conducts a qualitative and quantitative analysis of the interdependence among factors
through directed acyclic graphs (DAGs) and probabilistic correlation model and studies
the event propagation mechanism through probabilistic reasoning methods [50,51]. The
theoretical basis of BN model realization is the Bayesian theorem and conditional probability
theory, in which the Bayesian formula can be expressed by Equation (10).

P(A|B) = P(A|B)P(A)

P(B)
(10)

Bayesian network is a combination of qualitative and quantitative analysis methods,
and the modeling process includes network structure learning and network parameter
learning. The two main parts are as follows:

(1) Construct the network structure S and express the relationship between each infor-
mation element by determining the directed graph. It consists of a point variable set
V(V = {V1, V2, . . . , Vn}) and a directed edge set L

(
L =

{
ViVj

∣∣Vi, Vj,∈ V
})

. Among
them, the directed edge L represents the dependence or causality between variables
Vi and Vj. The final network structure S is expressed as S = (V, L).

(2) Determine the probability distribution of the node, including the prior probability
of the parent node and the conditional probability table (CPT) of other child nodes.
The degree of interaction between variables is expressed through the probability
distribution among them. The conditional probability table distribution of node
variables is expressed as Equation (11).

P =
{

P
(

Vi|

∣∣∣V1, V2, . . . , Vi−1

)
, Vi ∈ V

}
= P

(
Vi
∣∣Vpi

)
(11)

where P represents all possible conditional probabilities of a node relative to its parent
nodes and Vpi represents the set of parent nodes of the variable Vi.
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3.4.2. Noisy-Or Gate Model and Leaky Noisy-Or Gate Model

Assuming that node variables have two states (Y and N), if child node i has n parent
nodes, then the child node conditional probability is 2n [26]. Moreover, complex network
nodes not only increase the effort for experts but also, to a certain extent, decrease structural
accuracy. However, the Noisy-or Gate (NG) model can solve such problems by clarifying
the connection relationship between nodes. Therefore, when the network structure and
expert knowledge are known, the NG model can be used to approximately calculate the
conditional parameters of BN. The NG model mainly obtains the complete conditional
probability distribution of nodes by describing the internal logical relationship between
the child nodes and their corresponding parent nodes in BN [52]. Suppose a node V has
n parent variables X1, X2, . . . , Xn, and the following conditions need to be satisfied for
modeling analysis using the BN based on the NG model [16].

1. All variables have only two states, occurrence (Y) and non-occurrence (N);
2. The corresponding parent nodes of any node are independent of each other.
3. When any parent node X1 is Y, and all other parent nodes are N, it is enough to make

node V in Y state. At this time, the node connection probability is
Pi = P(V = Y|X1 = N, X2 = N, . . . , Xi = Y, . . . , Xn = N). Then other items Xp of con-
ditional probability table (CPT) of node V determined by P1, P2, . . . , Pi, . . . , Pn, ex-
pressed as Equation (12).

P
(
V = Y

∣∣ Xp
)
= 1− ∏

i: xi∈xn

(1− Pi) (12)

However, child node occurrences are not necessarily caused by parent node occur-
rences. A complex system is influenced by multiple factors, the node variables cannot
cover all factors, and there may also be some unpredictable or unknown factors denoted by
XL [52]. In other words, Leak probability (PL) exists when all parent nodes are in N state,
but the probability of occurrence of child nodes is not zero. Therefore, the Leaky Noisy-or
Gate extension model is proposed to determine the CPT of the nodes.

Suppose V has two parents: Xi and Xall , where Xall denotes all factors except Xi, and
Pi and Pall denote the corresponding connection probabilities. From Equation (12), we can
see that

P(V = Y | Xi) = 1− (1− Pi)(1− Pall) = Pi + Pall − PiPall (13)

P
(

V = Y
∣∣∣∣ ¯

Xi

)
= Pall (14)

Then Pi, denoted as Equation (15), is calculated by combining Equations (13) and (14)

PL =

P(V = Y|Xi)− P
(

V = Y
∣∣∣∣ ¯
Xi

)
1− P

(
V = Y

∣∣∣∣ ¯
Xi

) (15)

From Equation (15), the joint probability P1, P2, . . . , Pi, . . . , Pn of all parents of node V
can be expressed and then combined with the Leak probability PL to obtain the conditional
probability of V being in state Y, denoted as Equation (16).

P(V = Y) = 1− (1− PL) ä
i: Xi∈Xn

(1− Pi) (16)

3.4.3. Conduct the BN Model Based on the Leaky Noisy-Or Gate Model

According to the directed graph obtained by ISM, the multi-level hierarchical structure
model is transformed into the network structure in BN by the mapping method. The factor
nodes and directed edges in the ISM network graph are matched one by one to create
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the BN network structure model. Define the conditional probability table next. The prior
probability of the parent node and the conditional probability of the connection between the
parent node and the child node are determined by expert judgment. The node probability
distribution of the whole network is then determined based on the extended NG model.
The Leak probability of uncertainty is assumed to be 0.1. Finally, the complete Bayesian
network model is obtained.

4. Results

Firstly, 20 major failure risk factors of the CPL system were identified through a
literature review, relevant accident reports, and expert consultation. Then, the coupling
correlation of the system factors was analyzed. The questionnaire survey was used to
determine whether the failure factors were correlated and to determine their direct impact
on the degree of correlation. The structure analysis model, DEMATEL-ISM model, was
conducted to analyze factor categories and criticality and generate the final hierarchical
structure diagram. Based on the above system failure risk factor hierarchy analysis, the
BN model was presented to explore the main formation causes of system failure and the
main propagation mechanisms of failure factors. The hybrid model proposed in this paper
was verified to analyze the coupling mechanism of system risk factors by using sample
calculations, and the whole process of failure evolution of the CPL system is described
visually through simulation. In this paper, five experts in port and maritime security risk
analysis are selected to form an expert scoring team to determine the main parameters in
the form of subjective scoring for container port logistics operations. The data collected
from them were applied to the proposed model.

4.1. Coupling Analysis of System Failure Risk Factors
4.1.1. DEMATEL Model

The pairwise relationships of the failure risk indicators (Table 1) determined in this
paper were assessed using the evaluation scale of the impact relationship in Table 2. Then,
the opinions of each expert are aggregated and counted to derive the direct influence matrix
of the system. The DEMATEL-ISM integrated model was represented using Python, and the
data were substituted into the model. After calculation, the influencing degree, influenced
degree, centrality, and causality of each factor are determined. Then the importance ranking
and factor attributes of each factor are derived according to the index value, and the specific
factor analysis results are shown in Table 3 and Figure 3. Next, based on the data results,
the causality diagram of the failure risk factors is drawn, as shown in Figure 4.

DEMATEL technology not only determines the relationship and correlation degree
among failure risk factors but also explores the importance of each factor within the system.
The centrality index can reflect the importance of factors, and the larger the value, the more
important the factor. As shown in Table 3, the centrality values of the 10 factors X12, X9,
X10, X8, X6, X2, X13, X5, X7, and X18 are larger and are therefore more significant in the
system. The causality index is used to distinguish factor attributes, that is, how one element
affects another. The causal factor is the factor that has more influence on other factors when
the value is more than 0; the resulting factor is the factor that is more influenced by other
factors when the value is less than 0. From the causality diagram (Figure 4), it’s shown that
the 12 factors, such as X1, X3, X4, X5, X11, X14, X15, X16, X17, X18, X19, and X20, are located in
the first and second quadrants, which belong to the causal factors. The failure risk system
of the CPL system is likely to affect other risk factors; factors such as X2, X6, X7, X8, X9,
X10, X12, and X13 are located in the third and fourth quadrants, which belong to the result
factors and are easily affected by other risk factors in the failure risk system.

According to the results, the centrality of the failure risk in the CPL system was
arranged in descending order to obtain 10 critical factors, including a mismatch between
technological innovation and system capabilities, equipment breakdown, port IT system
failure, lack of warehouse/yard space, lack of port equipment, operation errors, poor
organization of port production scheduling, poor supervision, over-aging and defects of
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equipment, and natural disaster/harsh climate, etc., which are more important than other
failure factors. Among them, the mismatch between port innovation technology and system
capacities is the risk factor with the greatest impact on system failure. The results reveal
that all five external risk factors in the paper are causal factors, which have an impact on
other risk factors; facility and equipment risk factors belong to the result factors, which are
easily affected by other risk factors in the system.

Table 3. The analysis results of DEMATEL.

Factors Influencing Degree
D

Influenced Degree
C

Centrality
M

Causality
R Weight Rank Factor

Attribute

X1 0.813 0.793 1.606 0.02 0.044 13 Cause
X2 0.897 1.061 1.958 −0.164 0.053 6 Result
X3 0.866 0.335 1.2 0.531 0.033 19 Cause
X4 1.336 0.25 1.586 1.087 0.043 15 Cause
X5 1.244 0.614 1.857 0.63 0.05 8 Cause
X6 0.401 1.856 2.258 −1.455 0.061 5 Result
X7 0.439 1.382 1.82 −0.943 0.049 9 Result
X8 0.243 2.173 2.415 −1.93 0.065 4 Result
X9 0.499 2.177 2.676 −1.678 0.073 2 Result
X10 0.463 2.112 2.575 −1.648 0.07 3 Result
X11 1.048 0.602 1.65 0.446 0.045 12 Cause
X12 0.327 2.508 2.835 −2.181 0.077 1 Result
X13 0.801 1.158 1.959 −0.357 0.053 6 Result
X14 1.055 0.363 1.418 0.691 0.038 18 Cause
X15 1.296 0.334 1.631 0.962 0.044 13 Cause
X16 1.266 0.425 1.692 0.841 0.046 11 Cause
X17 0.806 0.303 1.109 0.503 0.03 20 Cause
X18 1.724 0 1.724 1.724 0.047 10 Cause
X19 1.449 0 1.449 1.449 0.039 17 Cause
X20 1.472 0 1.472 1.472 0.04 16 Cause
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4.1.2. ISM Model

According to the calculation steps of the hybrid model in Section 3.3, the ISM model is
further solved using the comprehensive influence matrix T to determine the hierarchical
relationships among the system failure risk factors. The threshold λ is then determined
according to the data distribution characteristics to determine the reachability matrix. In
the paper, the threshold λ is set to 0.11, 0.12, 0.13, and 0.14 for multi-value testing, and the
node degree of each factor under different threshold conditions is calculated. Where the
sum of the row and column of each factor in the reachable matrix is called the node degree
of that factor, arrange the node degrees corresponding to each threshold in descending
order to obtain the node degree distribution diagram, as shown in Figure 5. Then, by
analyzing the node degree distribution graph, it is concluded that when the threshold
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λ = 0.12, the distribution of node degree and centrality corresponding to the reachability
matrix is similar, and the most suitable hierarchical structure of influencing factors can be
obtained. The specific hierarchical division results are listed in Table 4 in detail. After that,
the self-binary relationship and the leapfrog binary relationship in the sorted reachable
matrix are processed to obtain the final simplified version of the skeleton matrix K, and
based on this, the multi-level hierarchical structure diagram of the failure risk factors is
drawn (Figure 6).
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The failure risk factors of the CPL system are divided into six levels by ISM analysis,
and each factor is classified into three parts: direct cause, indirect cause, and essential cause.
As shown in Figure 6, the direct cause includes six factors such as X8, X12, X1, X6, X9, and
X10, and the changes to these risk factors will have a more obvious impact on the system.
The indirect cause includes 10 risk factors, such as X2, X3, X7, X16, X20, X5, X11, X13, X17,
and X18, which indirectly affect the system by acting on the upper factors. Furthermore,
the essential cause affecting the normal state of the system includes four factors, X15, X4,
X14, and X19, which are the lowest-level factors of the system and easily affect other factors.
Specifically, lack of warehouse/yard space and mismatch between technological innovation
and system capacities are the top-tier factors. These factors, together with the other four risk
factors, labor shortages, lack of port equipment, equipment breakdown, and port IT system
failure, form the group of direct risk factors of the system. Moreover, the essential factors
that affect the functional state of the CPL system include lack of professional training or
safety education, insufficient professional knowledge and skills, imperfect management
organization rules and regulations, and public health event. These factors are the bottom
risk factors of the system, which will act on the system by influencing other factors. Other
factors are indirect factors that connect the entire system.

4.2. BN Modeling
4.2.1. Establish the Network Structure and Network Parameter in the BN

Network topology and CPTs are the two main elements of Bayesian networks. In
this study, the hierarchical network graph from the DEMATEL-ISM integrated model is
translated to the BN network structure based on the mapping criteria in Figure 7, and
the dependence links between variables are represented using directed graphs. Then
the systematic network structure model of the failure risk of the CPL system is obtained
through the GeNIe simulation software, as illustrated in Figure 8. The node states are
set as binary states in the text, which are represented by Y and N, respectively; that is, Y
represents the event that occurred, and N represents the event that did not occur. The next
step is to determine the node parameters of the model, including the prior probability and
CPTs. Specifically, (1) determine the prior probability of each root node and the probability
of occurrence of child nodes under the condition of occurrence of the root node; (2) calculate
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the connection probability of the nodes by Equation (15) from Leaky-NG; (3) determine the
Leak probability, PL = 0.1, and calculate the conditional probability of each child node by
the Equation (16).
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Figure 8. The Bayesian network structure of container port logistics system failure.

Taking the child node of X7 as an example, the occurrence probability of X7 under the
influence of 3 root node states, X5, X11, and X18, respectively, is first obtained based on sub-
jective scoring. Then the extended NG model is invoked, and the connection probabilities
of each node of X5, X11, and X18 are calculated according to Equation (15) as P5 = 0.3214,
P11 = 0.3571, and P18 = 0.7125, respectively. Then the conditional probabilities of X7 are
introduced by Equation (16) in combination with PL = 0.1, as shown in Table 5. Similarly, the
CPTs of other child nodes in the network are determined by the above calculation method.
The prior probabilities of the parent nodes and the conditional probability values of each
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node are imported into the GeNIe network model, and the Bayesian network diagram of
the CPL system’s failure risk is finally generated after evidence learning (Figure 9).

Table 5. The CPT of the child node X7.

X5 X11 X18
X7

Y N

Y
Y

Y 0.88713 0.11287
N 0.6074 0.3926

N
Y 0.82442 0.17558
N 0.38929 0.61071

N
Y

Y 0.83366 0.16634
N 0.42143 0.57857

N
Y 0.74125 0.25875
N 0.1 0.9
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4.2.2. Causal Reasoning Analysis

1. Positive causal reasoning

Positive causal reasoning in the BN refers to the examination of the likelihood of CPL
system failure with evidence input. As can be seen from Figure 9, the failure probability
distribution of each node in the network is inferred under the assumption that the parent
node’s prior probability is known, where the failure probability of the target node is 53%.
This suggests that the system is about a 53% probability of operational disruption under the
uncertain environment both inside and outside the system. First, the impact of single-factor
changes on the system failure is analyzed. Based on the analysis of system failure factors in
Section 4.1, X8 (lack of warehouse/yard space) and X12 (mismatch between technological
innovation and system capacities) are the direct causes within the system, where X12 is the
most influential failure risk in the system. When the node X8 event occurs, i.e., P8 = 1, the
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failure probability of the target node is 72% by positive reasoning; when the node X12 event
occurs, i.e., P12 = 1, the port failure probability is 64%. Second, given the complex coupling
relationship between system failure risk factors, the influence on system failure is analyzed
when multiple node factors within the system fail at the same time. For instance, Figure 10
is produced when the failure probability of nodes X12, X6, and X2 are all 1. It’s clear that
the failure probability of the system becomes 70%, and the failure probability of nodes X8,
X9, and X10 also changes greatly, increasing the occurrence probability by 30%, 21%, and
19%, respectively. This also illustrates the coupling relationship among failure risks, which
describes how changes in one factor’s state have an effect on other factors in the system.
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2. Reverse Diagnostic Reasoning

The main purpose of this paper is to explore the failure evolution mechanism of the
CPL system, and the main research idea is to determine the system failure risk coupling
mechanism and the root cause of the system failure by building the BN model. Therefore,
the reverse diagnosis in BN can be used to derive the possible failure propagation paths
and failure factors when the system is disrupted by failure, i.e., P = 1, as shown in Figure 11.
In the figure, the failure probabilities of nodes X12 and X8 are 87% and 68%, respectively,
and the failure probabilities of X9 and X2 in the second and third layer factors are higher
at 67% and 65%, respectively. Moreover, the failure probability of the parent nodes X18
and X15 in the network is higher compared to the other parent nodes, with 42% and 40%,
respectively. It is shown that the more likely propagation paths leading to system failure
are: X18 → X2 → X9 → X12 → P; X18 → X6 → X8 → T; X15 → X3 → X9 → X12 → T.



J. Mar. Sci. Eng. 2023, 11, 1067 22 of 28J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 25 of 31 
 

 

 
Figure 11. Results of BN reverse diagnostic analysis. These nodes, e.g. X1,X2, represent failure risk 
factors in the CPL system. The red circle indicates the target node, indicating the possible failure 
propagation path of the container port logistics system when it is in a failure state. 

5. Discussion 
In this paper, to more systematically and comprehensively explore the coupling 

mechanism of failure risk factors in CPL systems, the DEMATEL-ISM integrated model is 
used to explore the key failure factors of the system and the coupling relationship between 
the factors. Then, the probabilistic reasoning capability of the BN is used to study the sys-
tem failure evolution mechanism and determine the failure risk transfer mechanism. The 
key issues of this paper are analyzed and discussed in depth based on the results of the 
data analysis in Section 4. 

The coupling analysis results of system failure risk factors indicate that technical 
risks, human risks, and facility and equipment risks play a crucial role in the CPL system. 
First, compared to much current research on port operation risk management [3,11,17], 
this study highlights that technical risks, particularly the risk of mismatch between tech-
nological innovation, pose the greatest threat to container port logistics systems. In the 
study by Loh et al. [8,27], the research argues that the efficiency of port operations depends 
on new technologies and advanced systems, as well as the ability of port technicians. 
Therefore, this factor is one of the most direct influencing factors of the system. When the 
system risk level is high, and stability is poor, the effective control of such factors can 
reduce the system instability level more significantly in a short period and improve the 
reliability of the system. Second, based on the proportion of the above factors, it can be 
found that facility and equipment risks and human risks are the second largest threat risk 
group for container port logistics services. This finding is consistent with existing litera-
ture on the risks of harbor operations [12,16,24,28]. For example, human factors, especially 
operational errors and equipment-related risks, are considered the most prominent risk 
factors in terminal container operations by Budiyanto et al. [16]. Additionally, this sug-
gests that external risk factors such as natural disasters, security threats, and economic 
and trade risks will bring greater risk potential to the system. External risks have the 

Figure 11. Results of BN reverse diagnostic analysis. These nodes, e.g. X1,X2, represent failure risk
factors in the CPL system. The red circle indicates the target node, indicating the possible failure
propagation path of the container port logistics system when it is in a failure state.

Among them, we can find that if the port system fails, the five factors of mismatch
between technological innovation and system capacities (X12), lack of warehouse/yard
space (X8), equipment breakdown (X9), operation errors (X2), and lack of port equipment
(X6) pose a greater threat to the system and present a higher failure probability of the
CPL system. In contrast, uncontrollable external factors such as natural disasters and
terrorist attacks are not conducive to the stability of the CPL system. The two risk factors
of mismatch between technological innovation and system capacities and lack of ware-
house/yard space are the most immediate key factors contributing to the system. Natural
disasters/harsh climates and lack of professional training or safety education are the most
likely essential sources of system failure which will essentially increase the failure risk
level of the CPL system by affecting the working condition of workers and the reliability of
facilities and equipment.

5. Discussion

In this paper, to more systematically and comprehensively explore the coupling mech-
anism of failure risk factors in CPL systems, the DEMATEL-ISM integrated model is used
to explore the key failure factors of the system and the coupling relationship between the
factors. Then, the probabilistic reasoning capability of the BN is used to study the system
failure evolution mechanism and determine the failure risk transfer mechanism. The key
issues of this paper are analyzed and discussed in depth based on the results of the data
analysis in Section 4.

The coupling analysis results of system failure risk factors indicate that technical risks,
human risks, and facility and equipment risks play a crucial role in the CPL system. First,
compared to much current research on port operation risk management [3,11,17], this study
highlights that technical risks, particularly the risk of mismatch between technological
innovation, pose the greatest threat to container port logistics systems. In the study by
Loh et al. [8,27], the research argues that the efficiency of port operations depends on new
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technologies and advanced systems, as well as the ability of port technicians. Therefore,
this factor is one of the most direct influencing factors of the system. When the system risk
level is high, and stability is poor, the effective control of such factors can reduce the system
instability level more significantly in a short period and improve the reliability of the
system. Second, based on the proportion of the above factors, it can be found that facility
and equipment risks and human risks are the second largest threat risk group for container
port logistics services. This finding is consistent with existing literature on the risks of
harbor operations [12,16,24,28]. For example, human factors, especially operational errors
and equipment-related risks, are considered the most prominent risk factors in terminal
container operations by Budiyanto et al. [16]. Additionally, this suggests that external
risk factors such as natural disasters, security threats, and economic and trade risks will
bring greater risk potential to the system. External risks have the characteristic of “small
probability and large impact,” seriously threatening the orderly operation of ports and
increasing the danger to ports and goods themselves [10,53].

Secondly, this study not only judges the importance of the failure risk factor but also
innovatively analyzes the correlation between the risk factors and determines the risk factor
categories using the DEMATEL-ISM model. It shows that external risk factors are causal
factors that have an impact on other risk factors because uncontrollable external factors
not only affect the working condition of port workers but also endanger the facilities and
equipment in the port. Zhou and Li [3] also pointed out the important role of external risk
factors and specifically analyzed the threat effects of different risk factors on the resilience of
container transportation services. Zhou et al. [3] did not analyze the relationships between
risks and only derived the relative importance of the factors. Moreover, this study also
emphasizes that the mismatch between technological innovation and system capacities,
equipment breakdown, port IT system failure, lack of ware-house/yard space, and lack of
port equipment are the main key result factors within the system. Poor supervision and
natural disasters/harsh climate are the critical cause factors. Among them, human risk
and external risk factors can affect the normal functional status of facilities and equipment.
On the other hand, according to the hierarchical structure of the risk system, it has been
shown that human factors and organization and management factors, including lack of
professional training or safety education, insufficient professional knowledge and skills,
imperfect management organization rules and regulations are the fundamental factors that
affect the functional status of the CPL system. These factors are the bottom risk factors of
the system, which will have direct or indirect effects on other risk factors, thus threatening
the safety and reliability of the whole system. John [29] and Fan [25] also pointed out the
serious threat of human and organizational factors to maritime safety, making important
contributions in the field of maritime risk management. The findings of this research also
conform to the research conclusions of the current top literature.

The key purpose of this paper is to explore the coupling mechanism of system failure
risk factor and failure risk propagation path using the BN model. This is an important
uniqueness of this paper. In practice, during the container port operation, the warehouse
space problem in the port may cause congestion in the yard and terminal traffic areas,
making it difficult to load and unload or transfer the terminal cargo in time. These may slow
down terminal operations, leaving ships stranded, or substantially disrupt the logistics
chain, which eventually leads to disruption of the whole port logistics system. On the
other hand, the facilities and equipment capacity and technical capacity of the port are
complementary. If the introduction of new port technology is not matched by the port
transportation capacity, it may result in issues including low operational efficiency and
confusion at the operation site, and even improper command, operational errors, and other
work failures, which will destroy the continuity of the port logistics system.

In addition, one of the innovative viewpoints of this paper considers the coupling
effect between factors and studies the failure mechanism under the coupling effect of
multiple factors. The mutual coupling effect of multiple factors in the system will increase
the possibility of system failure and enhance the impact consequences of failure risks. For
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example, when there is a capacity issue for technical innovation in the system, the problems
of worker error and inadequate port equipment can further increase the likelihood of port
failure. Moreover, it will bring more serious risk problems such as insufficient storage
space, equipment breakdown, and port IT system failure. These could complicate internal
system issues and make it harder to control risks. Budiyanto et al. [17] analyzed the
causes of the seaport accident using the FTA model while only focusing on determining
the relative importance of factors without considering the impact of multi-factor coupling
on the system. Then, combining the key results in this study and relevant literature
on risk analysis of container port operations [12,13], this research furthers explores the
possible failure propagation paths during CPL operations. Thus, it can help container port
enterprises participate in port operation and risk management from the perspectives of key
nodes and propagation paths (points and lines).

In fact, previous research on risk management in seaports, especially those related to
container shipping risks [6,9,31], has shown that human factors, facility and equipment
factors, technical factors, organizational management factors, and external environmental
factors have always been important objects of risk management, playing an important
role in the safety and stability of port operations. On the one hand, this article further
proves such conclusions and highlights the crucial role of technical risk factors in modern
port logistics. It is worth noting that this study also comprehensively analyzes the cou-
pling mechanism between internal and external risk factors in the system. Furthermore,
compared to traditional risk analysis methods, this research studies the failure risk of the
CPL system from a new perspective, the failure mechanism perspective. Therefore, this
research achieves innovation in the research framework and model and proposes some
unique conclusions. Moreover, container port risk management is still a research hotspot,
and this paper has contributed to the enrichment and improvement of the theoretical basis
of maritime risk management, as well as the safe development of container shipping.

In practical applications, it helps port managers to identify the main failure risk
propagation paths and critical failure nodes and to propose targeted prevention and control
strategies to reduce the impact of risk emergencies on the system. Based on the above
discussion and results, this paper proposes the following risk management ideas from the
perspective of port enterprise managers:

(1) For the key cause factors, port managers should cut off their influence transmission
among other factors to control the risk propagation and evolution; for the key result
factors, it is necessary to not only control the influence consequences of the cause
factors but also pay attention to preventing the risk emergence from increasing due to
the mutual coupling among risk factors.

(2) From the perspective of factor hierarchy and transmission, we should concentrate
more on their subtle influence when managing the bottom risk factors; fundamentally
eliminate the hidden problems and cut off the transmission path from the bottom risk
factors to other high-level factors in a timely manner; and focus on the interaction
between multiple factors and focus on time efficiency.

In summary, this study conducts an in-depth analysis and summary of key results and
obtains the key content and innovation of the research through a comparative analysis of
relevant literature. Then, the specific significance and contribution of the research results in
theory and practice were analyzed. Constructive suggestions on control to port managers
were provided. However, this paper focused less on the risk factors of connecting the
internal and external environments in the CPL system in the risk analysis. Then, the output
of the results depends more on expert opinions, and there are certain differences.

6. Conclusions

1. Conclusions and implications

This research proposes a hybrid BN method based on the DEMATEL-ISM integrated
model to systematically analyze the failure risks of the container port logistics system and
explore the coupling mechanism of system failure risk factors as well as the system failure
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evolution mechanism. First of all, this study identifies the main failure risks of CPL system
by combining literature review, expert investigation, and relevant accident reports and
determines 20 failure risk factors in five dimensions: human risks, facility and equipment
risks, technical risks, organization and management risks, and external risks. Secondly, this
paper investigates the coupling relationship between system failure factors and the system
factor hierarchy using DEMATEL and ISM techniques and then finds out the system critical
failure factors and the attributes of each factor. Afterward, the BN model is constructed
to further quantify the coupling strength between the system failure factors and to mine
the possible failure risk factor sets and failure propagation paths of the system. This paper
highlights that technical risks and facility and equipment risks are direct threats to system
stability, especially factors such as mismatch between technological innovation and system
capacities, lack of warehouse/yard space, and equipment breakdown will increase the
potential risk of system failure. Following this, human risks have an important position
in the system and run through all aspects of the system, which can enhance the level of
system failure risk by influencing other factors. Moreover, organization and management
risks, such as imperfect safety education or technical training, incomplete management
organization rules and regulations, etc., mainly have a subtle impact on the system in
essence. Moreover, the whole container port logistics system is most sensitive to external
environmental risks, and the changes in the external environment will increase the internal
risk level of the system and result in internal risks emerging. Hence, this paper emphasizes
that the complex coupling relationship between internal and external risks of the system
and the strong coupling role of the internal system should be paid attention to in order
to discover the risk potential in time, cut the risk connection, and develop risk response
measures to ensure the safe and stable operation of the system.

On the whole, this research has important theoretical and practical implications. On
the one hand, this research’s theoretical contributions are multi-fold. First, the object of this
study is to investigate port risk from the new perspective of system failure and provide
important insights by considering the influence of multifactor coupling on the evolution of
system failure and building a failure mechanism model. This provides a new analytical
framework and research perspective. Second, this study enriches the failure risk index
system of the port logistics system and strengthens the understanding of the complex
coupling relationship between factors. Third, this paper constructs a new risk model
to deeply explore the relationship between factors, effectively overcome data problems,
and improve the accuracy and persuasiveness of the results. Furthermore, the model can
achieve real-time updates of data, which helps with risk monitoring and control. In short,
this paper compensates for the shortcomings in port risk management research, enriches
the theoretical foundation of the maritime risk field, and promotes the development of this
field. Moreover, the new analytical framework proposed in the article can be applied to
risk management in other fields.

From a practical point of view, this research provides a theoretical basis for enterprise
managers to carry out risk management, helps them propose targeted prevention and
control strategies, and promotes the scientific decision-making of enterprise managers.
Moreover, it can enable port companies, governments, and other stakeholders to grasp the
risks of port operations and determine the direction of future changes and development. In
addition, timely and effective risk control can reduce losses caused by port risk events and
improve resource utilization. Finally, constructive suggestions are put forward in terms of
organizational management, daily monitoring of facilities and equipment, technical man-
agement, and contingency response, such as sound port management rules and regulations,
comprehensive risk monitoring, and early warning mechanism.

2. Limitations

However, there are some limitations to this study. First, this study mainly relies on
expert assessment to obtain relevant data but lacks objective data. Second, to make the
output network structure more aesthetically pleasing, this paper simplifies the association
lines of factors on the graph when establishing the structural model, which makes the
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hierarchical structure not fully reflective of the direct connection between individual factors.
There is still room for improvement regarding the methodological model used. Third,
this research tends to be theoretical, and more comprehensive practical investigations can
be conducted in the future to have a deeper understanding of the failure risk issues of
typical ports and propose targeted risk management recommendations for specific ports.
Therefore, in the future, the scale of expert review can be expanded and combined with
objective statistics to improve the accuracy of the output results. On the other hand, the
failure evolution of the port can be studied under different scenarios, and its feasibility can
be proved. In the end, research on risk mitigation and control strategies for container port
logistics can be continued based on the findings of this paper.
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