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Abstract: Automated monitoring and analysis of fish’s growth status and behaviors can help scientific
aquaculture management and reduce severe losses due to diseases or overfeeding. With developments
in machine vision and deep learning (DL) techniques, DL-based object detection techniques have
been extensively applied in aquaculture with the advantage of simultaneously classifying and
localizing fish of interest in images. This study reviews the relevant research status of DL-based
object detection techniques in fish counting, body length measurement, and individual behavior
analysis in aquaculture. The research status is summarized from two aspects: image and video
analysis. Moreover, the relevant technical details of DL-based object detection techniques applied
to aquaculture are also summarized, including the dataset, image preprocessing methods, typical
DL-based object detection algorithms, and evaluation metrics. Finally, the challenges and potential
trends of DL-based object detection techniques in aquaculture are concluded and discussed. The
review shows that generic DL-based object detection architectures have played important roles in
aquaculture.

Keywords: deep learning; object detection; aquaculture; machine vision

1. Introduction

As an essential aspect of fisheries, aquaculture has become the fastest-growing tech-
nology in global food production [1–3]. Along with the rapid growth of the population and
increased human demand for fish consumption worldwide, the pressure on the aquaculture
industry will continue to increase [4,5]. Therefore, improving the production and quality of
aquaculture is urgently needed. Monitoring and analyzing the growth status and behaviors
of fish at different growth stages can help managers in aquaculture accurately grasp the
changes in fish abundance, body length, and behaviors, thereby optimizing aquaculture
management, reducing the risk of severe failure due to fish diseases or overfeeding, and
improving the productivity and profitability of aquaculture [6,7]. However, traditional
methods for analyzing the growth status and behavior of fish primarily depend on manual
observation or measurement [8,9]. Therefore, it is not only time- and labour-intensive, but
also may harm the welfare and health of fish.

Machine vision-based non-invasive testing techniques have the advantage of auto-
matically obtaining high-quality data while avoiding damaging the normal growth of fish,
which have gradually replaced traditional manual methods and are widely applied in
aquaculture [10,11]. However, machine vision-based data analysis related to aquaculture
faces various challenges [12,13]. On the one hand, the challenges come from the complex
environment, such as illumination changes, low contrast, and water turbidity. On the other
hand, the challenges come from the complex fish characteristics, such as scale variation,
similar appearance, deformation during movement, and occlusion in the high-density
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scenario. Therefore, developing automatic and reliable data analysis methods based on
machine vision is essential for fish monitoring in aquaculture.

During the past decades, numerous traditional image-processing methods and machine-
learning techniques have been used for vision-based data analysis in aquaculture [14–16].
However, such methods rely heavily on handcrafted feature extraction, which easily leads
to the omission of critical features of fish in complex and diverse real-world environ-
ments. Recently, due to the powerful adaptive feature extraction and nonlinear mapping
capabilities, deep learning (DL) techniques have played an essential role in visual informa-
tion processing [17,18]. Especially, DL-based object detection techniques, as an essential
branch of DL, have the unique advantage of simultaneously identifying the category of
the interest object of interest and locating the position of the object using a bounding box,
have been widely used in various fields [19], such as face recognition [20,21], text detec-
tion [22,23], pedestrian recognition [24,25], and vehicle detection [26,27]. The superiority
of DL-based object detection techniques has also made them gain increasing attention in
fish monitoring in aquaculture, including the field of fish counting [28,29], body length
measurement [30,31], and individual behavior analysis [32,33]. The flow chart of the typical
application of DL-based object detection techniques in aquaculture is shown in Figure 1. In
addition, image preprocessing techniques are often used in advance to tackle the limitations
of the quantity and quality of the data.
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There have been several reviews on the application of DL in aquaculture [12,13], in
which they comprehensively concerned with the DL techniques in aquaculture, including
convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative
adversarial networks (GANs). However, no works have thoroughly explored or studied
the application of DL-based object detection techniques in fish aquaculture. Therefore, this
paper applies DL-based object detection techniques for fish counting, body length mea-
surement, and individual behavior analysis in aquaculture. In this paper, Section 2 briefly
introduces the dataset sources and image preprocessing methods. Section 3 compares
the typical DL-based object detection algorithms. Section 4 reviews the research status
of DL-based object detection techniques in fish counting, body length measurement, and
individual behavior analysis in aquaculture. The research status is summarized from two
aspects: image and video analysis. Section 5 summarizes the evaluation metrics of the algo-
rithms. Finally, Section 6 discussed the challenges and potential trends of DL-based object
detection techniques in aquaculture to provide a reference for developing DL techniques.

2. Datasets and Image Preprocessing

Since deep neural networks (DNNs) generally rely on large-scale and high-quality
datasets for training to achieve satisfactory performance, datasets are the basis of the
DL-based object detection techniques applied to aquaculture.

2.1. Datasets

In studies on applying DL-based object detection techniques in aquaculture, data was
mainly acquired from online public and on-site datasets constructed by researchers during
the experiment.
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2.1.1. Public Datasets

The public datasets related to the application of DL-based object detection tech-
niques in aquaculture mainly included Fish4Knowledge [34], LifeCLEF2014 [35], Life-
CLEF2015 [36], and NOAA [37]. In addition, many other available datasets have the
potential to improve the performance and generality of DL-based object detection models
in aquaculture, such as NCFM (The Nature Conservancy Fisheries Monitoring) [38] and
ImgaeNet [39] in aquaculture. The characteristics of the datasets are compared in Table 1.

Table 1. The public datasets for fish.

Datasets Total Videos/Images Annotation URL

Fish4Knowledge [34] 700,000 underwater videos
with 3000 fish species -

https://homepages.inf.ed.ac.uk/rbf/
Fish4Knowledge/resources.htm (accessed

on 15 June 2022)

LifeCLEF2014 [35] 1000 underwater videos
with 10 fish species 20,000 labeled fish https://www.imageclef.org/2014

/lifeclef/fish(accessed on 15 June 2022)

LifeCLEF2015 [36] 93 underwater videos with
15 fish species

9000 annotations in videos
and 20,000 images with

fewer labels

http://www.imageclef.org/lifeclef/2015
/fish(accessed on 15 June 2022)

NOAA [37] 929 underwater images 1005 labeled fish
https://swfscdata.nmfs.noaa.gov/

labeled-fishes-in-the-wild/(accessed on 15
June 2022)

NCFM [38] 3777 images -
https://www.kaggle.com/c/the-nature-

conservancy-fisheries-
monitoring(accessed on 5 April 2023)

ImageNet [39] over 14 million images - http://www.image-net.org/(accessed on 5
April 2023)

• Fish4Knowledge: Fish4Knowledge dataset was supported by the European Com-
mission and developed jointly by a project team from the University of Edinburgh,
Academia Sinica, and other groups, with the main aim of assisting in marine ecosystem
research. This dataset contains about 700,000 underwater video clips with 10 min of
monitoring Taiwan coral reefs over five years, which can be used for fish identification,
detection, and tracking in images and videos. However, this dataset has unbalanced
the number of fish categories (over 3000 fish species).

• LifeCLEF2014: LifeCLEF2014 was built based on the Fish4-Knowledge dataset by a
project team from the University of Catania and Edinburgh, which contains about
1000 videos with 10 fish species. Approximately 20,000 fish in this dataset were labeled
with species in the videos. However, this dataset also suffers from an unbalanced
fish population.

• LifeCLEF2015: LifeCLEF2015 was also built based on the Fish4Knowledge dataset by
a project team from the University of Catania and Edinburgh, which contains about
93 underwater videos with 15 fish species. This dataset contains about 9000 annota-
tions (bounding boxes and species) in videos and 20,000 images with fewer labels.
Compared with LifeCLEF2014, the image and videos in LifeCLEF2015 present a noisier,
blurred, and poorer illumination environment.

• NOAA: NOAA dataset was developed by the National Oceanic and Atmospheric
Administration (NOAA) during rockfish surveys in the Southern California Bight. It
was collected by a digital camera deployed on a remotely operated vehicle (ROV). This
dataset contains 929 images and 1005 annotations (locations and bounding rectangles).
The challenges of the dataset include variations in the appearance and size of fish,
small particles in the water, various swimming speeds and directions of fish, fish
hidden behind the rocks or in crevices, and some indistinct fish-like objects.

https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/resources.htm
https://homepages.inf.ed.ac.uk/rbf/Fish4Knowledge/resources.htm
https://www.imageclef.org/2014/lifeclef/fish(accessed
https://www.imageclef.org/2014/lifeclef/fish(accessed
http://www.imageclef.org/lifeclef/2015/fish(accessed
http://www.imageclef.org/lifeclef/2015/fish(accessed
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/(accessed
https://swfscdata.nmfs.noaa.gov/labeled-fishes-in-the-wild/(accessed
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring(accessed
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring(accessed
https://www.kaggle.com/c/the-nature-conservancy-fisheries-monitoring(accessed
http://www.image-net.org/(accessed
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• NCFM: The NCFM dataset was supported by the worldwide competition of “The
Nature Conservancy Fisheries Monitoring” hosted by Kaggle, which contains about
3777 fish images. The images were taken by cameras installed on different fishing
boats. The light variation, complex background, and occlusion of fish in the dataset
make fish recognition very challenging.

• ImageNet: ImageNet was initiated by the team of Fei-Fei Li at Stanford Univer-
sity, which contains over 14 million images. ImageNet is an image dataset orga-
nized by the WordNet hierarchy, in which each node is connected to hundreds or
thousands of images.

The main advantages of the public dataset are that they are easy to obtain, contain large-
scale available data, and are rich in variety. On the other hand, the common shortcomings of
these datasets are unbalanced fish species, poor environment, and distortion in the images.

2.1.2. On-Site Datasets

To analyze the growth status of fish more accurately in the study area, researchers
usually collect data in the field to construct a real dataset. Figure 2 illustrates a typical on-
site data acquisition system. The on-site data of the related research papers were primarily
derived from the ocean, cages, recirculating aquaculture systems (RAS), and fish tanks.
Researchers can choose the type and location of the camera according to their research
needs. One primary data acquisition method for fish counting is collecting underwater
data using an underwater camera deployed on a remotely operated vehicle (ROV) or other
underwater monitoring platforms [40]. Another is to deploy a camera above the water
surface of the container for data collection [41]. However, acquiring 2D information by a
single camera inevitably suffers from the occlusion of itself or other objects. Compared
to 2D imaging systems, 3D imaging systems can obtain more comprehensive information
and resolve occlusion problems [42]. In addition, autonomous underwater vehicles (AUVs)
could be used for information collection on fish in the future [43,44]. For fish body length
measurement, some researchers placed the monocular camera at a fixed distance above the
captured fish to obtain its 2D information.
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Moreover, binocular cameras have been widely used to collect 3D information on
underwater fish without constraining their movement. For fish behavior identification,
researchers commonly fix the camera above the water surface of the container to collect the
movement videos of fish [32,33]. However, visible light cameras are susceptible to light in
aquaculture. On the other hand, the image quality of the infrared reflection system is not
affected by light intensity, which allows for the monitoring of fish behavior in dark, poorly
lit, and obscured conditions [45,46].

The main advantages of the on-site dataset are that the researchers can choose the
appropriate research objects, collection equipment, collection location, and collection time
according to their research requirements. Moreover, researchers can adjust the quality
and quantity of collected data to avoid poor-quality images and imbalances in the dataset.
However, there are also some problems. For example, the total number of on-site datasets
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and species categories tends to be relatively small and varied due to the time data collection
takes and the required resources.

2.2. Image Preprocessing

Since the collected dataset is usually affected by issues related to quality and quantity,
image preprocessing has become a critical step in applying DL-based object detection
techniques to aquaculture. Common image preprocessing approaches include image size
transformation, image denoise, image enhancement, and data augmentation.

• Image size transformation: Image size transformation (such as image cropping and
resizing) is the most common image preprocessing method, which can reduce the
computation or meet the input requirements of DNN models by adjusting images of
different sizes to a uniform size [47].

• Image denoise: Strong noise in images may obscure the discriminative features of
the object and disturb the feature extraction of DL-based algorithms. In some related
studies, gaussian filtering [48] and median filtering [32] have removed image noise.

• Image enhancement: Blurred and low-contrast images will lose some detail in the
target. Image enhancement strategies such as linearization, contrast-limited adaptive
histogram equalization (CLAHE), Retinex, and discrete wavelet transform (DWT)
can recover high-quality images from low-resolution data [29,49]. In addition, the
DL-based image enhancement approaches have received increasing attention in the
aquatic field [50,51].

• Data augmentation: Data augmentation techniques can extend the number of training
samples to avoid overfitting DNN models to small amounts of training samples. Data
augmentation methods include rotation, cropping, flipping, and Cutmix [52]. In recent
years, generative adversarial networks (GAN) that can generate pseudo-images based
on input noise have been widely used in data augmentation [53].

3. Typical DL-Based Object Detection Algorithms

DL-based object detection techniques have the unique advantage of simultaneously
identifying the category of the object of interest and locating the object’s position using a
bounding box, which has been widely used in fish detection. Mainstream DL-based object
detection algorithms can be roughly divided into two categories: two-stage object detection
(region-based) and one-stage object detection (regression-based) algorithms. The main
difference is whether they include a step for the region proposal. This section discusses
some typical object detection algorithms widely used in aquaculture. Figure 3 shows the
basic flow chart of two-stage and one-stage object detection algorithms. Table 2 summarizes
the advantages and disadvantages of the typical DL-based object algorithms.

Table 2. The advantages and disadvantages of typical two-stage and one-stage object detection
algorithms.

Object Detection Algorithms Advantages Disadvantages

Two-stage
object

algorithms

R-CNN [54] Introduced DL to object detection for the
first time

Slow training process; computer
resource heavy

Fast R-CNN [55] Use ROI pooling to change the scale of
the feature

Time-consuming selective search for
region proposals

Faster R-CNN [56] End-to-end training Low detection accuracy for multi-scale and
small object

Mask R-CNN [57] Accurate instance segmentation and high
detection accuracy Expensive instance segmentation
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Table 2. Cont.

Object Detection Algorithms Advantages Disadvantages

One-stage
object

algorithms

YOLO [58] A novel one-stage detection algorithm, the
detection speed is fast

Low detection accuracy; weak
generalization ability

SSD [59] Combines regression and anchor
mechanisms Loss of small object features

YOLOV2 [60] Further improved detection speed and
improved the recall rate Poor detection accuracy for small objects.

YOLOV3 [61] Improves the detection accuracy of
small objects Low recall rate

YOLOV4 [62] It incorporates a variety of tuning
techniques Largely unchanged detection model
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3.1. Two-Stage Object Detection Algorithms

Two-stage object detection algorithms (region-based) generate a region proposal based
on the input image and then classify the regions using the classifier. Two-stage object
detection algorithms have high accuracy, while their common disadvantage is their slow
detection speed. Typical two-stage object detection algorithms mainly include R-CNN [54],
Fast R-CNN [55], Faster R-CNN [56], and Mask R-CNN [57].

• R-CNN: Girshick et al. proposed the R-CNN algorithm in 2014, introducing DL into
object detection. R-CNN first uses the selective search to generate region proposals
of the input image, then inputs the region proposals into a convolutional neural
network (CNN) to extract features. Finally, it classifies the features using SVM and
fine-tunes the bounding regions via bounding-box regression and greedy non-maximal
suppression (NMS). Although R-CNN pushes object detection into the era of DNN,
it occupies a lot of computing resources. Moreover, it easily leads to missing data
information caused by the norm of the region proposals.

• Fast R-CNN: To further improve the training speed of the algorithm and reduce
the occupation of computing resources, Fast R-CNN inputs the whole image into a
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CNN for feature extraction and introduces a region of interest (ROI) pooling layer for
scale transformation of the region proposal features with different sizes. However,
the region proposal generation mechanism based on the selective search is still the
bottleneck restricting the further improvement of the detection speed.

• Faster R-CNN: Faster R-CNN enables end-to-end detection, which innovatively pro-
poses a regional proposal network (RPN) to replace the selective search, thereby
significantly improving the generation speed of the detection bounding box. The
performance of the Faster R-CNN for fish detection with an accuracy of 82.7% exceeds
Fast R-CNN on the ImageCLEF dataset [63,64]. In addition, compared with ZF Net
and CNN-M, the Faster R-CNN algorithm based on VGG-16 achieved the best results
for fish detection with a mean average precision (mAP) of 82.4% on underwater images
obtained from remote underwater video stations [65].

• Mask R-CNN: Mask R-CNN is an extension of Faster R-CNN by adding an object
segmentation branch parallel to object classification and bounding box regression
branches, which can perform object detection and instance segmentation simultane-
ously using one network structure.

3.2. One-Stage Object Detection Algorithms

One-stage object detection algorithms (regression-based) abandon the time-consuming
region proposal process and use a DNN to directly generate objects’ class probability and
position coordinates based on the input image. The main advantage of one-stage object
detection algorithms is the fast detection speed, but their detection accuracy is generally
lower than the two-stage object detection algorithms. Typical one-stage object detection
algorithms include the YOLO series (Your Only Look Once) and the SSD (single-shot
multi-box detector).

• YOLO: Redmon et al. proposed YOLO in 2016 [58], an end-to-end one-stage DNN
algorithm. It divides the whole input image into S × S grids. Then, it performs
classification and bounding box detection of the target on each grid, which can directly
regress the location and type of the target from the input image. YOLO achieved a fish
detection accuracy of 93% and a detection speed of 16.7 frames per second (FPS) on
the NOAA dataset, which can process noisy, dim-light, and hazy underwater images
and outperformed the HOG classifier-based algorithm and SVM classifier [66].

• SSD: Aiming to overcome the low detection accuracy of YOLO for small objects, Liu
et al. proposed the SSD algorithm in 2016 [59]. SSD combines multi-scale feature maps
with the anchor mechanism in the Faster R-CNN and replaces the fully connected
layer in YOLO with a convolutional layer, ensuring the detection speed while meeting
the detection accuracy.

• YOLOV2: Although YOLO achieves real-time object detection, it suffers from many
localization errors. To obtain higher detection accuracy, YOLOV2 [60] introduces
some new technologies based on YOLOV1, including batch normalization, a high-
resolution classifier, and bounding box prediction based on K-Means clustering and
multi-scale training.

• YOLOV3: Redmon et al. utilized the residual network, feature pyramid network
(FPN), and binary cross-entropy loss to upgrade YOLOV2 to YOLOV3 [61], making
it suitable for multi-size objects. YOLOV3 achieved a mAP of 53.92% on MHK and
hydropower underwater dataset, which can distinguish bubbles, debris, and fish [67].

• YOLOV4: YOLOV4 [62] applies a new backbone network and combines spatial pyra-
mid pooling and path aggregation network (PAN) for feature fusion, which achieves
higher detection performance.

4. Application of DL-Based Object Detection Techniques in Fish Aquaculture

Accurate monitoring and analysis of fish growth conditions and behaviors are essential
for scientific fish management, breeding density control, and water quality monitoring
in aquaculture [12,13]. The rapid development of machine vision and DL-based object



J. Mar. Sci. Eng. 2023, 11, 867 8 of 21

detection techniques has made it possible to quickly classify and localize critical features of
fish from images, enabling more accurate information for control decisions of aquaculture.
This paper reviewed the application of DL-based object detection techniques in aquaculture,
including fish counting, body length measurement, and individual behavior analysis, to
guide the researcher in aquaculture.

4.1. Fish Counting

In intensive aquaculture, the regular number statistics of fish can provide aquaculture
managers with reliable quantitative information to observe fish population changes over
time, thereby optimizing breeding strategies, controlling breeding density, and establishing
optimizing marketing plans [68]. Numerous DL approaches have been studied to fish count-
ing in images, mainly divided into detection-based and density estimation-based [69,70].
Density estimation-based fish counting methods maps can obtain the total number of fish
in the image by integrating the predicted density map. However, the main limitation of
these methods is the inability to distinguish individual fish. DL-based object detection
techniques can automatically extract discriminative features of the object of interest in
images and classify and localize objects simultaneously. These have been the focus of
many researchers developing fish counting algorithms and offering new opportunities for
fish aquaculture. Table 3 details the relevant fish counting studies using DL-based object
techniques. Image and video analysis are the two main fish-counting methods based on
object detection techniques. This paper divides the related studies according to whether
the processed data comes only from individual images or the continuous video sequence.

Table 3. Summary of DL-based object detection techniques applied in fish counting.

Data References Approaches Fish Species/
Public Dataset

Data
Preprocessing Results

Image

Li et al. [64] Faster R-CNN LifeCLEF2014 N/A mAP = 82.7%;
Time = 0.102 s/im

Mandal et al. [65] Faster R-CNN
50 species
of fish and
crustaceans

N/A mAP = 82.4%
FPS = 5

Sung et al. [66] YOLO NOAA dataset N/A
Sensitivity = 93%;

IOU = 65.2%;
FPS = 16.7

Xu et al. [67] YOLOV3 Unknown species; N/A mAP = 53.9%

Ditria et al. [71] Mask R-CNN Luderick N/A F1-Score = 92.4%
mAP50 = 92.5%

Labao and Naval
Jr [72]

Improved Faster
R-CNN Unknown species N/A

Precision = 53.29%
Recall = 37.77%

F1-Score = 44.21%

Li et al. [73] Improved
YOLOV5 Takifugu rubripes Resize Precision = 97.53%

Recall = 98.09%

Li et al. [40] Improved YOLO Unknown species

CLAHE;
Rotation;

Brightness
transformation

Precision = 89%
Recall = 73%
IOU = 66%
FPS = 122

Cai et al. [47] Improved
YOLOV3 Takifugu rub ripe Resize AP = 78.63%
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Table 3. Cont.

Data References Approaches Fish Species/
Public Dataset

Data
Preprocessing Results

Video

Salman et al. [74] Improved Faster
R-CNN

Fish4Knowledge
with Complex
Scenes (FCS);

LifeCLEF 2015

N/A
F1-Score = 87.44%(FCS)

F1-Score = 80.02%
(LifeCLEF 2015)

Ben et al. [28] Improved Faster
R-CNN LifeCLEF 2015 N/A F1-Score = 83.16%

mAP = 73.69%

Levy et al. [75] RetnaNet + SORT Unknown species Resize Precision = 74%

Arvind et al. [41] Mask R-CNN +
GOTURN Ornamental fish Resize

Precision = 99.81%
Recall = 83.112%

F1-Score = 90.70%
FPS = 16

Mohamed
et al. [76]

YOLO + optical
flow Golden fish Multi-Scale

Retinex

Detected an average of
8 fish from above and

3 fish from underwater

Liu et al. [29]
Improved
YOLOV4 +

Kalman filter

Sebastodes
fuscescens;
Asteroidea.

Hexagrommos otakii

Color
compensation.

CLAHE; Resize

ACC = 95.6%
Recall = 93.3%

IOU = 83%
FPS = 33

MOTA = 83.6%
IDF1 = 83.2%

ID Switches = 59%

4.1.1. Image-Based Fish Counting

Intuitively, the number of fish in the image can be calculated by counting the bounding
boxes predicted by object detection algorithms. At present, typical two-stage, and one-
stage DL-based object detection algorithms such as Faster R-CNN [64,65], YOLO [66], and
YOLOV3 [67] have been widely utilized to detect fish in the ocean. In addition, mask
R-CNN [71] has been used to assess the abundance of luderick in the estuary. Although
the above studies have achieved satisfactory results, these generic detection algorithms are
initially designed for objects on land, and their application in actual underwater scenes has
certain limitations. Therefore, researchers further considered the special characteristics of
fish detection and have made various improvements to the generic detection algorithms to
improve the detection accuracy and speed.

Due to the complex background interference, blurring and occlusion in the underwa-
ter image, it is challenging for the DNN to extract generalized fish features to detect fish
accurately. Some researchers have incorporated attention mechanisms and deformable
convolution into typical object detection architectures to improve the algorithm’s perfor-
mance. Labao and Naval Jr [72] proposed a multi-cascade R-CNN object detection network
linked by sequential LSTMs to accurately count fish under various benthic backgrounds
and illumination conditions in the ocean. The automatic correction of cascade structure and
attention mechanism of LSTM links makes it robust to small fish, the multi-scale distorted
and cropped images, and varying background environments. They achieved a precision of
53.29% on the test data taken in the wild containing many fish objects having small pixel
areas, which is superior to Faster R-CNN. However, the accuracy of this method cannot
meet the actual demand, and the amount of computation will increase with the number of
cascaded R-CNN structures. Li et al. [73] integrated the deformable convolution module
(DCM) and adaptive threshold module (ATM) into the YOLOv5 framework to accurately
detect and count Takifugu rubripe in aquaculture ponds, in which the DCM was used
to reduce the blurred background interference, and ATM was used to mitigate missed
detection in densely occluded scenarios. They achieved a precision of 97.53% and a recall
of 98.09% on the dataset taken in the real aquaculture ponds.
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Embedding lightweight network models with relatively few parameters and high
accuracy into edge devices (e.g., Jetson Nona, Raspberry Pi) to enable real-time and online
fish monitoring has received increasing attention. The one-stage object detection algorithms
with fast detection speed have become the preferred method in related research. Li et al. [40]
designed a lightweight Underwater-YOLO architecture for an underwater robotic embed-
ded system to perform real-time fish detection in an unconstrained marine environment.
They improved the original YOLO architecture by feature fusion and reducing the number
of convolutional layers and kernels and combined it with video frame selection to improve
fish detection speed. It achieved a detection speed of 28 FPS with 93% detection accuracy
on 500 marine images collected by ROV. However, the improvement in the detection speed
of the video frame selection algorithm on the GPU platform is not significant. Cai et al. [47]
developed a lightweight YOLO V3 detection framework using MobileNetV1 as a backbone
to detect and count Takifugu rubripe in aquaculture ponds in real-time, which replaced
the regular convolution operation in CNN with depth-separable convolution to reduce
the number of model parameters. In addition, they further reselected the feature maps of
MobileNet according to the object scale and receptive field for better fish detection. As a
result, they achieved a mAP of 78.63% and a detection speed of 13 FPS.

Judging from the literature, for relatively simple underwater scenes with sparse fish
populations and slight background interference, the researchers’ one-stage and two-stage
object detection algorithms have shown promising results in detecting and locating fish
in images. However, for more complex scenes, especially with issues such as complex
background interference, frequent occlusions, and appearance variation of fish, there is
still room for improvement in the detection accuracy of the detection algorithm. DL-
based preprocessing methods of images may effectively alleviate the adverse effects of
the environment. In the future, a combination of DL-based object detection and density
estimation algorithms may be suitable for accurate fish counting in intensive aquaculture.
Furthermore, performing real-time detection with high accuracy is more practical for fish
moving rapidly in intensive aquaculture.

4.1.2. Video-Based Fish Counting

In aquaculture, it is inefficient to count fish in a single image. The video contains the
fish’s appearance information (such as color, shape, and texture) in the static image and
the motion information of the fish in the temporal dimension. Therefore, on the one hand,
it is effective to develop a hybrid system that fuses the appearance information (spatial
information) and the motion information (temporal information) of fish to improve the
detection accuracy of fish in complex underwater environments and occlusion conditions.
On the other hand, compared with object detection in images, the association and tracking
of the same object between different video frames can prevent duplicate counts of the
same object.

Regarding spatial-temporal information fusion, some studies have been proposed
to combine DL and handcrafted feature extraction methods to fuse spatial-temporal in-
formation from videos for better fish detection. For example, Salman et al. [74] used the
Gaussian mixture model (GMM) and optical flow to extract motion information of fish in
unconstrained underwater videos, which was then combined with grayscale images as
the input to a Faster R-CNN to generate fish candidate regions. As a result, they achieved
an F1-Score of 87.44% and 80.02% on the FCS and LifeCLEF 2015 datasets, respectively.
The experimental results demonstrate that the method is superior to various image-based
fish detection methods. However, the GMM algorithm is sensitive to noise and other envi-
ronmental factors variations. To solve this problem, Ben et al. [28] proposed multi-stream
fusion methods consisting of two Faster R-CNN models sharing the same RPN or the same
classifier. This method used two streams to merge appearance information from the RGB
image and motion information from the optical flow to detect the moving fish in the ocean,
achieving a mAP of 73.69% and F1-Score of 83.16% on the LifeCLEF2015 dataset.
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Methods for associating individual fish in videos to reduce duplicate counts generally
obey a detection-tracking framework, as shown in Figure 4, where an object detection
network is utilized to detect individual fish in different video frames. Then a tracking
algorithm is used to correlate detection results in the video to generate the tracking results.
Finally, the number of fish can be calculated by counting the number of trajectories. Cur-
rently, some studies mainly focus on single-class multi-target fish detection and tracking.
Levy et al. [75] adopted RetinaNet that is a one-stage CNN detector as the object detector
to detect the fish in underwater video frames, then used the simple online real-time tracker
(SORT) as the object tracker to connect detections of the same fish, which achieved an AP
of 74%. Arvind et al. [41] applied Mask R-CNN and the GOTURN tracking algorithm to
detect and track fish in videos taken by unmanned aerial vehicles (UAV) above the tank,
reaching an F1 score of 91% and 16 FPS. Mohamed et al. [76] used YOLO and an optical
flow algorithm to track the goldfish in the fishpond. However, tracking after all detected
results cannot meet the real-time requirements. Regarding multi-class multi-target fish
detection and tracking, Liu et al. [29] proposed a two-branch DNN based on YOLOV4
to simultaneously detect and track underwater multi-class fish in a real marine ranch
environment real-time. The detection speed of this method reached 33 FPS, which met the
real-time requirements and achieved an accuracy of fish stock statistics of 95.6%.
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Judging from the aforementioned literature, considering both spatial and temporal
information has been proven to be an effective way to improve the detection accuracy of
fish, while how to fuse these two types of information and apply it to real aquaculture
environments needs further research. Moreover, lightweight one-stage object detection
algorithms have become the preferred method for the detection-tracking framework of fish
and have achieved satisfactory results. However, the challenge of tracking loss and errors
due to fish deformation, mutual occlusion, and sudden movements still persists. In the
future, enhancing the accuracy of the detection branch can facilitate the tracking of accurate
targets. Additionally, Correcting missed and false detection in trajectories can be used to
ensure error-free trajectory tracking. Furthermore, most current studies focus on tracking
a single category of the target, while the issue of target category imbalance in multi-class
target tracking merits carefully investigated in the future.

4.2. Fish Body Length Measurement

The body length of fish in aquaculture is not only crucial basic information to represent
the growth status of fish but also an important indicator of product grading [77–79]. Since
the longitudinal length of the ideal object detection bounding box predicted by the DL-
based object detection algorithms corresponds to the distal extremes of the morphological
features representing the body length of the fish, which has become the preferred method
for measuring the body length of fish, especially, Mask R-CNN can perform fish detection
and body area segmentation simultaneously using one network structure, which has been
widely used in fish body length measurement. A typical Mask R-CNN-based fish detection
architecture is shown in Figure 5. Existing studies related to fish body length measurement
mainly considered image data. According to the image acquisition method, existing fish
body length measurement methods can be divided into monocular and stereo vision-based.
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Table 4 details the relevant fish body length measurement studies using DL-based object
techniques.
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Table 4. Summary of DL-based object detection techniques applied in fish body length measurement.

Camera References Approaches Fish Species Data
Preprocessing Results

Monocular
camera

Monkman
et al. [30] R-CNN European sea bass N/A Mean bias error = 2.2%

Álvarez-Ellacuría
et al. [31]

Mask R-CNN
+ Statistical models European hake N/A Root-mean-square

deviation = 1.9 cm

Palmer et al. [80] Mask R-CNN
+ Statistical model Dolphinfish N/A

The square root of the
mean squared

deviation = 2.4 cm

Stereo
camera

Huang et al. [81]

Mask R-CNN +
GrabCut + 3D
cloud points +

Coordinate
transformation

Porphyry
seabream N/A

Average error = 5.5 mm
(length);

Average error = 2.7 mm
(width)

Garcia et al. [49]

Mask R-CNN +
Local gradient +
Morphological

operations +
Curve fitting

Saithe;
Blue whiting;

Redfish;
Atlantic mackerel;

Velvet belly
lanternshark;
Norway pout;

Atlantic herring

Image
linearization.
Correction of
non-uniform

lighting

The average IOU = 0.89
(single fish);

The average IOU = 0.79
(Overlapping fish)

4.2.1. Monocular Vision-Based Fish Body Length Measurement

Monocular cameras can be combined with DL-based object detection techniques to
measure the body length of harvested fish from images collected in diverse environments
with limited space, such as the decks of vessels and fish boxes. Monkman et al. [30] utilized
three R-CNN architectures based on NASNet, ResNet-101, and MobileNet to detect the
fusiform fish on the shore and calculate the total length of the fusiform fish based on
the real-world length per pixel provided by the ArUco fiducial markers. They achieved
a percent mean bias error of 2.2%. However, the fish are obscured from each other in
most cases, and only a few fish get a full view. In contrast, many complete fish heads are
visible in the images. Therefore, Álvarez-Ellacuría et al. [31] utilized Mask R-CNN to detect
European hake heads from images of fish boxes and developed different statistical models
that permit the estimation of the entire length of European based on the detected heads’
length. For fish with average lengths ranging from 20–40 cm, the maximum deviation
between the predicted value of this method and the real measured mean body length
value of fish was 4.0 cm. However, it remains difficult for this method to address cases
where the complete fish head is not visible. To overcome this issue, Palmer et al. [80] used
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MaskR-CNN to count the number of dolphinfish (Coryphaena hippurus) in each fish box,
then developed a statistical model to predict the mean length of the dolphinfish based on
the weight of the box and the number of dolphinfishes.

Judging from the aforementioned literature, typical two-stage target detection architec-
tures can effectively identify and locate the head and body of harvested fish. Nevertheless,
there is still room for refinement regarding the precision of fish length measurement and
detection speed. The main challenges lie in the pose of fish, occlusion, and complex back-
ground environment. In addition to human intervention, image preprocessing methods
based on DL techniques may effectively solve these problems. Lightweight instances
segment networks, such as YOLAT [82] and SOLO [83], merit further investigation. In
addition, recent studies have indicated a strong correlation between the body weights of
fish and their biometric characteristics, such as length, width, and height [84,85].

4.2.2. Stereo Vision-Based Fish Body Length Measurement

The binocular camera can reconstruct the 3D information of the image and be com-
bined with the DL-based object detection techniques to perform automatic measurements
of underwater fish without constraining their movement. Huang [81] extracted the 3D
cloud points of fish based on the segmentation results in stereo images obtained by Make
R-CNN and Grabcut, then applied the coordinate transformations to get the dimensions
of multiple fish with various orientations and positions in the image. They conducted
experiments d on a dataset collected from a lab. The average error of the method for fish
length and width measurement was around 5.5 mm and 2.7 mm, respectively. However,
this method assumes that the outline of the fish is co-plane, which imposes restrictions
on the measured position of the fish. For a more complex and uncontrolled real-world
marine environment, Garcia [49] utilized Mask R-CNN and local gradient to automatically
segment individual fish in stereo images obtained by the deep vision imaging system
placed in the trawl. Then, they used morphological operations, curve fitting, and stereo
information to estimate the fish skeleton and the total length of the fish. It achieved the
average IoU values of 0.79 and 0.89 for overlapping and non-overlapping fish, respectively.
However, verifying the accuracy of the predicted fish length is difficult.

Judging from the aforementioned literature, existing studies utilizing stereo vision
technology and Mask R-CNN for measuring the body length of fish have yielded satis-
factory results in controlled and ideal experimental scenarios. However, measuring the
dimensions of fish in real-world unconstrained aquaculture remains challenging, mainly
due to occlusion and fish bending. Therefore, in the future, it is necessary to develop more
advanced object detection algorithms that possess powerful fish discriminative feature
extraction capabilities, to measure the length of fish and the weight of the fish accurately
and quickly in actual intensive aquaculture. Moreover, the potential of DL-based object
detection techniques for biomass prediction of fish needs to be carefully researched [86].

4.3. Individual Fish Behavior Analysis

Fish typically respond to and interact with the environment through various behaviors.
Monitoring and analyzing fish behavior changes in aquaculture are vital for evaluating
fish health and welfare, guiding feeding, and reducing water pollution [87,88]. Typical fish
behavior includes abnormal feeding, swimming, and reproductive behavior, which can be
classified into individual and group behaviors. Regarding fish population behavior analysis,
DL-based image classification methods have been widely used to classify fish aggregation
and dispersion states in images to identify the different behaviors of fish populations [89,90].
In this section, we mainly focused on individual fish behavior analysis. Locating and
identifying specific behaviors of individuals in a fish population is challenging for high-
density commercial aquaculture. In recent years, DL-based object detection algorithms
have been increasingly applied to individual behavior analysis of fish. Table 5 details
the relevant individual fish behavior analysis studies using DL-based object techniques.



J. Mar. Sci. Eng. 2023, 11, 867 14 of 21

Image and video processing are the two primary means of vision-based individual behavior
analysis of fish.

Table 5. Summary of DL-based object detection techniques applied in individual fish behavior
analysis.

Data References Approaches Fish Species
/Feed Behaviors Data

Preprocessing Results

Image

Hu et al. [32] Improved
YOLOv3

Crucian carp;
catfish

Hunger and
lack of
oxygen

behavior

CLAHE;
DWT;

Median filter;
Flipping;
Rotation;

Gaussian blurring;
Resize

Precision = 89.7%;
Recall = 88.4%;
IOU = 89.2%;

FPS = 240

Hu et al. [52] Improved
YOLOV4 Uneaten feed Feeding

status
CLAHE;
Mosaic

Precision = 94%;
Recall = 89%;

F1 Score = 91%;
AP50 = 92.61%

Video

Xu et al. [91] Faster R-CNN;
YOLOV3 Red goldfish

Fish behavior
in different
concentra-

tions of
ammonia

Random cutting

ACC = 98.13%
(Faster R-CNN);
ACC = 95.66%

(YOLOV3)

Wang et al. [33]
Improved
YOLOV5

+ SiamRPN++

Porphyry
seabream

Turning-over
behavior N/A

Detection:
AP50 = 99.4%;

Tracking
Precision = 76.7%

4.3.1. Image-Based Individual Fish Behavior Analysis

DL-based object detection algorithms with a classifier can describe and quantify the
behavior patterns of individual fish from images based on their visual characteristics,
such as appearance and morphology information. Hunger or lack of oxygen affects the
feeding and stress behavior of fish. Hu et al. [32] developed a lightweight DL architecture
(YOLOv3-Lite) to automatically detect the hunger and oxygenation behavior of crucian
carp and catfish in tanks. It used a lightweight MobileNetv2 as the backbone to simplify
detection. In addition, it introduced an improved spatial pyramid pooling block structure
and bounding box regression loss function to better identify the behaviors of multi-scale
fish. They achieved a processing speed of 240 FPS and a precision of 89.7%. However,
the research was conducted in a controlled indoor environment. The actual outdoor
aquaculture environments usually are more complex, including complex backgrounds
and dense fish populations, which is challenging for accurate individual fish behavior
detection in aquaculture. In addition, monitoring uneaten feed in underwater images can
indirectly assess the feeding status of fish. To overcome the detection challenges posed
by low-quality underwater images, large amounts of, and highly small-sized feed pellets,
Hu et al. [52] designed an improved YOLOV4 to accurately detect underwater feed pellets
in maricultural net cages with Adult Atlantic salmon. The improved YOLO-V4 used a
finer-grained feature map, dense connection, and a de-redundancy operation to improve
the detection accuracy of uneaten feed pellets, reaching a precision of 94%.

Judging from the aforementioned literature, further investigation is required to ana-
lyze the individual feeding behavior of fish in the actual intensive breeding environment.
The challenges encountered by DL-based object detection algorithms for image-based
individual fish behavior analysis in aquaculture mainly come from complex background
interference, frequent occlusions, and appearance variation of fish. Therefore, more ad-
vanced methods suitable for achieving a balance between detection speed and detection
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accuracy must be proposed for various scenarios. Additionally, due to the constraints
posed by dataset acquisition conditions and fish behavior, data imbalance across different
fish behaviors is common. Therefore, in the future, the methods that are suitable for small
sample datasets are worth researching.

4.3.2. Video-Based Individual Fish Behavior Analysis

The behaviors of fish in the videos are continuous and temporally correlated. Therefore,
extracting and analyzing individual fish movement trajectories from underwater videos
can effectively evaluate fish behavior patterns and underlying regularities. To analyze the
individual behavior of red goldfish under different ammonia concentrations, Xu et al. [91]
used Faster R-CNN and YOLOV3 to locate and identify red goldfish in underwater images.
Then they plotted the three-dimensional spatial trajectories of red goldfish in different
concentrations of ammonia. The average recognition accuracy of Faster R-CNN is 98.13%,
which is superior to YOLO-V3. However, they are limited to the trajectory description of a
single fish in a container, which cannot identify different individuals in multiple fish. Thus,
individual fish associations across frames in multiple fish can be achieved by object tracking.
Wang et al. [33] used the improved YOLOV5 to detect the turning-over behavior of porphyry
seabream and used SiamRPN++ to track them. They modified the YOLOV5 architecture to
improve the detection precision of the small targets by incorporating multi-level features
and feature mapping. The detection precision AP50 of this method is 99.4%, and the
tracking precision is 76.7%. However, they used a single-target tracking algorithm to track
multiple underwater fish, and the algorithm gets slower as the number of fish increases.

Judging from the aforementioned literature, lightweight one-stage object detection
algorithms and trajectory tracking have been employed to effectively analyze the abnor-
mal behavior of fish. However, individual fish behavior analysis based on detection and
tracking in aquaculture still faces the challenges of high density and complex behavior
of fish. Furthermore, identifying fish behavior from individual video frames ignores the
correlation information of images acquired before and after fish movements. The integra-
tion of CNN and RNN can provide a powerful framework for extracting spatiotemporal
features that can facilitate improved identification and tracking of fish behavior in video
frames [92,93]. Moreover, these studies considered only one kind of abnormal behavior,
which is insufficient for practical application.

5. Performance Evaluation Metrics

Different evaluation metrics can quantitatively evaluate the performance of the al-
gorithm from different perspectives as well as guide the design of the algorithm. The
quantitative metrics employed in the related literature are listed in Table 6. Accuracy
(ACC), precision, recall, F1-score, mAP, and intersection over union (IOU) are the primary
evaluation metrics for object detection techniques [32,69,71]. In image-based fish counting
and body length measurement tasks, mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE) and mean absolute percentage error (MAPE) is used to
evaluate the performance of the algorithms [74,81]. ID switch and multiple objects tracking
accuracy (MOTA) are commonly used evaluation metrics when fish counting based on
object tracking in the video is performed [29]. Additionally, the detection speed of the algo-
rithm is also an important evaluation metric measured by FPS. Better results are measured
using larger ACC, precision, recall, F1-Score, IOU, and MOTA values and smaller MAE,
MSE, MAPE, RMSE, and ID switch values.
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Table 6. The evaluation metrics for DL-based models.

Evaluation Metrics Better Results Description

ACC Larger The ratio of the number of correctly identified samples to the total
number of identified samples

Precision Larger The ratio of correctly identified fish to all identified fish

Recall Larger The ratio of correctly identified fish to all fish in the sample

F1-Score Larger The harmonic means of precision and recall

mAP Larger Takes both precision and recall into consideration

IOU Larger The overlap rate between the candidate area and the ground truth area

MAE Smaller The expected value of the absolute difference between the predicted
value and the ground truth

MAPE Smaller Considers not only the error between the predicted value and the
ground truth but also the ratio between the error and the ground truth

MSE Smaller The expected value of the square of the difference between the
predicted value and the ground truth

RMSE Smaller The square root of the MSE

ID switch Smaller The average total number of times that a resulting trajectory switches
its matched ground-truth identity with another trajectory

MOTA Larger Combines false positives and missed targets and identifies switches

FPS Larger The number of images processed by the algorithm per second

6. Challenges and Future Perspectives

DL-based object detection, with its unique advantage of simultaneously identifying
fish categories and locations, has become a key technology in fish aquaculture. Generic
DL-based object detection architectures have yielded satisfactory fish counting, body
length measurement, and behavior analysis results. However, DL-based object detection
techniques in aquaculture practice still face various challenges.

(1) Complex environment and fish characteristics in real aquaculture make it difficult
for the DL-based object detection models to discriminate key information about fish, as
shown in Figure 6. For instance, in terms of complex environments, vision-based underwa-
ter images often show low contrast (Figure 6a) and uneven illumination (Figure 6b) due
to the scattering and absorption of light during underwater propagation. Moreover, the
images may contain multiple non-fish background interferences similar to fish (Figure 6c).
Regarding complex fish characteristics, the scale of the fish in the image may vary from a few
hundred pixels to several thousand pixels due to the camera perspective (Figure 6d). Fur-
thermore, the pose and shape of the fish may be distorted when it swims freely (Figure 6e).
In addition, fish may easily obscure each other in high-density scenes (Figure 6f).

(2) The DL-based object detection models with high detection accuracy are usually
limited by many operations and often require massive computing resources. Therefore,
embedding the lightweight DL-based object detection model into fish detection systems is
urgently needed for real-time fish monitoring in actual aquaculture environments.

(3) Most of the DL-based object detection models proposed by existing aquaculture-
related studies rely on large-scale labeled datasets for training to achieve outstanding per-
formance. However, annotating fish with dense distributions in images is time-consuming
and labour-intensive.
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(4) Other application fields that may have great potential include fish disease diagnosis
and biomass prediction. However, no research on DL-based object detection techniques
has been reported.

On this basis, we forecast the development trends of DL-based object detection tech-
niques in aquaculture, including:

(1) Advanced algorithms specifically for real aquaculture environments will serve fish
detection in complex aquaculture scenarios more effectively, which is a helpful research
direction. Incorporating both the spatial-temporal information of fish and various con-
textual information into the models, or utilizing background suppression techniques, are
promising approaches that can improve the effectiveness of fish detection in real-world
aquaculture settings.

(2) DNNs that balance detection speed and detection accuracy are worth investigat-
ing. Optimizing the architecture and parameters of the model or implementing model
compression techniques is practical.

(3) To alleviate the need for large-scale labeled data for DL-based object detection mod-
els, it is practical to study semi-supervised or unsupervised learning methods to perform
fish counting, body length measurement, and behavior analysis tasks in aquaculture [94].

(4) Besides the fish counting, body length measurement, and behavior analysis re-
viewed in this paper, DL-based object techniques applied to fish disease diagnosis [95,96]
and fish biomass prediction are also worth investigating. GAN can augment the sample
size of the fish to be detected, e.g., diseased fish and normal fish.

7. Conclusions

This study reviewed the application of DL-based object detection techniques in fish
aquaculture, focusing on fish counting, body length measurement, and individual behavior
analysis. The research status was concluded from two aspects: image and video analysis.
The technical details of the DL-based object detection techniques in aquaculture were also
summarized, including the dataset, image preprocessing methods, typical DL-based object
detection algorithms, and evaluation metrics. Finally, the challenges and potential trends
of DL-based object detection techniques in aquaculture were concluded and discussed to
provide a reference for developing DL techniques in fish monitoring. The review shows that
generic DL-based object detection architectures have played important roles in aquaculture.

However, fish detection in real aquaculture practice still faces various challenges,
such as the complex background environment and fish characteristics, real-time detection
requirements, the lack of large-scale labeled datasets, and unexplored research areas. In the
future, it is practical to develop more advanced algorithms with high accuracy and real-time
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detection speed designed explicitly for real aquaculture environments. To alleviate the
need for large-scale labeled data for DL-based object detection models, semi-supervised
or unsupervised algorithms are feasible. In addition, it is worthwhile to further apply
DL-based object technology in fish disease diagnosis and biomass prediction.
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