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Abstract: This paper proposes a centralized MTT method based on a state-of-the-art multi-sensor la-
beled multi-Bernoulli (LMB) filter in underwater multi-static networks with autonomous underwater
vehicles (AUVs). The LMB filter can accurately extract the number of targets and trajectories from
measurements affected by noise, missed detections, false alarms and port–starboard ambiguity. How-
ever, its complexity increases as the number of sensors increases. In addition, due to the time-varying
underwater environment, AUV detection probabilities are time-varying, and their mismatches often
lead to poor MTT performance. Consequently, we detail a robust multi-sensor LMB filter that esti-
mates detection probabilities and multi-target states simultaneously in real time. Moreover, we derive
an effective approximate form of the multi-sensor LMB filter using Kullback–Leibler divergence
and develop an efficient belief propagation (BP) implementation of the multi-sensor LMB filter. Our
method scales linearly with the number of AUVs, providing good scalability and low computational
complexity. The proposed method demonstrates superior performance in underwater multi-AUV
network MTT simulations.

Keywords: multi-static network; autonomous underwater vehicles (AUVs); multi-target tracking
(MTT); LMB filter; detection probability; belief propagation

1. Introduction

As a crucial aspect of ocean surveillance, multi-target tracking (MTT) aims to accurately
estimate the states and number of targets by processing the collected measurements [1–4].
While passive MTT using passive sonar has been the preferred method for underwater
MTT for many years [5,6], the increased stealth capabilities of targets and higher ambient
noise levels have given a renewed impetus to active sonar target tracking [7–9]. Recent
advances in marine technology have shown that multi-static sonar networks, which involve
multiple entities transmitting signals and receiving echoes reflected from targets, have a
significant advantage in large-range underwater MTT [10,11].

Technological developments have made small, relatively low-cost underwater intelli-
gent systems, especially autonomous underwater vehicles (AUVs), a reality [12–14]. With
their mobility and ability to reconfigure locations, AUVs have gained considerable atten-
tion as “listeners” in multi-static networks [15,16]. As shown in Figure 1, AUVs passively
receive echoes while spatially separated from transmitters, ensuring stealth and endurance.
In addition, multiple AUVs with multiple sources constituting different source/receiver
(S/R) pairs can produce different source–target–receiver configurations, improving the
MTT performance and potentially increasing the coverage significantly.
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However, MTT can be complicated by noise, false alarms, missed detections, and
potential errors in associating measurements with specific targets. The classic probabilistic
methods for MTT are Multiple Hypothesis Tracking (MHT) [17] and Joint Probability
Data Association (JPDA) [18]. MHT evaluates the posterior probability of all feasible
data association hypotheses. It maintains a hypothesis tree for each track, selects the most
probable association hypotheses, and returns a track estimate conditioned on the hypothesis.
JPDA deals with the situation in which measurements fall within the intersection region of
multiple tracks. It calculates the association probability between each measurement and
every target, and tries to marginalize the association variables to compute the marginal
distribution for each track. To provide a tool for the false track identification process,
joint integrated probabilistic data association (JIPDA) [19,20] and joint integrated track
splitting (JITS) [20,21] include the target existence as an additional random variable in
estimation. Unlike probabilistic methods, the later developed random finite set (RFS)-based
methods [22,23] adopt several fundamental concepts of Bayesian estimation principles
and provide a top-down mechanism to achieve MTT. The RFS-based methods mainly
include the probability hypothesis density (PHD) [24], cardinality PHD (CPHD) [25],
multi-Bernoulli (MB) [26], generalized labeled multi-Bernoulli (GLMB) [27], and labeled
multi-Bernoulli (LMB) [28]. As with JIPDA and JITS, the labeled (unlabeled) MB filters
use the target existence probability to manage target tracks. However, they differ in that
they provide the basis for Bayesian updates by describing the existence or non-existence of
targets through the Bernoulli process in the RFS framework. It is also worth noting that the
GLMB and LMB filters are particularly advanced as they can introduce labels for targets,
making it easier to identify target trajectories. Therefore, this paper mainly investigates the
underwater MTT within the RFS framework.
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Figure 1. Multi-target tracking scenario in an underwater multi-static system using multiple AUVs.

In multi-static systems, multiple S/R pairs can be viewed as numerous independent
sensors, making MTT a multi-sensor MTT problem. Multi-sensor MTT based on RFS can
be classified into two main categories: data-level methods and estimate-level methods [29].
Data-level methods are centralized and calculate the joint likelihood of all sensor measure-
ments. This approach is optimal for multi-sensor MTT, but presents the challenge of the
NP-hard multidimensional assignment problem. To address this issue, various centralized
multi-sensor MTT filters have been proposed, including multi-sensor PHD/CPHD [30],
multi-sensor multi-Bernoulli (MS-MB) [31], and multi-sensor GLMB filters [32]. In contrast,
estimate-level multi-sensor MTT methods usually use geometric or linear arithmetic averag-
ing to fuse the MTT densities obtained locally by each sensor [29]. Although estimate-level
strategies for multi-sensor MTT reduce the computational complexity to some extent and
can facilitate distributed MTT, it can be challenging to establish a relationship between the
local results and the fused MTT results.
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Additionally, the probability of detecting a target in a specific state has a substantial
impact on MTT performance in real underwater MTT. Detection probability mismatches
can negatively affect the tracking accuracy, resulting in target loss or misidentification
errors. Many MTT algorithms rely on fixed detection probabilities based on experience or
training data. However, predetermined parameters are insufficient in a changing underwa-
ter environment. As a result, researchers have proposed to predict the detection probability
using mathematical acoustic propagation models [33–35]. In this way, the detection prob-
ability corresponds to a desired false alarm density with a signal-to-noise ratio (SNR),
which should consider the source parameters, receiver parameters, source–target–receiver
geometry, and environments such as multipath propagation and reverberation. Thus, the
use of a high-fidelity acoustic propagation model to forecast detection probabilities can be
time-consuming and requires more accurate ocean environment and target information.

Accordingly, several RFS filters have been suggested to address the detection probabil-
ity mismatch. These filters enable the online adaptive estimation of the target detection
probabilities. In previous publications [36–38], this issue has been discussed for single-
sensor systems. In the multi-sensor case, the inverse gamma Gaussian mixture approach
was employed in the MS-MB and MS-CPHD filters to estimate target detection features [39].
The hidden Markov process also handles the time-varying detection probabilities [40,41].
Although these filters provide reliable estimates of current target states, they do not pro-
duce target tracks. Therefore, a multi-sensor MTT filter that bootstraps the detection
probability estimated from the CPHD filter into the GLMB filter to achieve MTT has been
proposed [42,43]. Nevertheless, the complexity of the above filters increases exponentially
as the sensor number grows; this is a crucial consideration when designing real-world MTT
systems.

Here, we propose a centralized MTT method using a robust multi-sensor LMB (R-MS-
LMB) filter, which approximates the more sophisticated GLMB filter and can learn and
estimate detection probabilities while performing MTT. Notably, for the data association of
multiple S/R pairs, we employ an efficient belief propagation (BP) implementation of a
multi-sensor LMB filter, which scales linearly and performs better. Similar methods have
been successfully applied to approximate the LMB filter [44,45] and estimate detection
probabilities. In contrast to these previous works, we derive and present an efficient method
of implementing the R-MS-LMB filter using the BP scheme within the RFS framework. The
following are the most significant contributions of the paper.

(1) A robust multi-sensor LMB model is applied to account for time-varying detection
probabilities. The probabilities of a target being detected by different S/R pairs are inte-
grated into each target state and adjusted online as unknown variables rather than known
parameters.

(2) Following the update step, as the posterior distribution is of a GLMB form [28], we
present a novel derivation of LMB approximation through Kullback–Leibler divergence
(KLD) minimization. As a result, we can reconstruct the GLMB based on the distribution
of the association variables. We approximate the LMB by marginalizing the association
variables. This novel derivation serves as a foundation for efficiently implementing a
multi-sensor LMB filter.

(3) We construct a BP-based framework on a factor graph to implement the R-MS-LMB
filter efficiently. The inner BP scheme calculates the marginal probability distribution of
data association variables. The outer BP scheme is employed at each step to calculate the
marginal posterior of the target states and the detection probabilities of the targets. With
the BP-based LMB filter implementation, we can avoid pruning GLMB components.

The remainder of this paper is presented as follows. Section 2 introduces the back-
ground and objective. Section 3 describes the detection probability model and derives the
novel LMB filter form. We present a BP-based implementation of an adaptive multi-sensor
LMB filter in Section 4. We show the simulation results in Section 5 and conclude the work
in Section 6.
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2. Background and Objective

This paper considers a mobile multi-static network for MTT, as shown in Figure 1.
The network comprises NR AUVs that tow sonar arrays as receivers and NS sources that
act as transmitters. The sets of receivers and sources are denoted as O =

{
1, . . . , NO}

and S =
{

1, . . . , NS}, respectively. AUVs and different sources can be combined into
separate S/R pairs. Therefore, we define the S/R pair index set as V , {1, . . . , V} with
V = NRNO, and introduce an indexing function π : V → S ×O , where π(v) = (o, s)
denotes the S/R pair v composed of AUV o and source s. Furthermore, we represent the
state of AUV o at time t using a vector yo

t = [yo
t,x, yo

t,y, ψo
t ]

T , where [yo
t,x, yo

t,y]
T and ψo

t are the
two-dimensional horizontal position and heading, respectively. The position of source s is
defined as qs

t = [qs
t,x, qs

t,y]
T .

2.1. Multi-Target State and LMB RFS

It is evident that the state and number of targets change over time; therefore, the
conventional use of vectors to represent multi-target states is inadequate. An alternative
approach is to use random finite sets (RFSs) to describe the multi-target states, where the
number of elements and their order are random. As elaborated in [46], an RFS representa-
tion is generally more suitable than a vector representation for MTT. Readers are referred
to [22,23] or more mathematical concepts and definitions related to RFS. In the following,
the single-target state is denoted by lower-case letters (e.g., x, x) while multi-target states are
indicated by upper-case letters (e.g., X, X). Bold-face symbols are used for labeled versions
(e.g., x, X) to differentiate them from unlabeled versions (e.g., x, X), and blackboard bold
(e.g., X, L, Z, etc.) is used to represent the spaces. Moreover, F (·) represents the set of all
finite subsets of a space.

Following [27], the number of elements of an RFS X is represented by |X|, the inner
product is represented as c, and the generalized Kronecker delta function is represented by

δY(X) ,
{

1, X = Y
0, otherwise.

. As a general rule, the indicator function is given by 1Y(X) ,{
1, if X ⊆ Y
0, otherwise.

.

Let the vector xt= [pt,x, pt,y,
.
pt,x,

.
pt,y

]
∈ X represent the single-target state, where[

pt,x, pt,y] and
[ .

pt,x,
.
pt,y

]
denote the locations and velocities, respectively. The multi-target

states are defined as an RFS Xt = {xt,1, . . . , xt,n} ∈ F (X) at time t. A single-target state
xt is augmented with a unique label ` ∈ Lt, i.e., xt = (xt, `) ∈ X× Lt abbreviated as
x`t for distinguishing target identities. Up to time t, all the targets have been labeled as
the union of disjoint sets Lt = Lt−1 ∪ LB

t , including the label space Lt−1 prior to time t
and the birth targets’ label space at time t. The corresponding labeled multi-target state
can be represented by X = {(x, `1), . . . (x, `n)}, and the set of labels of X is given by
L(X) = {L(x) : x ∈ X}, where L: X×L→ L is a projection with L(x, `) = `.

Considering that a previously detected potential target (PT) may exist or disappear, a
detected PT is represented by a Bernoulli process incorporating a state probability density
function (pdf) p(x) and an existence probability r. Existence probability r represents the
estimated probability of the presence of the detected PT. The state pdf p(x) denotes the
probability statistic of the target state conditional on the presence of the PT. Typically, a
single labeled Bernoulli RFS X` corresponding to a Bernoulli component with a distinct
label ` ∈ L is specified by

{
r`, p`(x)

}
, where r` describes its existence probability and
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p`(x) = p(x, `) is its respective state pdf. The single labeled Bernoulli RFS X` with
parameter

{
r`, p`(x)

}
has the following density:

f `(X`) =


1− r` X` = ∅
r`p`(x) X` = {(x, `)}
0 otherwise

. (1)

where X` = ∅ implies that the PT ` ∈ L does not exist with probability r`, and X` = {(x, `)}
means that the PT ` ∈ L exists with probability r` and the state pdf is p`(x).

An LMB realization with the parameter
{
(r`, p`(x))

}
`∈L

is a set X = ∪n
i=1X`i =

{(x, `1), . . . (x, `n)} given by a union of independent labeled Bernoulli RFSs X`i = {(x, `i)},
`i = `1, . . . , `n. The density of an LMB X can be expressed as follows [28]:

f (X) = ∆X ∏
`′∈L\L(X)

(1− r`
′
) ∏
`∈L(X)

1L(`)r`p`(x). (2)

where ∆(X) = δ|X|(L(X) is one if X has distinct labels; otherwise, it is zero.

2.2. Measurement Model

This study assumes frequency-modulated (FM) pulses in pulsed active sonar modes
for their simplicity and excellent range resolution. FM pulses offer the advantage of
being orthogonal in a specific domain [47], which allows us to ignore multi-source signal
interference. Each autonomous underwater vehicle (AUV) can independently determine
the source of the signal, causing multiple source/receiver (S/R) pairs to be treated as
independent sensors. For the S/R pair v with π(v) = (o, s), the signal emitted by source
s may reach AUV o after being reflected by a PT. In the bistatic setup shown in Figure 2,
AUVs equipped with rigid arrays have the same heading as the array, so the AUV o can
extract a bearing-range measurement [48]:

zt =

[
φ
d

]
= f (xt, yo

t , qs
t) + εt (3)

where f (xt, yo
t , qs

t) =

 arctan
(

pt,x − ya
t,x, pt,y − ya

t,y

)
− ψa

t√(
pt,x − ya

t,x

)2
+
(

pt,y − ya
t,y

)2
+

√(
pt,x − qs

t,x

)2
+
(

pt,y − qs
t,y

)2

,

and εt ∼ N
([

0
0

]
,
[

σ2
d 0

0 σ2
φ

])
, where σφ and σd are the additive noise to the bearing and

range, respectively.
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Figure 2. (a) The developed “TS-100” AUV is equipped with linear hydrophone arrays. (b) Schematic
diagram of AUV measurement in bistatic geometry.
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Due to the port–starboard ambiguity (PSA) problem caused by the AUV carrying a
linear hydrophone array, as shown in Figure 2, each measurement recorded by the AUV
with a different bearing but in the same range will result in a “ghost” measurement [49]. In
this case, we assume that the AUV only stores the port measurement, while the respective
starboard measurement is obtained by ιv(zt) = [−φ, r]T . Given that each S/R pair outputs
at most one measurement for each PT, the single-target-originated likelihood of the v-th
S/R pair with π(v) = (o, s) is expressed as follows:

lv(z
∣∣∣∣x) = { hv(z|x) if x on the port

hv(ιv(z)|x) if x on the starb
(4)

where hv(z
∣∣∣∣x) = N( f (xt, yo

t , qs
t),
[

σ2
d 0

0 σ2
φ

])
.

Under the S/R pair v ∈ V , in the case of a multi-target state Xt, each state xt =
(xt, `) ∈ Xt is either detected with probability PDv(xt) and generates a measurement
zt with likelihood lv(zt|xt) or is missed with a probability of 1− PDv(xt). False alarm
measurements (clutter) are modeled by a Poisson RFS with a clutter rate of λv and proba-
bility density function (pdf) of c(z). For a combination of target-originated measurements
and clutter, the v-th S/R pair output Mt,v measurements at time t are denoted as an RFS
Zt,v =

{
z1

t,v, . . . , zMt,v
t,v

}
∈ F (Z). We denoteMt,v , {1, . . . , Mt,v} by the measurement index

set of S/R pair v.
The standard multi-target likelihood function for the S/R pair v is given by [27]

gv(Zt,v

∣∣∣∣∣Xt) ∝ ∑
θt,v∈Θt,v

1Θt,v(L(X))(θt,v)∏(xt ,`)∈Xt
κ

θt,v(`)
v (xt, `) (5)

where κ
θt,v(`)
v (xt, `) =


PDv (xt ,`)lv(z

θt,v(`)
t,v

∣∣∣∣xt)

λvc(z
θt,v(`)
t )

i f θt,v(`) ∈ Mt,v

1− PDv(xt, `) i f θt,v(`) = 0

, and Θt,v indicates the space

of admissible target–measurement association maps θt,v(`) : Lt → {0, 1, . . . , Mt,v} , where
θt,v(`) = m ∈ Mt,v specifies that target ` generates zm

t ∈ Zt,v, and any misdetection is
assigned a 0. The admissible association map means that it assigns each measurement to at
most one target and each target to at most one measurement. Θt,v(L(X)) is the subset of
Θt,v with L(X) ∈ Lt.

Let us define the set of measurements for all S/R pairs at time t as Zt , (Zt,1, . . . , Zt,V),
and the set of measurements for all times as Z1:t , (Z1, . . . , Zt). Based on the assumption
that all S/R pairs are conditionally independent, we can express the multi-target likelihood
of multiple S/R pairs as follows [32]:

g(Zt

∣∣∣Xt) = ∏V
v=1 gv(Zt,v|Xt) = ∑θt∈Θt

1Θt(L(X))(θt)∏(xt ,`)∈Xt
κθt(`)(xt, `) (6)

Here, θt , (θt,1, . . . , θt,V) represents the multi-sensor association map, and Θt ,
Θt,1×, · · · ,×Θt,V refers to the association map space. The function κθt,v(`)(xt, `) is given

by κθt(`)(xt, `) = ∏V
v=1 κ

θt,v(`)
v (xt, `), and the indicator function 1Θt(L(X))(θt) indicates

1Θt(L(X))(θt) = ∏V
v=1 1Θt,V(L(X))(θt,v).

2.3. Multi-Sensor LMB Filter

As shown in [27,28], given that the multi-target posterior f (Xt−1|Z1:t−1) at time t-1 is
the LMB form with the parameters

{
(r`t−1, p`t−1(xt))

}
`∈Lt−1

and the newbirthed PTs have

a pdf with the parameters
{(

r`t|t−1, p`t|t−1(xt)
)}

`∈LB
t

, the predicted multi-target density



J. Mar. Sci. Eng. 2023, 11, 875 7 of 23

f (Xt|t−1

∣∣∣Z1:t−1) is again of the LMB form with the parameters
{
(r`t|t−1, p`t|t−1(xt))

}
`∈Lt−1

∪
{(

r`t|t−1, p`t|t−1(xt)
)}

`∈LB
t

abbreviated as
{
(r`t|t−1, p`t|t−1(xt))

}
`∈Lt

, where Lt = Lt−1 ∪

LB
t is subject to Lt−1 ∩ LB

t = ∅. The target ` ∈ Lt−1 with the preceding state xt−1 =
(xt−1, `) survives with probability PS(xt−1) and evolves via the single-target transition
pdf f 1(xt

∣∣xt−1, `) = f 1(xt
∣∣xt−1) , so the r`t|t−1 and p`t|t−1(xt)), ∀` ∈ Lt−1, can be obtained

by [28] {
r`t|t−1 = r`t−1〈pt−1(·, `), PS(·)〉
p`t|t−1(xt) ∝

〈
pt−1(·, `)PS(·), f 1(xt

∣∣·)〉 . (7)

It is worth noting that the survival probability PS(xt−1) expresses uncertainty about
whether the PT with the state xt−1 still exists or has disappeared. It is equivalent to the
prediction process of the existence probability in JIPDA if the Markov chain propagation
formula only retains the transition from the existence of the target to itself. In addition,
according to the Chapman–Kolmogorov equation, the LMB filter naturally incorporates
the target birth process into the prediction [27]. The initialization of the Bernoulli density
of the new target ` ∈ LB

t is not an exact science, so the state pdf and existence probability
corresponding to the target ` ∈ LB

t can be obtained by one-point track initialization, two-
point differencing, or other heuristic methods [20]. As the target birth process is another
issue, a fixed-position birth process is used (see Section 5).

Similarly, given the prior density f (Xt|t−1

∣∣∣Z1:t−1) and the multi-sensor measurements
Zt at time t, the updated multi-target density using the Bayes rule is of the form GLMB [32],
which is expressed as

f (Xt|Z1:t) = ∆(Xt) ∑
L∈F (Lt)

∑
θt∈Θ(L)

wL,θt δL(L(Xt)) ∏
(xt ,`)∈Xt

p`,θt(`)
t (xt) (8)

where wL,θt ∝ ∏
`′∈Lt\L

(1− r`
′

t|t−1) ∏
`∈L

r`t|t−1ς`,θt(`) with ς`,θt(`) =
〈

p`t|t−1(·), κθt(`)(·)
〉

, and

p`,θt(`)
t (xt) =

p`t|t−1(xt)κ
θt(`)(xt ,`)

ς`,θt(`)
.

As discussed in [28,45], the multi-target density expressed in the LMB form can
be recovered by the first moment approximation of the updated GLMB. The existence
probability and the state pdf of the PT ` ∈ Lt are obtained by

r`t = ∑
L∈F (Lt)

∑
θt∈Θ(L)

1L(`)wL,θt

p`t (xt) =
1
r`t

∑
L∈F (Lt)

∑
θt∈Θ(L)

1L(`)wL,θt p`,θt(`)
t (xt)

. (9)

2.4. Inference Objective

From likelihood (6), we know that the target detection probability PDv(xt, `) is crucial
in MTT algorithms but is usually unavailable a priori. Furthermore, approximating the
LMB in the update step shown in (9) requires knowledge of all data associations Θt, which
can increase exponentially in multi-sensor scenarios. To this end, we wish to propose
a method to overcome the challenges posed by unknown detection probabilities while
effectively reducing the complexity of the multi-sensor LMB filter.

3. R-MS-LMB Model and the LMB Approximation
3.1. Robust Multi-Sensor LMB Model

Since the characteristics of the target detection probabilities may be unknown and
time-varying, we assume that the target detection probabilities are variables to be estimated
online, rather than known parameters. This section will explain how to estimate the
multi-target state and target detection probabilities together.
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To obtain a self-tuning R-MS-LMB tracking filter, we provide the basic idea that each
target state is augmented by a variable that indicates the unknown detection probability.
Therefore, the parameter PD(·) can be estimated simultaneously in the update step. Based
on the method in [42], the variable e ∈ [0, 1], representing the target detection probability,
is augmented to the labeled state x = (x, `). Notably, the detection probability depends on
the ocean environment and the spatial distribution of the receiver and the sound source.
Therefore, different S/R pairs may have different detection probabilities for the same
PT. In light of this, we write the augmented state with label ` as x̃ = (x, `, e`), where
e` = [e`1, . . . , e`V]

T
denotes the vector of the detection probability variables of V S/R pairs

for PT `. The joint distribution of the augmented state x̃ = (x, `, e`), ∀` ∈ L, is defined as

µ
(

x, `, e`
)
= p`(x)∏V

v=1 ξ`
(

e`v
)

(10)

where ζ`
(

e`v
)

is the statistic distribution of e`v. In the latter, we abbreviate µ
(

x, `, e`
)

as µ`(x̃) and denote (x, e`) as x̃ for x̃ = (x, `, e`). As a result of the augmented state
x̃ = (x, `, e`), the integral is as follows:∫

µ`(x̃)dx̃ =
∫ ∫ 1

0
. . .
∫ 1

0
p`(x)∏V

v=1 ξ`
(

e`v
)

dxde`1 . . . de`V. (11)

At time t − 1, the single PT with state x̃t−1 = (xt−1, `, e`t−1) survives to the next time
t with probability PS(x̃t−1) = PS(xt−1) and moves with transition density f(·|x̃t−1) =

f 1(·|x)∏V
v=1 f 2(·

∣∣∣e`t−1,v) , where f 1(·
∣∣xt−1) denotes the single PT state x transition pdf

defined in (7), and f 2(·
∣∣∣e`t−1,v) denotes the transition probability pdf of e`v. Furthermore,

the detection probability PDv(xt, `) for x̃t = (xt, `, e`t ) is given by PDv(xt, `) = e`t,v.

Next, the density of the labeled Bernoulli RFS X̃
`

t with the parameter
{
(r`t , µ`(x̃))

}
is

given by

f `
(

X̃
`
t

∣∣∣Z1:t

)
=


1− r`t X̃

`
t = ∅

r`t p`t (x)∏V
v=1 ξ`t

(
e`t,v
)

X̃
`
t =

{
(xt, `, e`t )

}
0 Otherwise

. (12)

Similarly, an LMB realization augmented with the detection probability variables is

represented by X̃ = {(x̃, `1), . . . (x̃, `n)} given by the union X̃
`i = {(x̃, `i)}, i.e., X̃ = ∪`n

`1
X̃
`i .

Likewise, L(X̃) is indicated by L(X̃) = L(X). Replacing X with X̃ in (8), we can rewrite
the updated GLMB as follows:

f
(

X̃t

∣∣∣Z1:t

)
= ∆

(
X̃t

)
∑

L∈F (Lt)
∑

θt∈Θ(L)
wL,θt δL

(
L
(

X̃t

))
∏

(x̃t ,`)∈X̃t

µ
`,θt(`)
t (x̃t). (13)

Here, µ
`,θt(`)
t (x̃t) = 1

ς`,θt(`)
p`t|t−1(xt)∏V

v=1 ξ`t|t−1

(
e`t|t−1,v

)
κθt,v(`)(x̃t, `) and

wL,θt ∝ ∏
`′∈Lt\L

(1− r`
′

t|t−1) ∏
`∈L

r`t|t−1ς`,θt(`), where the notations ς`,θt(`), κθt(`)(xt, `), and

κ
θv,t(`)
v (x̃t, `) are redefined as ς`,θt(`) =

∫
µ`

t|t−1(x̃), κθt(`)(x̃)dx̃, κθt(`)(x̃t, `)

= ∏V
v=1 κ

θv,t(`)
v (x̃t, `), and κ

θv,t(`)
v (x̃t, `)=


e`t|t−1,v lv(zt

∣∣∣x)
λvc(z

θv,t(`)
t )

i f θv,t(`) ∈ Mv,t

1− e`t|t−1,v i f θv,t(`) = 0
, respectively.
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3.2. LMB Approximation

This section derives an approximation of LMB that differs from (9). Analyzing the
relationship between measurements and PTs, rather than using the map θt, we also de-
fine the PT–measurement associations related to the target-oriented variable at,v(`) ∈
{−1, 0, . . . , Mt,v} proposed in [45] for ` ∈ Lt under the v-th S-R pair at time t:

at,v(`) =


m ∈ {1, . . . , Mt,v} PT ` is associated with zm

t,v ∈ Zt,v,
0 PT ` is not detected,
−1 PT ` does not exist.

(14)

As with an admissible map θv,t, the admissible association variable at,v(`) should
follow ∀v = 1, . . . , V, if at,v(`) 6= 0, at,v(`′) 6= 0, ∀ ` 6= `′ ⇒ at,v(`) 6= at,v(`′) (at most, one
measurement can be assigned to a single PT, and no measurement can be assigned to more
than one PT). Furthermore, we introduce association variables: at(`) = [at,1(`), . . . , at,V(`)]

T

for a single PT ` ∈ Lt, and all PT cases at = [at(`1), . . . , at(`|Lt |)]
T . In addition, let us de-

fine by At and A`
t the set of all admissible association variables at and at(`), respectively.

To prevent pathological association variables, we let the association variable satisfy that
at(`) ∈ A`

t = Λ ] {−1V} is a V-tuple that either pertains to Λ when PT ` ∈ Lt exists, or

{−1V} if PT ` ∈ Lt does not exist, where Λ , {0, . . . , Mt,1

}
×, . . . ,×{0, . . . , Mt,V} and

1V denotes an identity vector with V elements.
The Kronecker delta function δL(L(X̃t)) with L ∈ F (Lt) in (13) serves to ensure that

the labels L(X̃t) ∈ F (Lt), so it can be expressed as an indicator function ∏(x̃t ,`)∈X̃t
1L(`).

We then rewrite the updated GLMB form (13) as

f
(

X̃t

∣∣∣Z1:t

)
= ∆

(
X̃t

)
∑

θt∈Θt

wθt ∏
(xt ,`)∈X̃t

1Lt(`)µ
`,θt(`)
t (x̃t). (15)

Next, we replace θt with at to obtain the following:

f
(

X̃t

∣∣∣Z1:t

)
= ∆

(
X̃t

)
∑at∈At

ρ(at, X̃t)wat ∏
(xt ,`)∈X̃t

1Lt(`)µ
`,θt(`)
t (x̃t). (16)

Here, we define the function ρ(at, X̃t) to ensure that the associated variable at is
admissible, where ρ(at, X̃t) = 1 if at ∈ At is subject to at(`) ∈ Λ for ` ∈ L

(
X̃t

)
and

at(`) = −1V for ` ∈ Lt\L
(

X̃t

)
, and ρ(at, X̃t) = 0 otherwise. As at(`) ∈ Λ implies that

(x̃t, `) ∈ X̃t, µ
`,θt(`)
t (x̃t) in (16) is equivalent to µ

`,θt(`)
t (x̃t, `) in (13) with the substitution of

at(`) for θt(`) concerning ` ∈ L
(

X̃t

)
. Additionally, the weights wat can be represented by

wat ∝ ∏`∈Lt
τ`,at(`) (17)

where τ`,at(`) = (1− r`t|t−1) if at(`) = −1V, and τ`,at(`) = r`t|t−1ς`,at(`) if at(`) ∈ Λ. Com-

pared with wL,θt in (13), wat in (17) depends on Lt instead of L
(

X̃t

)
, so the weight wat can

generally be interpreted as the probability mass function (pmf) of at. Therefore, we can
represent the pmf of at ∈ At by g(at) = wat , and normalize g(at) in that ∑at∈A g(at) = 1.
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More precisely, the ρ(at, X̃t) can be expanded as ρ(at, X̃t) =
]`∈LX̃

`
=X̃t

∏
`∈Lt

ρ
(

at(`), X̃
`
t

)
.

Here, we introduce

ρ
(

at(`), X̃
`
t

)
=


1

(
at(`) ∈ Λ and X̃

`
t =

{
(xt, `, e`t )

})
or
(

at(`) = −1V and X̃
`
t = ∅

)
0 Otherwise

(18)

Thus, introducing g(at) and expanding ρ(at, X̃t) in (16) yields

f
(

X̃t

∣∣∣Z1:t

)
= ∆

(
X̃t

)
∑at∈At

g(at)
]`∈LX̃

`
=X̃t

∏
`∈Lt

ρ
(

at(`), X̃
`
t

)
ϕ`,at(`)(X̃

`
t ) (19)

Here, we define ϕ`,at(`)(X̃
`
t ) =


1 X̃

`
t = ∅

p`,at(`)
t (x)∏V

v=1 ξ
`,at(`)
t

(
e`v
)

X̃
`
t =

{
(xt, `, e`t )

}
0 otherwise

to

indicate the conditional density in the existence of PT ` corresponding to the single labeled

Bernoulli X̃
`
t .

Given the GLMB density f
(

X̃t

∣∣∣Z1:t

)
in (19), the best LMB approximation of the GLMB

as
^
f
(

X̃t

∣∣∣Z1:t

)
= ∆(X̃t)

]`∈LX̃
`
=X̃t

∏
`∈Lt

^
f
`(

X̃
`

t

∣∣∣Z1:t

)
using KLD minimization is derived:

D( f ‖
^
f ) =

∫
f (X̃t

∣∣∣Z1:t) log
f (X̃t|Z1:t)
^
f (X̃t|Z1:t)

δX̃t

=
s

. . .
∫

f
(

X̃
`1], . . . ,]X̃

`|L|
)

log
f
(

X̃
`1
t ],...,]X̃

`|Lt |
t

)
^
f
(

X̃
`1
t ],...,]X̃

`|Lt |
t

) δX̃
`1
t ], . . . ,]X̃

`|Lt |
t

= c−∑`∈Lt

∫
∑at∈At p(at)ϕ`,at(`)(X̃

`
t ) ∏

`′∈Lt

ρ

(
at(`′), X̃

`′

t

)
log

^
f
`(

X̃
`

t

∣∣∣Z1:t

)
δX̃

`

(20)

where
^
f
`(

X̃
`

t

∣∣∣Z1:t

)
is the approximated density of single labeled Bernoulli X̃

`
for PT

` ∈ Lt, and c is a constant that is independent of
^
f
(

X̃t

∣∣∣Z1:t

)
. Maximizing with respect to

^
f
`(

X̃
`

t

∣∣∣Z1:t

)
, we obtain

^
f
`(

X̃
`

t

∣∣∣Z1:t

)
= ∑at∈At

g(at)ϕ`,at(`)(X̃
`
t ) ∏

`′∈Lt

ρ

(
at(`), X̃

`′

t

)
. (21)

Next, we approximate g(at) based on its marginal product, i.e.,

g(at) ≈∏`∈Lt
g(at(`)) (22)

where g(at(`)) = ∑^
at∈At :

^
at(`)=at(`)

g(at), and we can redefine (21) as

^
f
`(

X̃
`

t

∣∣∣Z1:t

)
= ∑at∈At

ϕ`,at(`)(X̃
`
t )∏`′∈Lt

g(at(`
′))ρ

(
at(`

′), X̃
`′

t

)
. (23)
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Splitting ∑at∈At as ∑at∈At =∑at(∼`)∈A∼`t
∑at(`)∈A`

t
and exploiting the sum separability,

i.e., ∑i ∑j gihj = ∑i gi∑j hj, we obtain the following result:

^
f
`(

X̃
`n
t

∣∣∣Z1:t

)
= ∑at(`)∈A`

t
ρ(at(`), X̃

`
)ϕ`,at(`)(X̃

`
)∑at(∼`)∈A∼`t

∏`′∈Lt\` p(at(`′))ρ(at(`′), X̃
`′
)

= ∑at(`)∈A`
t

ρ
(

at(`), X̃
`
)

ϕ`,at(`)(X̃
`
)

(24)

where at(∼ `) and A∼`t are the vector at with the component at(`) removed and the set of
all admissible association variables at(∼ `), respectively.

Next, by comparing the expression
^
f
`(

X̃
`

t

∣∣∣Z1:t

)
in (24) with the density of the label

Bernoulli in (12) and evaluating ρ
(

at(`), X̃
`
)

, we can obtain the approximated density of

the single labeled Bernoulli X̃
`
t for ` ∈ Lt by

^
f
`(

X̃
`
t

∣∣∣Z1:t

)
=


g(at(`) = −1V) X̃

`
= ∅

1
∑at(`)∈Λ g(at(`))

∑at(`)∈Λ g(at(`))µ
`,at(`)
t (x̃t) X̃

`
=
{
(x, `, e`)

}
0 otherwise

. (25)

Moreover, using (25), the updated existence probability and augmented state pdf for
PT ` ∈ Lt are given by{

r`t = 1− g(at(`) = −1V) = ∑at(`)∈Λ g(at(`))

µ`
t (x̃t) =

1
r`t

∑at(`)∈Λ g(at(`))µ
`,at(`)
t (x̃t)

. (26)

Finally, based on (26), the updated LMB can be parameterized by
{
(r`t , µ`

t (x̃t))
}
`∈Lt

.

Therefore, the approximated posterior density of LMB after the update can be expressed as
follows:

f
(

X̃t | Z1:t

)
≈

^
f
(

X̃t

∣∣∣Z1:t

)
= ∆(X̃t)∏`′∈Lt\L(X̃t)

g(at(`′) = −1V)∏`∈L(X̃t)
∑at(`)∈Λ g(at(`))µ

`,at(`)
t (x̃t)

(27)

Above, we derive the LMB approximation form obtained from (26) and (27). Unlike the
form in (9), the LMB approximation in (27) requires only performing marginalization over
the association variable at instead of (L, θt) with L ∈ F (Lt) and θt ∈ Θ(L), which avoids
the solution of the maps Θ(L) for all subsets L ∈ F (Lt). As a result, the approximation
problem of LMB in the update step can be transformed into the issue of marginalization.

In addition, the approximate LMB density in (27) is very similar to JIPDA. The dif-
ference is that the LMB introduces labels to manage the target tracks and incorporates a
Bayesian model for target birth and death. Another difference is the data association, where
the existence of the target not detected and the non-existence of the target are separated
into two events, while, in JIPDA, the two events are merged and interpreted as one event
in which the target is not associated with any measurement.

4. The BP-Based Framework of the R-MS-LMB Filter
4.1. Joint Posterior Distributions

Recalling Theorem 1, the approximation of LMB becomes the problem of calculating
the marginal posterior distribution quickly and efficiently at each time step. Thus, we are
motivated to infer the multi-target states and detection probabilities by marginalizing the
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joint posterior distribution. Given the measurements of Z1:t, we present the joint posterior
distribution with association variables as follows:

f
(

X̃t, at

∣∣∣Z1:t

)
= ∆

(
X̃t

)
g(at)

]`∈LX̃
`
=X̃t

∏
`∈Lt

ρ
(

at(`), X̃
`
t

)
ϕ`,at(`)(X̃

`
t ). (28)

Thus, the target-oriented association variables at,v and at have been introduced. Fol-
lowing [50,51], we describe the alternative PT–measurement associations in terms of the
measurement-oriented association variables bt,v(m), ∀m ∈ {0, . . . , Mt,v} under the v-th
S/R pair at time t:

bt,v(m) =

` ∈ Lt
Measurement zm

t,v is associated
with PT `

0 zm
t,v is not from any PTs

(29)

Similarly, the stacked vector of association variables for all S/R pairs is defined as
bt = (bt,1 · · · bt,V). There is a redundant relationship between at and bt, which means
that it is possible to derive at from bt and vice versa. The indicator function enforces the
admissibility and consistency between at and bt [41]

Ψ(at, bt) , ∏`∈Lt ∏V
v=1 ∏Mt,v

m=1 Ψ(at,v(`), bt,v(m)) (30)

with Ψ(at,v(`), bt,v(m)) ,

0
if at,v(`) = m and bt,v(m) 6= `or

at,v(`) 6= m and bt,v(m) = `,
1 otherwise

.

The joint association pmf of at and bt can be expressed by p(at, bt) = p(at)Ψ(at, bt).
It has been demonstrated in [50,52] that the joint association pmf of at and redundant bt
allows a fast parallel method to be developed for BP-based probabilistic data association.
Introducing the joint pmf p(at, bt) into (28), we obtain the joint posterior distribution:

f
(

X̃t, at, bt

∣∣∣Z1:t

)
= ∆

(
X̃t

)
g(at)Ψ(at, bt)

]`∈LX̃
`
=X̃t

∏
`∈Lt

ρ
(

at(`), X̃
`
t

)
ϕ`,at(`)(X̃`). (31)

Finally, the main challenge is to develop a computationally feasible way of calculating
the marginal f

(
X̃t, at, bt

∣∣∣Z1:t

)
of (31).

4.2. Factorization of the Joint Posterior Distribution

Joint posterior distribution f
(

X̃t, at, bt

∣∣∣Z1:t

)
involves LMB, association variables, de-

tection probabilities, and measurements at time t. This results in the exponential growth of
the total computational amount with increasing PTs and measurements, so marginalization
would be infeasible in practice. Fortunately, we can implement effective marginaliza-
tion by implementing the BP scheme on a factor graph embedded in the joint posterior
distribution’s factorization.

To derive this factorization, we replace g(at) with ∏`∈L τ`,at(`) in (31), which yields

f
(

X̃t, at, bt

∣∣∣Z1:t

)
= ∆

(
X̃t

)
g(at)Ψ(at, bt)

]`∈LX̃
`
=X̃t

∏
`∈Lt

ρ
(

at(`), X̃
`
t

)
ϕ`,at(`)(X̃

`
t )

= ∆
(

X̃t

)
Ψ(at, bt)

]`∈LX̃
`
=X̃t

∏
`∈Lt

τ`,at(`)ρ
(

at(`), X̃
`
t

)
ϕ`,at(`)(X̃

`
t )

(32)

Introducing τ`,at(`), Ψ(at, bt), ρ
(

at(`), X̃
`
t

)
, and ϕ`,at(`)(X̃`) into (32), we evaluate and

group the terms to obtain the final factorization:
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f
(

X̃t

∣∣∣Z1:t

)
= ∆

(
X̃t

)]`∈LX̃
`
=X̃t

∏
`∈Lt

f (X̃
`
t|t−1)∏V

v=1 vt,v(X̃
`
t|t−1, at,v(`); Zt,v)∏Mt,v

m=1 Ψ(at,v(`), bt,v(m)) (33)

where vt,v(X̃
`
t|t−1, at,v(`); Zt,v) =



e`t|t−1,v lv(zm
t,v

∣∣∣xt|t−1)

λvc(zm
t )

if at,v(`) = m > 0 and X̃
`
t|t−1 =

{
(x̃t|t−1, `)

}
1− e`t|t−1,v i f at,v(`) = 0 and X̃

`
t|t−1 =

{
(x̃t|t−1, `),

1 i f as
t (`) = −1 and X̃

`
t|t−1 = ∅,

0 Otherwise

.

We show the factor graph corresponding to (33) at time t in Figure 3. In the factor
graph, the nodes and edges constitute the factor graph, where the edges connect two nodes,
the square nodes represent the functions of the variables, and the circle nodes represent
the variables.
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Figure 3. An illustration of the factorization of f
(

X̃t, at, bt

∣∣∣Z1:t

)
in (33). The abbreviations are

used with J =|Lt|, χ` , χ`(X̃
`
t|t−1), X̃

`
, X̃

`
t|t−1, ∂`v , ∂`v(X̃

`
t|t−1), v`v = vt,v(X̃

`
t|t−1, at,v(`); Zt,v),

β`v = β`v(at,v(`)), η`
v = η`

v(at,v(`)), γ`
v , γ`

v(X̃
`
t|t−1), a`v , at,v(`), bm

v , bt,v(m), and Ψ`,m
v ,

Ψ(at,v(as
t(`)), bt,v(m)).

4.3. BP Scheme

We will detail the BP-based scheme for inferring the marginal densities of (33). BP
based on a factor graph, also known as the sum–product algorithm [53], is an iterative
message-passing algorithm that efficiently calculates the marginal posterior distribution of
each expected variable. In BP, the calculated belief approximates the marginal posterior
distribution. The message is the information transmitted from one node to another, and
a node in the factor graph sends messages to its adjacent nodes. Readers can learn more
about BP by referring to [54,55].

At the beginning of time step t, the prediction message χ` with the parameter{
(r`t|t−1, µ`

t|t−1(x̃))
}

for PT ` ∈ Lt is given by

χ`(X̃
`
t|t−1) = f `t|t−1

(
X̃
`
t|t−1

∣∣∣Z1:t−1

)
=


1− r`t|t−1 X̃

`
t|t−1 = ∅

r`t|t−1 p`t|t−1(x)∏V
v=1 ξ`t|t−1

(
e`v
)

X̃
`
t|t−1 =

{
(xt|t−1, `, e`t|t−1)

}
0 Otherwise

(34)

where f `t|t−1

(
X̃
`
t|t−1

∣∣∣Z1:t−1

)
can be determined by the standard LMB filter prediction.

The message-passing iteration scheme is divided into the outer BP loop and inner
BP loop, as shown in Figure 1. The inner BP loop focuses on the data association. Syn-
chronously and in parallel for all S/R pairs, the outer BP executes the iterative message-
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passing scheme P times. Next, we also point out the corresponding messages in the factor
graph of Figure 1.

Prior to the implementation of message passing, the message ∂`v(X̃
`
t|t−1) with param-

eter
{
(r`∗, b`∗(x̃))

}
(sent from variable node ”X̃

`
” to factor node “v`v”) is initialized with

the prediction message χ` with the parameter
{
(r`t|t−1, µ`

t|t−1(x̃))
}

, ∀` ∈ Lt, such that

r`∗ = r`t|t−1, b`∗(x̃) = µ`
t|t−1(x̃). The association message β`

v(at,v(`)) from node “v`v” to node

“a`v” is then computed locally:

β`v(at,v(`)) =
∫

vt,v(X̃
`
, at,v(`); Zt,v)∂

`
v(X̃

`
)δX̃

`
=


∫

r`∗
e`∗,v lv(zt|x)
λvc(z

θv,t (`)
t )

b`∗(x̃)dx̃ at,v(`) = m > 0

r`∗ − r`∗
∫

e`∗,vb`∗(x̃)dx̃ at,v(`) = 0
1− r`∗ at,v(`) = −1

. (35)

The message β`
v(at,v(`)) in the first outer loop iteration is evaluated by marginalizing

the predicted density of PT `. Next, the message β`
v(at,v(`)) is used to evaluate the messages

η`
v(at,v(`)) by the inner BP loop. Descriptions of an efficient implementation of the inner

BP loop with MATLAB code are available in [56].

Subsequently, the likelihood messages γ`
v(X̃

`
t|t−1) sent from the factor node “v`v” to the

node “X̃
`
” are as follows:

γ`
v(X̃

`
t|t−1) =

Ms
∑

m=0
η`

v(m)vt,v(X̃
`
t|t−1, m; Zt,v) + η`

v(−1)vt,v(X̃
`
t|t−1,−1; Zt,v)

=

η`
v(0) ·

[
1− e`t|t−1,v

]
+

Ms
∑

m=1
η`

v(m)
e`t|t−1,v lv(z`t,v

∣∣∣xt|t−1,`)

λvc(zm
t,v)

X̃
`
t|t−1 =

{
(x̃t|t−1, `)

}
η`

v(−1) X̃
`
t|t−1 = ∅

(36)

Finally, at the last iteration of the outer loop, given the messages γ`
v(X̃

`
t|t−1) for PT

` ∈ Lt from all the S/R pairs v = 1, . . . , V, we approximate the marginal posterior pdf

f `t
(

X̃
`
t

∣∣∣Z1:t

)
by the belief b(X̃

`
t ) with the parameter

{
(r`t , b`t (x̃))

}
:

f `t
(

X̃
`
t

∣∣∣Z) = b(X̃
`
t ) ∝ χ`(X̃

`
t|t−1)∏v∈V γ`

v(X̃
`
t|t−1)=

{
r`t µ`

t (x̃) X̃
`
t = {(x̃t, `)}

(1− r`t ) X̃
`
t = ∅

(37)

where

r`t =
rt|t−1∏v∈V (1− η`

v(−1))

(1− rt|t−1)∏v∈V η`
v(−1) + rt|t−1∏v∈V (1− η`

v(−1))
(38)

µ`
t (x̃t) ∝ µ`

t (x̃t|t−1)∏v∈V

η`
v(0) ·

[
1− e`t|t−1,v

]
+

Ms

∑
m=1

η`
v(m)

e`t|t−1,vlv(z`v
∣∣∣xt|t−1, `)

λvc(zm
v )

.

(39)
Furthermore, the messages ∂s,`(X̃`) with

{
(r`∗, b`∗(x̃))

}
sent from “X̃

`
” to the factor

node “v`v” for the next outer loop iteration are calculated by ∂`v(X̃
`
t|t−1) ∝ χ`(X̃

`
t|t−1)∏v′∈V\v γ`

v(X̃
`
t|t−1).

Unlike previous methods that rely on truncating data associations for LMB approxima-
tion, this approach does not discard any information and is less prone to information loss. It
is worth noting that the main advantage of the BP method used in this work is its scalability.
The complexity of performed operations (35) to (37) scales as O(V

∣∣∣Lt

∣∣∣∏V
v=1 Mt,v) , where

Mt,v progressively increases with the false alarms and the number of PTs |Lt|. As a result,
the computational complexity of the BP scheme scales linearly with |Lt|, the number of
measurements per S/R pair Mt,v, and the number of S/R pairs V. Therefore, the compu-
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tational complexity of the density approximation for each PT ` ∈ Lt (see (37)) scales only
linearly with the number of S/R pairs.

Based on the message-passing approach, an online estimation of the detection proba-
bilities for the PTs is performed. The result of the previous outer BP iteration is utilized
in the subsequent iteration. This approach ensures that delayed estimation problems are
avoided. Once the beliefs of the PTs are obtained, PT tracks with existence probabilities be-
low a threshold rτ can be pruned. According to the findings presented in [27], a commonly
used method involves extracting all PT tracks and detection probabilities with existence
probabilities exceeding an application-specific threshold:

X̂t =
{(

x̂t, `), {ê`t,v
}

v
: r`t ≥ rδ

}
(40)

where the state x̂t and detection probability ê`t,v estimation could be achieved by the
minimum mean-squared-error (MMSE) estimator: x̂t =

∫
xt p`t (x)dx and PDv(xt, `) =

ê`t,v =
∫

e`t,vξt,v(e`t,v)de`t,v. In addition, the estimated number of targets is given by N̂t =
∣∣X̂t
∣∣.

At the same time, unlike JIPDA track management including a “confirmed track”,
“terminated track”, and “tentative track”, LMB employs a pruning step to delete the PTs
whose existence probabilities are less than a certain value and an estimation step to extract
the target states whose existence probabilities are greater than a certain value.

4.4. Implementation

This section presents a closed-form implementation for the R-MS-LMB filter based on
the Gaussian-Beta (GB) proposed by Mahler in [36]. The augmented state of a labeled PT
` ∈ Lt is defined as

µ`
t (x̃t) = N (xt; xt,j, Pt,j)∏V

v=1 Beta(et,v; αt,v, βt,v) (41)

where N (·; xt,j, Pt,j) represents the Gaussian density of the target state with the covariance
Pt,j and the mean xt,j. Beta(et,v; αt,v, βt,v) describes the PT ` ∈ Lt detection probability of
the S/R pair v, where α > 1 and β > 1 are the given parameters, and the mean and variance
can be obtained by e = α/(α + β) and σ2

B = αβ

(α+β)2(α+β+1)
, respectively.

For the GB model, we give the following assumptions.

(1) The augmented state of the PT ` ∈ LB
t for newly birthed LMB is a GB form:

µ`
t (x̃) = N (x; xt, Pt)∏V

v=1 Beta(ev; αt,v, βt,v) (42)

where xt, Pt, αt,v, and βt,v are the given parameters.
(2) The kinematic model for the single PT is an acceleration model [3]:

f 1(xt

∣∣∣xt−1) = N (xt; Ftxt−1, Qt). (43)

Here, Ft =

[
I2 TI2
02 I2

]
denotes the state transition matrix and Qt = σ2

v

[
T4/4I2 T3/2I2
T3/2I2 T2I2

]
is the process noise covariance, where T is the time scan and σv is the noise generated by
the acceleration process.

(3) Given Beta(et−1,v; αt−1,v, βt−1,v), the prediction distribution is as follows [57]:

Beta(et|t−1,v; αt|t−1,v, βt|t−1,v) =
∫

f 2(et|t−1,

∣∣∣et−1)Beta(et−1; αt−1,v, βt−1,v)det−1 (44)

where αv,t|t−1 = τvαv,t−1, βv,t|t−1 = τvβv,t−1, in which τv =
αv,t−1βv,t−1−σ2

v,t−1(αv,t−1+βv,t−1)
2

σ2
B_dsi(αv,t−1+βv,t−1)

3 if

(σB,v,t−1)
2 ≤ σ2

B_dsi, and τv = 1 otherwise. This prediction can mitigate the risk of the beta
distribution reducing to a Dirac delta function and enhance the variability.
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Non-linear measurement models can be analyzed using techniques such as UKF and

EKF. Before the outer BP iteration, if the augmented target state density of χ`(X̃
`
t|t−1) of

(34) is a GB form, the augmented target state density of the message ∂s,`(X̃`) is also a

GB form. However, the message γ`
v(X̃

`
t|t−1) of (36) is a multi-modal likelihood function.

Consequently, the augmented target state densities of b(X̃
`
t ) of (37) and ∂`v(X̃

`
t|t−1) are

represented by GB mixtures (GBM). After each outer loop iteration, we use first- and
second-order moment matching to convert the GBM into a single BG.

In addition, the proposed R-MS-LMB multi-target tracking method is depicted in
Figure 4.
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5. Numerical Study

Simulations are implemented in this section to demonstrate the performance of the
proposed underwater MTT method. In what follows, we describe two simulation scenarios
and present the corresponding simulation results. Assuming that acoustic signal propaga-
tion losses are predominantly dependent on the range, we employ the Fermi function to
simulate the true but unknown target detection probabilities [58]:

PD
′ =

{
1

1+10
(dequal/d0−1)/b dequal ≥ db

0.2 dequal < db
(45)

where b, d0, dequal, and db are the given parameters, and dequal =
√

dsdr is the equivalent
monostatic range. To demonstrate poor detection at the end-fire of AUVs, let PD =

cos(φ)PD
′ if the measurement angle

∣∣∣θ∣∣∣< θe f ; otherwise, PD = PD
′.

In simulations, the clutter pdf c(z) is uniform on [−180◦, 180◦] and [0, 60 km]. Each
new birth target is modeled by

(
r`, p`(x̃)

)
, ∀` ∈ LB

t , where r` = 0.01 and p`(x̃) =

N (x; x, P)∏V
v=1 Beta(ev; αv, βv) with ev = 0.5, P = diag(200̂2, 200̂2, 10̂2, 10̂2), and x is lo-

cated at the actual starting position of the target. To prevent overconfidence, we define the
number of outer BP iterations as one and the number of inner iterations as four [51]. The
simulation parameters are reported in Table 1. All simulations are conducted in MATLAB
with an Intel i7 processor in the 2.5 to 4.8 GHz frequency range.
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Table 1. Simulation parameters.

Parameter Value Specification

T 20 s Time scan
σv 10−2 m/s2 Process noise
σd 100 m Rang std. deviation
σθ 1◦ Bearing std. deviation
PS 0.95 Prob. of survival
rτ 10−3 Deleting threshold of PTs
rσ 10−3 Extracting threshold of PTs
b 0.5 Fermi function Para.b
d0 20 km Fermi function Para.R0
db 1.5 km Fermi function Para.Rb
θe f 30◦ End-fire angle
λ 10 False alarm rate

5.1. First Scenario

In this scenario, we consider a mobile multi-static multi-sensor MTT network con-
sisting of three AUVs, two fixed sound sources, and three targets. Figure 5 illustrates the
positions of the sound source and the tracks of the AUVs and targets over 200 time steps.
The simulated target detection probabilities follow (45).
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Solid circles represent the starting points, and solid squares represent the ending points. The five
stars represent the sound sources. The solid lines represent the trajectories of the AUVs and targets.

Figure 6 presents detection probability maps for all S/R pairs at time t = 1. The
figure clearly illustrates that the likelihood of detecting the target is contingent on the
spatial configuration between the AUV, the target, and the source. Therefore, the detection
parameters are time-varying as the targets and AUVs move. In a multi-static operation,
multiple sources and receivers can eliminate each other’s acoustic detection blind areas
and have high coverage. Moreover, utilizing mobile AUVs as receivers can enhance the
ability to detect and track multiple targets.
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Figure 6. Target detection probabilities of different S/R pairs at time step t = 1.

To verify that the R-MS-LMB filer can estimate the target detection probabilities
online, Figure 7 shows the mean estimates and associated standard deviations of the
detection probabilities of the three targets for different S/R pairs. These results are from
100 independent Monte Carlo (MC) runs that vary in the S/R pair measurements. It
can be seen how the detection probabilities change with time. The mean estimates are
generally within the range of reality, and the behavior changes are roughly in line with
the actual situation. Figure 6 highlights that the proposed method can flexibly adjust the
detection probabilities.
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5.2. Second Scenario

To assess the performance of the R-MS-LMB filter, we consider a challenging scenario
over 200 time steps, as shown in Figure 8a. We compare the proposed R-MS-LMB filter with
several other filters, including the robust multi-sensor GLMB (R-MS-GLMB) filter used
in [42,43], the standard multi-sensor LMB (Std-LMB) filter with true detection probabilities
for the R-MS-LMB filter, the MS-LMB filter with fixed high detection probabilities, named
the High-MS-LMB filter, and the MS-LMB filter with fixed low detection probabilities,
named the Low-MS-LMB filter. Additionally, the R-MS-GLMB filter samples 200 compo-
nents. The High-MS-LMB and Low-MS-LMB filters presented in [32] are used with fixed
detection probabilities of 0.9 and 0.5, respectively. We apply the generalized sub-pattern
alignment OSPA (GOSPA) [59] metrics with p = 2 and c = 2 km to assess these filters’
general performance. The GOSPA metric with the parameter α = 2 can show the localiza-
tion error (LE), the false-target error (FE), and the missed-target error (ME). All metrics are
averaged over 100 independent MC runs throughout the simulation experiments, and UKF
implementations are used in all filters.
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Figure 8. (a) Underwater multi-static MTT scenario two consists of four AUVs, two fixed and two
mobile sources, and nine targets. Solid lines represent the trajectories of AUVs, targets, and sources;
(b) a superposition of the measurements (black dot) and the estimated target positions in one MC run.
The ellipses are 99% error ellipses centered on the estimated positions of the targets every 40 time
steps from the target start time.

The results of one MC run, shown in Figure 8b, illustrate the proposed R-MS-LMB
filter’s excellent detection and estimation capabilities. Figure 9 shows the average GOSPA
metric results from the overall MC runs. From Figure 9, the Std-LMB filter with accurate
detection probabilities has the lowest GOSPA error, LE, ME, and FE. In addition, it should be
noted that the R-GLMB and R-LMB filters can adaptively learn and estimate target detection
probabilities online, which leads to better performance than filters that use fixed detection
probabilities. However, the R-GLMB filter estimates the average detection probability
based on the nested CPHD filters. This estimation may be lower than the actual detection
probability for some targets. This may lead to false alarms and inferior FE performance
compared to the Std-LMB and R-LMB filters. On the one hand, the detection probability
of the High-MS-LMB filter is often higher than the actual detection probabilities of most
targets, which results in target loss and a more significant ME. On the other hand, the
High-MS-LMB filter uses a fixed lower detection probability, resulting in poorer FE error
performance. The time average GOSPA and the average runtime are detailed in Table 2.
Compared to other filters, the R-MS-LMB filter performs more similarly to the Std-MS-LMB
filter and has a manageable runtime, which reflects its superior capability for underwater
MTT in challenging scenarios.
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Table 2. Time average GOSPA and the average runtime.

Filters R-MS-LMB R-MS-GLMB Std-MS-LMB Low-MS-LMB High-MS-LMB

GOSPA (m) 307.81 353.87 271.81 845.82 425.00
LE (m) 175.65 201.87 169.35 152.46 220.27
ME (m) 82.76 100.73 81.21 753.96 83.33
FE (m) 38.50 38.49 30.83 52.13 164.34

Runtime (s) 21.34 88.26 20.62 50.49 28.97

Finally, we analyze the proposed method’s complexity using the average runtime over
100 MC runs. Accordingly, we use a fixed but unknown detection probability of 0.9. To
evaluate the relationship between the R-MS-LMB filter and the number of S/R pairs, we
utilize the four sound sources presented in Scenario 2, with one, two, three, and four AUVs,
resulting in 4, 8, 12, and 16 S/R pairs, respectively. As Figure 10 shows, the R-MS-LMB filter
exhibits a low computational cost. It can also be observed that the R-MS-LMB filter runtime
increases linearly with the number of S/R pairs. Based on simulations, the proposed
R-MS-LMB filter can provide superior performance with a moderate computational cost
and is appropriate for MTT in underwater multi-static networks involving multiple AUVs.
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6. Conclusions

This paper proposes a robust multi-sensor LMB MTT method for a multi-static network
with multi-AUV. In this work, we mainly focus on overcoming unknown target detection
probabilities with a multi-sensor LMB filter and how to implement the filter efficiently. First,
we augment the target state by treating the detection probabilities as variables rather than
known parameters, allowing for the adaptation of unknown and time-varying detection
probabilities. Then, we derive an approximate multi-sensor LMB filter by KL divergence
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and construct the factorization of the joint posteriori distribution on the basis of the derived
form. Moreover, we detail an efficient implementation of the robust multi-sensor LMB
filter using the belief propagation scheme. Simulation experiments show that the proposed
method can simultaneously estimate the targets’ state and detection probabilities, resulting
in better MTT performance than other methods. In addition, the results also show that
the complexity of the proposed method scales linearly with the number of S/R pairs,
demonstrating superior scalability and low computational complexity.

This work assumes that the locations of AUVs and sources are known. Future work
will focus on simultaneous localization and tracking to use collected measurements to
improve the location accuracy of AUVs and sources while performing MTT.
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