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Abstract: Underwater pressure-bearing structures are produced in practice by means of pressure
self-enhancement methods in order to improve the stress distribution and enhance the pressure-
bearing performance. On the other hand, the pairs equation shows that stress is an important factor
influencing the degradation of the structure. In fact, improving the stress distribution will not only
improve the pressure-bearing performance, but will have an impact on the life degradation trend.
Thus, pressure self-enhancement affects the structural life by changing the stress distribution. With
this in mind, this paper considers the effect of pressure self-enhancement on the service time of subsea
structures, and a Bayesian network (BN)-based method that can be used to predict the remaining
useful life (RUL) of underwater self-enhanced structures is proposed. The method also takes into
account the influence of multiple sources of structural factors in order to predict the RUL of the
structure more accurately. The life degradation process of an all-electric Christmas tree valve actuator
is used as a case study. The prediction results are compared with data in the literature to verify
the validity of the method. The results have implications for guidance on the O&M assurance of
underwater production systems.

Keywords: pressure self-enhancement; RUL; dynamic Bayesian networks; valve actuators; crack
extension

1. Introduction

All-electric Christmas tree valve actuators need to serve in deepwater and complex
environments for 20 years, but work processes, including vibration, corrosion, wear, fatigue,
temperature changes and other factors, very easily cause small cracks early on; the cracks
that develop, to a certain extent, lead to structural damage to the body and can cause major
oil spill accidents [1]. This causes great potential harm to the offshore environment, to
national defense, to maritime traffic and to fishery resources [2]. Therefore, extending
the life of all-electric Christmas tree valve actuators, accurately predicting their crack
extension pattern and assessing the RUL are essential in order to ensure the safe operation
of all-electric valve actuators.

For underwater pressurised structures, the use of pressure self-enhancement measures
in the manufacturing process can effectively increase the initial yield strength of the inner
wall of the pressurised structure; this results in a certain amount of plastic deformation
in the inner wall and the formation of a plastic layer of a certain thickness, while the
rest of the structure remains in an elastic state [3]. After a period of pressure holding
and decompression, due to the elastic contraction of the outer material of the valve body,
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the inner material, which has been plastically deformed, is compressed by the elastic
compression of the outer layer due to the elastic contraction of the outer material of the
valve body, and the outer material produces tensile stresses. In this process, the inner wall
of the valve body is plasticised, but due to the strict control of the overstrain and residual
stress after decompression, the valve body is still in the elastic range during operation. For
the pressure-bearing structure treated with self-enhancing technology, in the actual working
process, the internal working pressure of the pipeline medium causes a large tensile stress
on the inner wall of the valve body, which is offset by the residual compressive stress. In
addition, the total stress value on the inner wall is reduced, while the compressive stress
on the outer wall of the valve body is superimposed with the residual tensile stress when
working, and the total stress value on the outer wall is increased. As a result, the difference
in the stress level between the inner and outer walls of the valve body is reduced and the
stresses are more evenly distributed in the direction of the valve body wall thickness, which
can effectively improve the service life. On the other hand, the change in the stress and
wall thickness of the structural system caused by pressure self-enhancement may directly
affect the results of the RUL, so there is a need to investigate the method of predicting the
RUL after pressure self-enhancement.

There are two main categories of methods used to predict the RUL of structural sys-
tems or components, namely physical model-based and data-driven methods [4]. The RUL
of structures has been extensively studied by academics both nationally and internation-
ally. For example, Eleftheroglou et al. [5] proposed a new framework by which to fuse
structural health monitoring data from different in situ monitoring techniques to develop
a hyper-feature and thus achieve more effective prognostics. A non-flush hidden semi-
Markov model was used to simulate the accumulation of damage in composite structures
under fatigue loading and to estimate the RUL using conventional, as well as fused, SHM
data. The validity of the method was verified using open-cell carbon/epoxy specimens
subjected to fatigue loading as an example. Morita et al. [6] investigated a method for the
prediction of the fatigue crack initiation life under variable loading conditions based on
the Fatigue SS Model. Barraza-Barraza et al. [7] constructed three autoregressive models
with exogenous variables and evaluated their capability to estimate the RUL of the process;
this was evaluated following the case of the aluminium crack extension problem. Corbetta
et al. [8] proposed a particle filter-based Bayesian framework for crack damage prediction
in composite laminates; the proposed prediction prognostic successfully predicted the crack
damage growth and fatigue life of laminates, and discussed the filtered estimation of crack
damage progression and remaining life prediction. Zhenhua Gu [9] presented a fatigue
crack extension prediction and RUL prediction method based on an improved particle
filtering algorithm using BAS optimisation. Using Q235 steel as the research object, the prac-
ticality and prediction accuracy of the method was verified. In addition, some researchers
combined the two prediction methods and used a data-driven approach to collect data from
physical models. For example, Cai et al. [10] contributed a hybrid physics-model-based
and data-driven RUL estimation methodology for structure systems by using dynamic
Bayesian networks (DBNs). Subsea pipelines in offshore oil and gas subsea production
systems were adopted in order to demonstrate the proposed methodology. Li et al. [11]
adopted a methodology typically applied in sensor fault diagnosis and developed a new
hybrid prognostic model, with a bias parameter included in the measurement equation
and the state vector. Using particle filtering as an estimation technique for the damage
state, damage parameter and damage bias parameter, the experimental study of an alu-
minium lug structure subjected to fatigue crack growth and equipped with a Lamb wave
monitoring system demonstrated the improved estimation and prediction performance
of the new prognostic model. Although scholars at home and abroad have conducted
extensive research on methods that can be used to predicting the RUL of structures, most
of them are analytical studies that focus on predicting the RUL of structural materials
on land [12]. There is a relative lack of research that focuses on predicting the RUL of
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underwater structures, and the effect of changes in the stress distribution on the service life
has not yet been considered.

Underwater structural systems are hardware systems that are closely related to the
principles of structural mechanics [10]. Due to the complexity of structural systems, the
factors that cause damage to structural elements are also diverse. For example, pressure-
bearing structural members in all-electric actuators in deep water are subject to a variety of
factors, such as fatigue degradation and seawater corrosion [13], making the construction of
physical models of structural systems under the influence of multiple factors very difficult.

BNs are currently one of the most effective theoretical models in the field of uncertain
knowledge representation and inference. DBNs have been used for many years in the
field of fault diagnosis and the lifetime prediction of structural systems [14]. Arzaghi
et al. [15] proposed a probabilistic approach based on DBNs to construct an integrated
model of the fatigue degradation of subsea pipelines caused by pitting and corrosion,
and applied the method to estimate the RUL of high-strength steel pipelines. A hybrid
multi-stage control system RUL prediction method was proposed by Liu et al. [16]. Taking
the electro-hydraulic compound control of an underwater oil production tree as an example,
the method was used to analyse the uncertainty in the prediction process of the Kalman
filter and the RUL of a non-linear degraded system using a DBN. This method could
improve the accuracy of RUL prediction and increase the robustness of the prediction
model. A fracture mechanics-based fatigue reliability analysis of a submarine pipeline
was investigated using the Bayesian approach by Kakaie et al. [17], and the proposed
framework enabled the estimation of the reliability level of submarine pipelines based
on limited experimental data. The failure load cycle distribution and the reliability-based
performance assessment of API 5L X56 submarine pipelines, as a case study, were estimated
for three different cases. Based on the Bayesian Regularization Artificial Neuron Network,
Li et al. [18] proposed an efficient probability approach that could be used to predict the
fatigue failure probability of the subsea wellhead system during its entire life. This paper
takes full advantage of Bayesian inference in order to establish the causal relationship
between pressure self-enhancing parameters and the structural life, and to predict the RUL
of structures under complex multi-factorial underwater conditions.

The remainder of the paper is structured as follows: Section 2 details the proposed
method for predicting the remaining life of self-enhanced structural components; Section 3
develops a physical model for predicting the remaining life of self-enhanced structural
components using the subsea oil recovery tree valve actuator as an example; Section 4
constructs a Bayesian RUL prediction model based on the physical model; Section 5 presents
the prediction results and analysis; and Section 6 is the conclusion.

2. Proposed Pressure Self-Enhancement and Life Prediction Method
2.1. Modeling Methodology

This paper proposes a DBN-based method for predicting the RUL of pressure self-
enhanced structures. The method uses a DBN to establish the relationship between the
life, the influence of stress and the wall thickness of the self-enhanced structural system,
which can predict the degradation process of the structural system under the influence of
multiple source factors and give the RUL of the structural system more accurately. The
proposed method consists of two phases: (i) A DBN-based modelling phase for the stress
enhancement and life extension of compressional self-enhanced stresses. (ii) A dynamic
prediction phase for the RUL under the influence of multiple source factors based on DBNs.
This is illustrated in Figure 1.

(i) This phase is a DBN consisting of multiple time slices, named the structure parameter
network. The structure parameter network i (i = 1, 2, . . . t) includes three layers
of nodes: structure parameter nodes, self-enhancement excessive parameter nodes
and self-enhancement parameter nodes. Structure parameter nodes are the directly
relevant parameters that affect the life of a structural system, such as the material,
mechanical properties, operating conditions, design criteria, etc. These parameters
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must be followed in the design of the structural system, in other words, they must meet
the relevant design requirements. The self-enhancement parameter nodes indicate the
parameters used for the self-enhancement optimisation of a structure; these include
the use of prestressing to improve the stress distribution in the structure, thereby
increasing the compressive strength, optimising the thickness of the structure and
increasing the service life. Alternatively, coatings can be used to improve the corrosion
resistance of the structure, which can also slow down the degradation of the system.
Both “pressure self-enhancement” and “coatings” are factors in the self-enhancement
of excessive parameter nodes. In other words, it is the measure that can extend the
service life. The optimised stress distribution and the improved corrosion protection
factor are the self-enhancement parameter nodes. This paper proposes a DBN-based
pressure self-enhancement method to investigate the causal relationship between the
above three layers of nodes and to obtain an improved stress distribution.

(ii) This phase consists of two layers of BNs: the first layer comprises the parameters of
the multi-source external factors that affect the life of the structural system, which
are dynamically modified by simultaneous self-enhancement and therefore have
a causal relationship with phase (i). The second layer comprises the nodes of the
parameters that characterise the lifetime of the structural system, such as the wall
thickness, which decreases due to wear, corrosion, cracking, etc. The change in the
wall thickness can represent the degradation of the structural system. The RUL of
the system is then obtained using Bayesian inference. The inference process can be
based on real-time observational data, which is used as evidence, or by introducing
empirical inference models in order to dynamically correct the network and thus
improve the prediction accuracy.
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2.2. DBN RUL Prediction Framework

BNs are a data-driven inference method widely used in the reliability assessment
and fault diagnosis analysis of complex systems. It is a graphical network that applies
probabilistic inference and consists of two parts: a qualitative part and a quantitative part.
The qualitative part is represented by a directed acyclic graph that consists of the nodes of
the system variables and directed arcs that indicate the causal relationships between the
nodes. The quantitative part is a table of conditional probabilities between the child and
parent nodes.
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According to conditional independence and chain rule, the joint probability distribu-
tion P(U) of variable U = {A1, A2, · · · , AN} can be expressed as follows:

P(U) =
N

∏
i=1

P(Ai|Pa(Ai)) (1)

where Pa(Ai) represents the parent node of Ai.
If there is new evidence E, then the posterior probability of the variable can be calcu-

lated by the Bayesian formula, as shown in Equation (2):

P(U|E) = P(E|U)P(U)

P(E)
=

P(E, U)

∑ U P(E, U)
(2)

DBNs are a combination of a static BN and temporal information, forming a new
stochastic model that processes temporal data. Each time step in the model is called a time
slice. The basic structure of DBNs is shown in Figure 2, where t represents the current time
slice, t + 1 represents the next time slice, ∆t represents the interval of time slices, the dashed
directed arc in the figure represents the relationship between variables in the same time
slice, and the solid directed arc represents the relationship between variables in different
time slices. In order to describe the state changes in the real dynamic system, some have
scholars [19] proposed the DBN theory. Similar to the calculation method of static BNs, the
joint probability distribution of DBNs can be calculated as follows:

P(A1:T) =
T

∏
t=1

N

∏
i=1

P(Ai
t|Pa(Ai

t)) (3)

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 5 of 27 
 

 

nodes. The quantitative part is a table of conditional probabilities between the child and 
parent nodes. 

According to conditional independence and chain rule, the joint probability distribu-
tion ( )P U  of variable { }1 2, , , NU A A A=   can be expressed as follows: 

1
( ) ( | ( ))

N

i i
i

P U P A Pa A
=

= ∏   (1)

where ( )iPa A  represents the parent node of iA . 
If there is new evidence E, then the posterior probability of the variable can be calcu-

lated by the Bayesian formula, as shown in Equation (2): 

( | ) ( ) ( , )( | )
( ) ( , )U

P E U P U P E UP U E
P E P E U

= =


  (2)

DBNs are a combination of a static BN and temporal information, forming a new 
stochastic model that processes temporal data. Each time step in the model is called a time 
slice. The basic structure of DBNs is shown in Figure 2, where t represents the current time 
slice, t + 1 represents the next time slice, tΔ  represents the interval of time slices, the 
dashed directed arc in the figure represents the relationship between variables in the same 
time slice, and the solid directed arc represents the relationship between variables in dif-
ferent time slices. In order to describe the state changes in the real dynamic system, some 
have scholars [19] proposed the DBN theory. Similar to the calculation method of static 
BNs, the joint probability distribution of DBNs can be calculated as follows: 

1:
1 1

( ) ( | ( ))
T N

i i
T t t

t i
P A P A Pa A

= =

= ∏∏   (3)

 
Figure 2. Structure of dynamic Bayesian network. 

The DBN structural modelling method comprises causality, mapping algorithms and 
structured learning [10]. For structural systems, detailed causal relationships and suffi-
cient training data are usually difficult to achieve due to the non-existence of a one-to-one 
correspondence between some primitive RUL estimation methods and the DBN model. 
In this case, the structure of the DBN can be transformed from the physical model of the 
structural system [10], as shown in Equations (4)–(6). 
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The DBN structural modelling method comprises causality, mapping algorithms and
structured learning [10]. For structural systems, detailed causal relationships and sufficient
training data are usually difficult to achieve due to the non-existence of a one-to-one
correspondence between some primitive RUL estimation methods and the DBN model.
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In this case, the structure of the DBN can be transformed from the physical model of the
structural system [10], as shown in Equations (4)–(6).

Ent
n = fn(λ

t
1, λt

2, . . . , λt
n, part

1, part
2, . . . , part

n, En0, t) (4)

δt
n = ξn(Ent

1, Ent
2, . . . , Ent

n, Ipart
1, Ipart

2, . . . , Ipart
n, part

1, part
2, . . . , part

2, t) (5)

RULt = ψn(δ
t
1, δt

2, . . . , δt
n, evt

n, ert
n, t) (6)

The dependent variables in Equations (4)–(6) correspond to the nodes shown in
Figure 1, with some parameters replaced by the first letters of the node name. The subscript
n denotes the nth node and n = 0 denotes the initial state of the node. The superscript t
indicates the current time slice. fn, ξn, ψn, respectively, represent the physical model of
the functional relationship between the independent variables and dependent variables
at the corresponding node layer. The specific functional relationship is explained in the
case study.

2.3. DBN Parameter Modelling

The modelling steps for the DBN parameters are shown in Table 1, where the DBN
is constructed by extending the BN, in which the prior probabilities of the parent nodes
are determined, either from expert data, design manual data, experimental data, etc. The
distribution can be in the form of a function, such as exponential, normal, logarithmic,
Weibull, etc. The conditional probability table for the parent and child nodes is obtained by
transforming the physical model and then constructing a complete conditional probability
table using the discrete sampling of the parent nodes and an appropriate method (e.g.,
Monte Carlo). If no previous information is available, then weakly informative prior
distributions should be used [20].

Table 1. DBN parameter modelling steps.

Step Modeling Process

1 Build physical models between the node layers
2 Determine the prior probability of the parent node (independent variable) of the physical model
3 Determine the conditional probability table for the parent and child nodes (dependent variables)
4 Determine the form of node distribution
5 Discretize the continuous variables
6 Determine the DBN time slice interval (delay time)
7 Extend the BN to DBN
8 Obtain the crack depth and reason the RUL of the structure
9 Update the evidence nodes and empirical inference nodes to correct the network update solutions

2.4. RUL Prediction

The RUL of a structure is the time between it comes into service and that at which a
certain indicator reaches a critical value. The evolution of ∆κ changes dynamically due
to multiple sources and is difficult to predict using a fixed function model. Especially for
deepwater structures, the unpredictable environment makes predicting the RUL difficult.
Especially for deepwater structures, the unpredictable deepwater environment makes
predicting the RUL more difficult. The performance degradation of deepwater structures is
mainly caused by the accumulation of corrosion and crack extension. This paper predicts
the RUL of a specific time slice based on static BN forward inference. Extending a BN
to a DBN, while considering the mechanical properties of the structural system and the
structural thickness changes caused by self-enhancement methods, can a achieve a dynamic
assessment of the RUL, which can provide more accurate prediction data for a structural
system with an enhanced lifetime.
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3. Case Study: Subsea Christmas Tree Valve Actuator

Subsea Christmas tree valve actuators need to serve in deep water for 20 years, and
they are affected by the complex environment for a long time; however, cracks are very
easily caused by vibration, corrosion, wear, fatigue, temperature and other factors during
the working process, which directly affects the actuator’s life. If there is no accurate
prediction of the trends observed in the development of cracks, when the accumulation of
damages reaches a certain extent, the body may be destroyed and a major oil spill accident
may occur. The actuator is a complex system driven by electricity that is aided by a high-
pressure downhole in order to achieve pressure compensation; this uses electric power
and compensation pressure to make the valve open and close, as shown in Figure 3. Such
complex working conditions make the function of the structural system more demanding.
An actuator is used as a case study in order to illustrate the method proposed in this paper.
In this paper, based on the physical model of the actuator, the BN reasoning architecture is
constructed. The theoretical reasoning is the main one, and the published experimental
data are compared in order to prove the accuracy of the proposed method.
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3.1. Physical Model for Predicting Wall Thickness of Structural Systems Based on
Self-Enforcement Method

The wall structure thickness of the actuator can be estimated according to Equation (7):

R0 = Ri ·N[K1] (7)

where Ri is the inside diameter at a minimum wall thickness for a given operating condition
according to the design manual, R0 is the outside diameter, K1 is the diameter ratio of the
structure, K2 = N[K1] is a positive integer that is not less than value of K1 in [], and K1 can
be obtained according to the Faupel–Furbe formula [21], as shown in Equation (8).

pb =
2√
3
· σs ·

(
2− σs

σb

)
ln K1 (8)

where σs is the yield stress of the structural material, σb is the strength stress, pb is the burst
pressure and should ensure that pb ≥ nb · pi, pi is the internal working pressure, and nb is
the safety factor, which is assumed here to be 2.6.
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According to Equations (7) and (8), the following is obtained:

K1 = exp

( √
3pbσb

4σsσb − 2σ2
s

)
(9)

Based on the above physical model, a BN model is constructed to predict the wall
thickness of the structural system for the self-enforcement method, as shown in Figure 4.
The material selected for the structural body of the actuator is ASTM A694 F65, and σs, σb
and pb, all follow the law of normal distribution [22], as shown in Table 2. The discrete
initial probabilities of pi are shown in Table 3.
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Table 2. Probability distribution of σs, σb, pb and R0
i parameters.

Variable Distribution Mean Standard Deviation

σs Normal distribution 590 MPa 0.1
σb Normal distribution 750 MPa 0.1
pb Normal distribution 179.40 MPa 0.2
R0

i Deterministic 200 mm —

Table 3. Discrete initial probabilities for pi.

Variable Valve Probability Valve Probability Valve Probability

pi 69 MPa 80% 0 MPa 10% 30 MPa 10%

3.2. Self-Enhancement Optimal Internal Pressure Model

The interface between the plastic and elastic layers of the structure, i.e., the radius of
the optimum elastic–plastic critical surface Rc.

Rc = Ri exp

(√
3pi
σs

)
(10)
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The diameter ratio Kc of the optimum elastic–plastic critical surface.

Kc =
Rc

Ri
(11)

A BN model based on Equations (10) and (11) is constructed, as shown in Figure 5.
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For values of Kc that are less than 2.21846, no reverse yielding occurs. Therefore, after
the self-enhanced treatment, the optimal internal pressure pc is calculated using the fourth
strength theory as follows, and its BN model is shown in Figure 6.

pc =
σs√

3

[
1 + 2 ln Kc −

(
Rc

R0

)2
]

(12)
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3.3. Residual Stress Distribution in the Self-Enhancement Structure

The stress distribution in the structural system directly affects the rate of crack ex-
pansion, which in turn has an impact on the prediction of the RUL; therefore, the stress
distribution in the structural system needs to be clarified. When a self-enhancement treat-
ment is carried out, a pc is applied and the residual stresses in the post-self-enhancement
body at this pressure can be calculated using the following equation:

(1) Resilient areas (Rc ≤ r ≤ R0)

σe1 = f (pc) =



σer1 =

[
1−

(
R0
r

)2
](

σs√
3

(
Rc
R0

)2
− R2

i
R2

0−R2
i

pc

)
σeθ1 =

[
1 +

(
R0
r

)2
](

σs√
3

(
Rc
R0

)2
− R2

i
R2

0−R2
i

pc

)
σez1 = σs√

3

(
Rc
R0

)2
− R2

i
R2

0−R2
i

pc

(13)

(2) Plastic areas (Ri ≤ r ≤ Rc)

σy1 = f (pc) =



σyr1 = σs√
3

[(
Rc
R0

)2
− 1 + 2 ln r

Rc

]
− R2

i
R2

0−R2
i

[
1−

(
R0
r

)2
]

pc

σyθ1 = σs√
3

[(
Rc
R0

)2
+ 1 + 2 ln r

Rc

]
− R2

i
R2

0−R2
i

[
1 +

(
R0
r

)2
]

pc

σyz1 = σs√
3

[(
Rc
R0

)2
+ 2 ln r

Rc

]
− R2

i
R2

0−R2
i

pc

(14)

The σer1, σeθ1 and σez1 represent the radial, circumferential and axial residual stress
distributions in the elastic region, respectively. σyr1, σyθ1 and σyz1 represent the radial,
circumferential and axial residual stress distributions in the plastic region, respectively. The
BN of the residual stress distributions is shown in Figure 7.
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The 1erσ , 1eθσ  and 1ezσ  represent the radial, circumferential and axial residual 
stress distributions in the elastic region, respectively. 1y rσ  , 1yθσ   and 1y zσ   represent 
the radial, circumferential and axial residual stress distributions in the plastic region, re-
spectively. The BN of the residual stress distributions is shown in Figure 7. 
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3.4. Synthetic Stress Distribution under Working Conditions

Equation (15) shows the radial, circumferential and axial stresses at the arbitrary radius
r at the working pressure.

σ =


σr2 = pi

K2−1

(
1− R2

com0
r2

)
σθ2 = pi

K2−1

(
1 + R2

com0
r2

)
σz2 = pi

K2−1

(15)

Rcom0 = Ri(K− 1) + C (16)
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K =

(
[σ]

[σ]−
√

3pi

)1/2

(17)

[σ] = min
[

σb
nb

,
σs

ns

]
(18)

where Rcom0 is the initial wall thickness of the structure obtained using conventional design
methods, [σ] is the allowable stress for a given service condition and, nb and ns are the
safety factors for the material.

During operation, the structure is subjected to a synthetic stress consisting of the
working stress and residual stress, which is calculated synthetically according to Equations
(19) and (20) in order to construct a BN model of the working stress distribution, as shown
in Figure 8.

∑
Rc≤r≤R0

σ =

∑ σr = σer1 + σr2
∑ σθ = σeθ1 + σθ2
∑ σz = σez1 + σz2

(19)

∑
Ri≤r≤Rc

σ =

∑ σr = σyr1 + σr2

∑ σθ = σyθ1 + σθ2

∑ σz = σyz1 + σz2

(20)J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 27 
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Figure 8. BN model for stress distribution in working conditions.

According to the fourth strength theory, the equivalent force in the valve body opera-
tion is as shown in Equation (21), and the BN of the control group is constructed as shown
in Figure 9, with the probability distribution of the parameters shown in Table 4.

σeq =

√
1
2

[(
∑ σr −∑ σθ

)2
+
(
∑ σθ −∑ σz

)2
+
(
∑ σz −∑ σr

)2
]

(21)
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4. Bayesian RUL Prediction Model
4.1. Fatigue Factor Model

The physical property model for fatigue crack extension is expressed in the well-known
Paris–Erdogan formula [23]. In engineering, the most widely used method for predicting
the fatigue crack growth life is the Paris–Erdogan formula, which was proposed by Paris
and Erdogan in 1963 on the basis of experiments. The Paris–Erdogan formula establishes
the relationship between the stress intensity factor and the crack growth rate, which is the
basis for predicting the fatigue crack growth life in engineering applications today.

dD
dN

= C(∆K)n (22)

where ∆K is the stress intensity factor, which can be expressed empirically as
∆K = Y∆σ

√
πD; Y is the crack shape factor and depends on the type of crack; D is

the crack length; N is the number of stress cycles; and C, n is related to the material factor
and is empirically valuable. ∆σ = σmax − σmin, ∆σ is the difference between the maximum
and minimum fatigue bending stress, σmin, σmax are the minimum and maximum fatigue
bending stress, respectively, and σmin, σmax vary with the residual stress. The BN model of
stress difference is shown in Figure 10.
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Figure 10. BN model diagram of stress differences.

Assuming an initial crack depth of D0, the crack depth in the Nnd stress cycle is
obtained according to Equation (23):

D(N) =

D
2−n

2
0 +

(n− 2)× N × C
(

Y∆σ
√

πD
)n

2


2

2−n

(23)

where D0 is the initial crack depth and N is the number of stress cycles. According to
the above, the physical model is transformed into a fatigue crack expansion, as shown in
Figure 11. C, n, Y and ∆σ are variable nodes; using historical data and expert knowledge to
obtain the parameter distributions and corresponding values, the initial probability distri-
bution of each node is shown in Table 5. Since C and n have a clear algebraic relationship,
this algebraic relationship is directly introduced into the model in the process of Bayesian
network modelling. The relationship between C and n is as follows [10]:

C = e(−3.34n−15.84) (24)

Table 5. Probability distribution of D0, n and Y parameters.

Variable Distribution Mean Standard Deviation

D0 Exponential 0.1 mm 1
n Normal 2.5 0.2
Y Lognormal 1 0.2
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4.2. Corrosion Factor Model

Corrosion is an important concern in engineering due to its effect on the through-life
performance of maritime structures [24]. The corrosion loss model proposed by Soares
and Garbatov (1999) has been widely accepted by scientists worldwide [25]. The model
represents the corrosion depth as a non-linear function of time, which can better fit the
actual corrosion loss process of marine structural components. The model is divided into
four stages, as shown in Figure 12. The O′O stage is the protection stage of the coating,
when the protective layer is not damaged and no corrosion loss occurs. From the second
stage (OB stage), the protective layer fails, non-linear corrosion loss begins to occur, the
corrosion consumption of this stage increases rapidly, and the thickness of the structural
components decreases rapidly. In the BC stage, corrosion is slow and the corrosion rate
is slower than in the second stage. In the last stage, the corrosion consumption is at its
limit, the corrosion rate decreases significantly, and the wall thickness of the structural
components reaches a critical value. The mathematical expression of the corrosion model is
shown in Equation (25). d∞ is the long-term corrosion wastage that corresponds to the last
stage. In this paper, the limiting concept is adopted and the limiting length of d∞ → R0 ,
the depth of corrosion, is considered to be close to the wall thickness. tc is the coating life
regarding the first stage. τc is the transition time and is deeply related to the second stage.

d(t) =

{
f (t− tC;θ) t > tC

0 t ≤ tC
(25)

where d(t) is the corrosion depth at the moment and tc is the coating life (O′O stage). tc is
modelled using a lognormal random variable with mean µC standard deviation δC. The
mean coating life, µC, is also modelled using a lognormal random variable with mean
µµC and standard deviation δµC . The coating life of the BN is shown in Figure 13. χµµC

,
χδµC

and χδC
are the prior distributions of the µµC , δµC and δC, respectively. The relevant

hyperparameters are taken, as shown in Table 6 [20].

Table 6. Probability distribution of µµC , δµC and δC parameters.

Variable Distribution Mean Standard Deviation

µµC Deterministic 7 —
δµC Deterministic 1.5 —
δC Deterministic 0.5 —
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When t > tC (OC stage), corrosion starts to occur. θ = [θ1, . . . , θt, θt+1] is the parameter
of corrosion depth when modelled as a constant, which can be calculated using Equation
(26). The corrosion depth at time t is obtained by calculating Equation (27). The BN model
for this process is shown in Figure 14.

tan θt =
d∞

τt
≈ R0

τt
(26)

d(t > tC) = d∞

(
1− e−(t−tC)/θt

)
≈ R0

(
1− e−(t−tC)/θt

)
= R0

(
1− e−(t−tC)/arctan( R0

τt
)
)

(27)
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Table 6. Probability distribution of 
Cμμ , 

Cμδ  and Cδ  parameters. 

Variable Distribution Mean Standard deviation 
Cμμ  Deterministic 7 — 
Cμδ  Deterministic 1.5 — 
Cδ  Deterministic 0.5 — 

When Ct t>  (OC  stage), corrosion starts to occur. 1 1[ , ..., , ]t tθ θ θ +=θ  is the parame-
ter of corrosion depth when modelled as a constant, which can be calculated using Equa-
tion (26). The corrosion depth at time t  is obtained by calculating Equation (27). The BN 
model for this process is shown in Figure 14. 
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4.3. Pressure Self-Enhancement and RUL Prediction Model for Deepwater Structures

Based on the physical model described above, a BN for predicting the RUL of un-
derwater self-enhanced structures is constructed, as shown in Figure 15. The grey circles
indicate the past time slices. When t < tC, due to the protective effect of the coating,
the structural body does not corrode and at this time d(t < tC) = 0, the life loss mainly
considers the cracking process. When t > tC, the life loss of the structural body is caused by
the crack extension and accumulation of corrosion together. The life loss node is ∑ Dt, and
the RUL of the structure can be estimated after determining the loss threshold, which is
dynamically changed according to the wall thickness R0 of the structure, i.e., the threshold
is proportional to R0. This paper assumes that the threshold value is 50% of R0. R0 is
affected by the self-enhancement process and changes dynamically, which not only has a
direct impact on the threshold value, but also on the residual stresses in the structure, and
ultimately on the crack expansion rate.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 27 
 

 

Figure 14. BN model diagram of corrosion depth. 

4.3. Pressure Self-Enhancement and RUL Prediction Model for Deepwater Structures 
Based on the physical model described above, a BN for predicting the RUL of under-

water self-enhanced structures is constructed, as shown in Figure 15. The grey circles in-
dicate the past time slices. When Ct t<  , due to the protective effect of the coating, the 
structural body does not corrode and at this time ( ) 0Cd t t< = , the life loss mainly con-
siders the cracking process. When Ct t> , the life loss of the structural body is caused by 

the crack extension and accumulation of corrosion together. The life loss node is 
tD , 

and the RUL of the structure can be estimated after determining the loss threshold, which 
is dynamically changed according to the wall thickness 0R   of the structure, i.e., the 
threshold is proportional to 0R . This paper assumes that the threshold value is 50% of 

0R . 0R  is affected by the self-enhancement process and changes dynamically, which not 
only has a direct impact on the threshold value, but also on the residual stresses in the 
structure, and ultimately on the crack expansion rate. 

 
Figure 15. BN model for the RUL prediction of underwater self-enhanced structures. 

5. Results and Discussion 
The BN is a graph model that represents the probabilistic correlation between varia-

bles. It is one of the most effective theoretical models in the field of uncertain knowledge 
representation and reasoning. BNs have been widely used in diagnosis [26], prediction, 
risk analysis [27–29] and ecosystem simulation. At present, there are many software plat-
forms that can build BNs, such as BN Toolkit, Netica, BayesBuider, Hugin Expert, etc. 
Netica is a BN learning software developed using Java. As a fully functional BN analysis 
software, the key is used to carry out the system risk analysis and system software invalid 
simulation modelling; this a scientific research must use special BN tools. Yuan X. et al. 
[30] divided the subsea tree system into three modules based on BN, namely the above-
water part, the below-water part and the FPSO. They established the remaining life pre-
diction model of the subsea tree system by using Netica software, and analysed the relia-
bility of the corresponding modules. Combined with the failure threshold, the remaining 
life was predicted. In this paper, Netica is used to create a BN window, call the data set of 
the sample, perform the function of the network structure learning module, define the 

Figure 15. BN model for the RUL prediction of underwater self-enhanced structures.

5. Results and Discussion

The BN is a graph model that represents the probabilistic correlation between variables.
It is one of the most effective theoretical models in the field of uncertain knowledge
representation and reasoning. BNs have been widely used in diagnosis [26], prediction, risk
analysis [27–29] and ecosystem simulation. At present, there are many software platforms
that can build BNs, such as BN Toolkit, Netica, BayesBuider, Hugin Expert, etc. Netica is a
BN learning software developed using Java. As a fully functional BN analysis software, the
key is used to carry out the system risk analysis and system software invalid simulation
modelling; this a scientific research must use special BN tools. Yuan X. et al. [30] divided
the subsea tree system into three modules based on BN, namely the above-water part,
the below-water part and the FPSO. They established the remaining life prediction model
of the subsea tree system by using Netica software, and analysed the reliability of the
corresponding modules. Combined with the failure threshold, the remaining life was
predicted. In this paper, Netica is used to create a BN window, call the data set of the
sample, perform the function of the network structure learning module, define the node
attributes, create the BN model of the remaining useful life of crack propagation and run
the corresponding BN, which is composed of nodes and directed connection lines; the
node represents the influence parameter, which consists of the node name and the node
probability distribution table. The directed connection line represents the relationship
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between the parameters from the parent node to the child node, where the arrow represents
the relationship between the parameters in the current time slice.

As shown in the upper part of Figure 16, a BN calculation model for the wall
thickness R0 and the optimum internal pressure pc of the structural system for the self-
enhanced method is constructed using Netica software, based on the BNs derived in
Sections 3.1 and 3.2. Based on this, the BN of residual stresses in the elastic and plastic
regions derived in Section 3.3 is used to construct the BN calculation model of residual
stresses after self-enhancement using Netica software, as shown in Figure 16. Each node in
the figure corresponds to a variable in the BN, and the probability distribution correspond-
ing to each variable in the above section is set in the node, with the directed connecting
lines indicating the action relationship between the covariates from the parent node to
the child node. Different residual stress distributions are obtained based on Bayesian
forward inference.
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Based on the stress distribution under working pressure derived in Section 3.3, the
radial, circumferential and axial working stress nodes of the arbitrary radius are set up
on the basis of Figure 16 and then connected to the corresponding sub-nodes. The BN
calculation model for the synthetic stresses of the working and residual stresses is then set
up, as shown in Figure 17, to obtain the actual stress distribution.
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Figure 17. BN computational model of synthetic stress.

After constructing the synthetic stress network calculation model, the maximum and
minimum stress nodes and their difference nodes (vOeq) are set, and the corresponding
nodes according to the fatigue factor model and corrosion factor model in Section 4 are set
in order to construct the BN calculation model of crack extension for a single time slice, as
shown in Figure 18. After extension, a DBN can be obtained. D in the figure is the current
time slice crack extension depth, as tc is a deterministic calculation method; therefore, a
mathematical model directly in the node D can be used to define the calculation formula,
and RUL is obtained according to Equation (28), where Dthreshold indicates the life threshold,
i.e., the maximum allowable value of crack. By deleting vOeq and its parent node, a control
group BN without pressure self-enhancement can be constructed.

RUL =
Dthreshold − D

Dthreshold
× 100% (28)
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5.1. RUL Calculation

The RUL prediction method proposed in this paper argues that pressure self-enhancement
improves the stress distribution in the structure of the equipped parts and that stress is
an important variable in the well-known Paris–Erdogan crack extension formula. By con-
structing a Bayesian inference model, a comparison of the results of pressure self-enhanced
crack extension and the probability distribution of crack extension using conventional
methods is obtained, as shown in Figure 19. From Figure 19a, it can be seen that the crack
probability peaks move towards the crack expansion with time, showing an exponential
growth pattern. In the first year, when the crack is 0.4418, the probability value reaches
45.2%. In the seventh year, the peak value of the crack occurrence probability moves to
the right, and when the crack value is 4.7072, the maximum probability of occurrence is
37%. Similarly, Figure 19b shows the same pattern. In the first year, the probability of
occurrence at a crack value of 0.4418 is about 49%, and in the seventh year, when the crack
value is 4.7072, the maximum probability of occurrence is 39%. However, a comparison
of the two plots shows that the results using pressure self-enhancement at the same time
points have slightly smaller crack lengths corresponding to the peak points compared to
the conventional inference results.
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To quantify the crack values, a summation of the product of each probability and
the corresponding crack value is used to represent the estimated crack values, as shown
in Figure 20. During the first seven years of operation, the crack growth rate is similar.
The comparison shows that the crack extension rate has slowed down with the use of
pressure self-enhancement after the seventh year, indicating that the life of the component
has been improved to some extent. Using a crack length of 50% in the wall thickness as
the end-of-life threshold, it can be seen that the life of the structural member with self-
enhancement is approximately 12.3 years compared to approximately 11 years without
pressure self-enhancement. At approximately 9 years of service, the crack extension rate
shows a turning point and a rapid expansion trend. Therefore, 9 years is the necessary time
for maintenance and repair monitoring in order to prevent accidental damage.
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5.2. Effect of Different Factors on RUL

This paper focuses on the pattern of influence of the three parent nodes of the inde-
pendent variables (Pb, Pi and Fatigue) in the BN on the results. In Figure 21, in the first
eight years, all three factors have little influence on the RUL. After 12 years, the fatigue
factor shows obvious change, so it is suggested that the corrosion of the device is checked
after 12 years or so. After 15 years, the influence of the Pi factor becomes prominent. It
is suggested that the change in the internal pressure is paid attention to when the equip-
ment is 15 years old. The results in Figure 21 show the crack extension curves when all
influencing factors are considered and when only one factor is considered. It can be seen
that their contribution to the impact on the life of the member is Fatigue > Pi > Pb, with Pb
having almost no influence on the life. The RUL is calculated according to Equation (27),
and the RUL of the structure under the influence of different factors is obtained, as shown
in Figure 22. Under the influence of only one of the factors Pi, Pb and Fatigue, the service life
is 16.8 years, 47.9 years and 12.9 years, respectively. This indicates that Pi and Fatigue are
the most important factors influencing the RUL. Therefore, increasing the RUL, improving
the working internal pressure environment and enhancing anti-corrosion measures are
effective methods.
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5.3. Model Validation and RUL Updating with New Evidence

Based on the three subsea oil pipeline crack extensions observed in the literature,
three pieces of evidence are entered into the BN, as shown in Figure 23 [10]. Firstly, the
annual average of the three pieces of evidential data is taken for comparison and validation,
and a prediction curve of this method is made, as shown in Figure 24. In terms of upper
and lower error limits, the method proposed in this paper agrees well with the observed
evidence. The error of forecast data is less than 8.5% in the first 4 years, less than 20.4% in
the 5th–10th years, and less than 11.3% after 10 years.
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As the crack values for the first four years of the three evidence curves are close to
zero, starting from year 5, the crack values for the 5th, 6th, 7th and 8th years are chosen
as evidence to replace the D values for the corresponding years of the BN constructed in
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this paper and to achieve network updates. After obtaining the network update, the crack
extension prediction for the structure after pressure self-enhancement is shown in Figure 25.
Some changes have been made to the crack extension curves due to the corrections made
to the evidence, with the corresponding crack extension rates increasing and decreasing
under the effect of the corrections made to Evidence 1 and Evidence 2, respectively. The
curve almost coincides with the originally predicted curve after the correction of Evidence
2. More importantly, it is theoretically considered that the more evidence there is, the more
accurate the prediction model is; in addition, in the actual use of the method, the monitoring
data should be fed into the model in real time to improve the prediction accuracy.
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5.4. Initial Crack Factor Analysis

Due to production and processing conditions, structural parts will inevitably have
different degrees of initial crack defects. Based on the evaluation method proposed in this
paper, the prediction curves for different initial crack values are obtained by varying the
average value of the D0 node in model Figure 18, as shown in Figure 26. Since the initial
depth is increased, the crack depth increases rapidly. If the initial depth is increased to
1.0 mm, the crack depth increases to 38.76 mm in the 12th year, whereas the crack depth
was 11.86 mm when the initial depth was 0.1 mm. If the required service life is 10 years,
the initial crack value should be controlled to within 0.02748 mm using reverse derivation.
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6. Conclusions 
In this paper, a method that can be used to predict the RUL of underwater self-en-
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after pressure self-enhancement, which indicates that the life of the structural component 
is improved. The stress distribution and pressure performance of the equipment parts are 
improved by the pressure self-enhancement technology, thus increasing the service life of 
structural parts. Via an analysis of the results, it is concluded that corrosion is the most 
important influencing factor, and special attention should be paid to the corrosion of the 
structure in the first 7 years of service. Due to the limitation of the production and pro-
cessing conditions, structural parts will inevitably have different degrees of initial crack 
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Figure 26. Initial cracking impact curve.

6. Conclusions

In this paper, a method that can be used to predict the RUL of underwater self-
enhancement structures based on DBNs is proposed. According to the crack extension
depth obtained using BNs and the threshold formula, the RUL of the structures can be
obtained. Taking the subsea Christmas tree high-pressure valve actuator as an example,
the accuracy of the method is verified by comparing the prediction results with the experi-
mental data. Because the Bayesian model reasoning process adopted in this paper can take
the data observed in real time as evidence or introduce the empirical reasoning model for
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the dynamic correction of the network, the accuracy of predicting the RUL of underwater
structures can be improved. The probability distribution of crack extension in pressure
self-enhancement structures was obtained using Bayesian inference. Under the influence of
multiple causes and a single cause, the crack extension probability points moved towards
the direction of crack extension with the passage of time, showing an exponential growth
trend. The comparison of the crack extension probability distribution between the pressure
self-enhancement method and the conventional method shows that the crack length cor-
responding to the peak point of the conventional method is slightly smaller at the same
time point. The quantified crack values show that the crack expansion rate slows down
after pressure self-enhancement, which indicates that the life of the structural component
is improved. The stress distribution and pressure performance of the equipment parts
are improved by the pressure self-enhancement technology, thus increasing the service
life of structural parts. Via an analysis of the results, it is concluded that corrosion is the
most important influencing factor, and special attention should be paid to the corrosion
of the structure in the first 7 years of service. Due to the limitation of the production and
processing conditions, structural parts will inevitably have different degrees of initial crack
defects. Based on the evaluation method proposed in this paper, the control range of the
initial crack can be reversely estimated according to the RUL. This method is a guide to the
operation and maintenance of deepwater pressure equipment.
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Nomenclature

ns The safety factors for the material σr
The radial synthetic stress of working stress and
residual stress

Ri The inside diameter at minimum wall thickness σθ
The circumferential synthetic stress of working stress
and residual stress

R0 The outside diameter σz
The axial synthetic stress of working stress and
residual stress

K1 The diameter ratio of the structure σeq The equivalent force in valve body operation
K2 The positive integer that is not less than K1 ∆K The stress intensity factor
σs The yield stress of the structural material Y The crack shape factor
σb The strength stress D The crack length
pb The burst pressure N The number of stress cycles
pi The internal working pressure C Material factor
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nb The safety factor n Material factor

Rc
The radius of the optimum elastic–plastic critical
surface

σmin The minimum fatigue bending stress

Kc
The diameter ratio of the optimum elastic–plastic
critical surface

σmax The maximum fatigue bending stress

pc The optimal internal pressure ∆σ
The difference between the maximum and minimum
fatigue bending stress

r Arbitrary radius D0 The initial crack depth

σer1
The radial residual stress distributions in the elastic
region

d∞
The long-term corrosion wastage that corresponds to
the last stage

σeθ1
The circumferential residual stress distributions in the
elastic region

tc The coating life

σez1
the axial residual stress distributions in the elastic
region

d(t) The corrosion depth

σyr1
The radial residual stress distributions in the plastic
region

τc The transition time

σyθ1
The circumferential residual stress distributions in the
plastic region

θ The parameters of corrosion depth

σyz1
The axial residual stress distributions in the plastic
region

Dthreshold The maximum allowable value of crack

σr2
The radial stresses at arbitrary radius at working
pressure.

Rcom0
The initial wall thickness of the structure obtained by
conventional design methods

σθ2
The circumferential stresses at arbitrary radius at
working pressure.

[σ] The allowable stress for a given service condition

σz2
The axial stresses at arbitrary radius at working
pressure.

nb The safety factors for the material
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