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Abstract: Underwater acoustic localization (UWAL) is extremely challenging due to the multipath
nature of extreme underwater environments, the sensor position uncertainty caused by unpredictable
ocean currents, and the lack of underwater observation data due to sparse array, which all affect
localization performance. Addressing these issues, this paper proposes a simple and effective
underwater acoustic localization method using the time difference of arrival (TDOA) measurements
based on the multipath channel effect of the underwater environment. By introducing the calibration
source, localization performance was improved, and the sensor position error was corrected. The
Cramér–Rao lower bound (CRLB) was derived, and the proposed method was able to achieve
the CRLB with small deviation. Numerical simulations confirm the improved performance of the
proposed method, including (1) a 20 dB and 30 dB reduction in the CRLB for far and near source
scenarios, respectively, indicating improved accuracy and reliability when estimating unknown
sources; (2) better Mean Squared Error (MSE) performance compared to existing methods and an
efficiency of over 90% in low noise and above 80% in moderate noise in several scenarios, with a
delayed threshold effect; and (3) achieving CRLB performance with only three sensors in a 3D space,
even under moderate noise, while existing methods require at least five sensors for comparable
performance. Our results demonstrate the efficacy of the proposed method in enhancing the accuracy
and efficiency of source localization.

Keywords: Cramér–Rao lower bound (CRLB); multipath nature; sensor position uncertainty; time
difference of arrival (TDOA); calibration source

1. Introduction and Related Works
1.1. Introduction

Underwater acoustic localization (UWAL) has always been the research focus of
ocean detection technology, which is widely used in underwater navigation, autonomous
underwater vehicle monitoring, and black box searching [1–6]. UWAL is a challenging
task due to the harsh and dynamic underwater conditions that can affect the accuracy and
reliability of the localization system.

The existing UWAL methods are based on the complex Underwater Wireless Sensor
Networks (UWSNs) [7]. The modem used for underwater node communication, the
deployment of related sensor nodes, and clock synchronization are the key factors for the
robustness of UWSNS [8,9]. The selection and deployment of positioning nodes is also
a problem that many scholars are constantly exploring [8], and the requirement of clock
synchronization in positioning is directly related to the measurement method selected.

This paper considers a common passive acoustic target localization scenario in under-
water environments whereby the target emits signals, while sensors with known positions
receive the signals. In this scheme, the performance of the localization system is determined
by the types of measurements chosen and the positioning algorithm used.
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1.2. Related Works

The commonly used measurement types in passive positioning include the received
signal strength (RSS) [10,11], angle of arrival (AOA) [12,13], time of arrival (TOA) [14], time
difference of arrival (TDOA) [15–19], and frequency difference of arrival (FDOA) [2,20,21]
and their combinations [16,21]. Among them, RSS, TOA, and TDOA mainly provide the
acoustic propagation time-delay information between the target source and the sensor;
AOA and DOA give the angle parameters; and FDOA determines the relative speed
between the target and the sensor.

In general, RSS measurements have the advantages of simple calculation and low
equipment complexity. However, it becomes quite difficult for sensors to detect and receive
the energy of the signal due to the extreme and variable underwater environment; hence, the
RSS measurement is rarely considered for underwater acoustic localization. The localization
accuracy of TOA heavily relied on clock synchronization between the sensors and the target,
which is often not met in practice. Although AOA and DOA have low demand for this,
they are not often chosen due to their expensive antenna array and localization systems,
which are highly dependent on angular measurement accuracy. FDOA can only be applied
to the scene where there is relative motion between the underwater acoustic target and
the sensor array, and it is often combined with TDOA. In contrast, TDOA is widely used
in target locations due to its low dependence on clock synchronization, high positioning
accuracy, and low hardware cost.

The existing localization methods based on TDOA measurements can be divided
into three categories, namely the Taylor series expansion method [16,17], the semidefinite
programming (SDP) method [22,23], and the least squares (LS) method [24–28]. The Taylor
series method is often used in nonlinear equations, and its performance depends heavily
on the initial value. If the value is not appropriate, the result may fall into a local optimum.
The relaxation transformation of the SDP method is complicated and computationally
heavy in practical applications. Without the above disadvantages, LS methods are simple
and computationally efficient. The purpose of LS is to convert the nonlinear expression
into a linear one by introducing a nuisance variable. The weighted linear LS (WLS), the
weighted version of LS, is widely used due to its higher accuracy.

In [24], the classical two-step weighted least square method (TSWLS) is proposed,
which considers the constraint relationship between sensor parameters and target position
and is easy to calculate. This method can reach the CRLB under a low-noise condition.
However, with the increase in noise, the TSWLS algorithm will quickly deviate from the
CRLB, resulting in serious estimation errors. In [25], an improved TSWLS method is de-
rived, which directly processed the error term in the second stage, avoided the introduction
of pseudolinear equations, and improved positioning accuracy. Nevertheless, this method
still does not take into account the problem of sensor position errors in actual TDOA
localization. Especially in a complex and changeable underwater environment, it is almost
impossible for the sensor to remain stationary due to the influence of unpredictable ocean
currents [26]. A TSWLS method for sensor position error is presented in [27]; however, its
positioning accuracy was very limited. In [29], a three-step WLS method for sensor position
error was developed using a single calibration source, which significantly improved posi-
tioning accuracy and could reach the CRLB value under small noise. The above-mentioned
literature all assumes that the measurement value of TDOA and its measurement noise
are independent of each other. In [30], the correlation between these two parameters is
considered, and an iteratively reweighted generalized least squares (IRGLS) method is
proposed. Although this method improves localization performance, the complexity of the
problem increased to a large degree.

Obviously, none of these methods can directly be used in harsh underwater environ-
ments because the actual underwater acoustic channel is complex and the deployment of
underwater sensors is sparse, which increases the difficulty of acquiring observation data,
resulting in a serious shortage of underwater observation data. Admittedly, a large amount
of literature considered these problems. In [28], the authors Gong, Z. et al., proposed a
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location method based on the angle of arrival using underwater multipath signals, but this
method requires a large antenna array with very high cost [28]. Emokpae, L.E. et al., ana-
lyzed how Doppler frequency shift affects positioning accuracy in underwater multipath
channel positioning [31], Diez-Gonzalez, J. et al., identified direct path signals from under-
water multipath signals and positioned underwater targets based on TOA measurement,
but this method did not take advantage of the multipath properties of the underwater
environment [15]. Thus far, no literature combines underwater multipath nature with the
TSWLS method based on TDOA measurement for accurate localization of underwater
acoustic sources.

In this paper, we propose a new UWAL solution for the complex underwater environ-
ment to further enrich research in this field. The method aims at enhancing underwater
positioning accuracy by increasing the number of virtual sensors by exploiting the un-
derwater multipath effect. The proposed approach allows for the localization of a 3D
underwater target using only three sensors, leveraging the enriched measurement data of
TDOA provided by the multipath effect. An underwater calibration source is introduced to
correct the sensor position errors, which can benefit the accuracy of the positioning results.
The incorporation of a calibration source also yields more precise sensor location informa-
tion. An analytical solution based on the least squares method is provided, which requires
less computation than the SDP algorithm. The proposed method outperforms iterative
algorithms that cannot guarantee a global optimal solution due to improper initial value
selection and overcomes the limitations of the minimum number of sensors in traditional
TSWLS algorithms.

The rest of this paper is organized as follows. Section 2 presents the underwater
localization scenario and an underwater multipath signal model. Section 3 then derives
the CRLB corresponding to Section 2. Section 4 develops an efficient underwater mul-
tipath (MP) WSL localization algorithm. Section 5 analyzes the theoretical performance
of the proposed MP algorithm. Section 6 describes the simulation comparisons, which
confirm the effectiveness and accuracy of the proposed method. Finally, Section 7 provides
the conclusions.

To provide a quick reference, Table A1 in Appendix A summarizes the numerous
parameters and their definitions mentioned throughout the paper.

2. Proposed Localization Solution

In the real marine environment, the signals transmitted by unknown sources reach the
receiving sensors through multiple channels such as linear propagation and sea-surface
and seabed reflection.

In theory, the number of multipath signals tends to be infinite, but after multiple
reflections, the signal energy loss is often very serious and cannot be detected at the
receiving sensor. Moreover, it is not conducive to the extraction of TDOA information;
therefore, this paper only considers the primary and secondary reflections. Figure 1 shows
the propagation model.

The virtual sensor positions in Figure 1 can be considered as the mirror image of the
real sensor positions regarding the sea surface and the seabed.

As shown in Figure 1, a single unknown source is located at s = [x, y, z] ∈ R3, and M
receiving sensors are actually located at Ri,0 = [xi,0, yi,0, zi,0]

T ∈ R3(i = 2, . . . , M), but in
practice Ri,0 is unknown, and we can only obtain the measured value R′ i,0 with position
error wi. Ri,l = [xi,l , yi,l , zi,l ]

T ∈ R3(l = 0, 1, . . . , L = 4) represents the position of the virtual
sensor corresponding to the primary and secondary reflections of the sea surface and the
seabed, and ri,l denotes the distance between the sound source and the i-th sensor. Similarly,
rc

i is the distance between the calibration source at C = [xc
i , yc

i , zc
i ]

T and the i-th sensor.
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Figure 1. Underwater multipath signal location scenario.

In this paper, R1 is used as the reference sensor, only the TDOA that reaches the direct
meridian signal is calculated, and the multipath signal is taken at the other receiving sensors.

Assuming that s(t) is an unknown source signal, the multipath signal received by the
sensor can be written as

fi(t) = ∑ L
l=1αi,ls(t− Ti,l) + wi(t) (1)

where αi,l represents the attenuation coefficient of the l-th path, Ti,l represents the delay of
the l-th path, L is the number of multipaths, and wi(t) represents the noise function. In this
paper,wi(t) is assumed to be zero mean Gaussian white noise and is independent of s(t).

The TDOA value can be obtained by taking the direct path signal αls(t− Tl) in the
received signal fi(t) of the sensor as the reference signal and calculating the cross-correlation
between the direct path signal and each multipath signal. The cross-correlation function
between the signals is

Ci,l(τ) = E[( fi(t− τ))(α1s(t− T1))
∗]

= αi,0α∗1 Ai,l(τ + Ti,0 − T1) + αi,lα
∗
1 Ai,l(τ + Ti,l − T1)

(2)

where E(•) and (•)∗ represent the expected and complex conjugate of the function, respec-
tively, and A is the autocorrelation function of the signal s(t).

From Equation (2), the measured value of TDOA can be calculated as

∆Ti,l = arg maxCi,l(τ) = Ti,l − T1 + ni,l (3)

where ni is the TDOA measurement error and ni ∼ N (0, σi). The corresponding range
difference of arrival (RDOA) value is

r′ i1,l = c · ∆Ti,l = cTi,l − cT1 + cni
= ri,l − r1 + cni = ri1,l + ei,l

(4)

where c indicates the sound propagation speed, ri,l =
∥∥si,l − u

∥∥, r1 = ‖s1 − u‖, ‖•‖ is the
Euclidean distance norm, and ei denotes the RDOA measurement error.

3. Cramér–Rao Lower Bound

The Cramér–Rao lower bound (CRLB) is usually used to study the best estimation
accuracy that can be obtained in unbiased estimation, so the performance of parameter
estimation methods can be evaluated by whether it is close to the CRLB. In this section, we
first derive the optimal theoretical performance bound, namely the CRLB, of the location
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problem in this paper, derive the error covariance matrix of the proposed algorithm, and
then analyze and compare them.

For simplicity, several parameters can be rewritten into the matrix form

r′ = r + e (5)

where r′ = [r′21,0, r′21,1, . . . , r′21,L, . . . , r′M1,L]
T , r = [r21,0, r21,1, . . . , r21,L, . . . , rM1,L]

T ,
e = [e1, e2,0, . . . , e2,L, . . . , eM,L], and r′ ∼ N (r,Qα).

R′ = R +ω (6)

where R′ = [R′1,R′2,0, . . . , R′2,L, . . . , R′M,L], R = [R1,R2,0, . . . , R2,L, . . . , RM,L],

w = [w1, w2,0, . . . , w2,L, . . . , wM,L], and R′ ∼ N
(

R,Qβ

)
.

rc
i1,l = rc

i,l − rc
1 =

∥∥C−Ri,l
∥∥− ‖C−R1‖(i = 2, 3, . . . , M; l = 0, 1, . . . , L) (7)

rc ′ = rc + n (8)

where rc ′ = [rc
21,0
′, rc

21,1
′, . . . , rc

21,L
′, . . . , rc

M1
′]T , rc = [rc

21,0, rc
21,1, . . . , rc

21,L, . . . , rc
M1]

T ,
n = [n1, n2,0, . . . , n2,L, . . . , nM,L], and rc ′ ∼ N (r,Qc).

Let the parameter vector be θ = [s,R], ζ = [r′, R′, rc ′]. Since rc, R′, and rc ′ are Gaussian-
distributed and independent of each other, we can express the log-likelihood function of
the joint probability density function of the location scenario in Section 3 as

lnP(ξ; θ) = lnP(r′ |r ; Qα) + lnP(R′ |R ; Qβ) + lnP(rc ′|r′ ; Qc)

= K− 1
2 (r
′ − r)TQ−1

α (r′ − r)
− 1

2 (R
′ −R)TQ−1

β (R′ −R)

− 1
2 (r

c ′ − rc)TQ−1
α (rc ′ − rc)

(9)

where K is a constant independent of unknown parameters.
In the localization scenario of this paper, the CRLB can be expressed as

CRLB(θ) = I(θ)−1 (10)

The Fisher information matrix I(θ) is given as

I(θ) =
[

X11 X12
X21 X22

]
(11)

X11 = −E
[

∂lnP(ξ;θ)
∂s∂sT

]
= ( ∂r

∂s )
TQ−1

α ( ∂r
∂s )

X12 = −E
[

∂lnP(ξ;θ)

∂s∂RT

]
= ( ∂r

∂s )
TQ−1

α ( ∂r
∂R )

X21 = XT
12

X22 = −E
[

∂lnP(ξ;θ)

∂R∂RT

]
= ( ∂r

∂R )
TQ−1

α ( ∂r
∂R ) + Q−1

β + ( ∂rc

∂R )TQ−1
c ( ∂rc

∂R )

(12)

The partial derivatives are given as

∂ri1,l

∂s
=

[
(s−Ri,l)∥∥s−Ri,l

∥∥ − (s−R1)

‖s−R1‖

]
(13)



J. Mar. Sci. Eng. 2023, 11, 861 6 of 20

where ∂ri1,l
∂s is the (i− 1) row of ∂r

∂s ,i = 2, 3, . . . , M;

∂ri1,l

∂R
=

[
(s−R1)

‖s−R1‖

T
, 0T

1×[3(i−2)·(L+1)],−
(s−Ri,l)∥∥s−Ri,l

∥∥ T

, 0T
1×[3(M−i)·(L+1)]

]
(14)

where ∂ri1,l
∂R is the (i− 1) row of ∂r

∂R ,i = 2, 3, . . . , M; l = 0, 1, . . . , L; and

∂rc
i1

∂R
=

[
(C−R1)

‖C−R1‖

T
, 0T

1×[3(i−2)·(L+1)],−
(C−Ri,l)∥∥C−Ri,l

∥∥ T

, 0T
1×[3(M−i)·(L+1)]

]
(15)

where ∂rc
i1

∂R is the (i− 1) row of ∂rc

∂R ,i = 2, 3, . . . , M; l = 0, 1, . . . , L.
Finally, we can obtain

CRLB(s′) = [I(1 : 3, 1 : 3)]−1 (16)

4. Proposed Localization Solution

In this section, a closed-form localization algorithm is derived using underwater mul-
tipath signals combined with a single calibration source. Compared with the traditional
nonmultipath iterative method, this method greatly improves the localization performance of
the algorithm by adding virtual array elements, reduces the amount of calculation, avoids the
divergence of the algorithm or falling into the local optimal solution caused by the inappropri-
ate initial value, and reaches CRLB accuracy when the noise is relatively small.

The method proposed in this paper solves the nonlinear localization problem using
the following three steps. First, the number of virtual sensors is increased through the
introduction of multipath signals, and the sensor position error is corrected by the cali-
bration source. Second, the nuisance variables are introduced to transform the nonlinear
equations into pseudolinear equations for the solution. Finally, the estimation position
of the unknown source is further optimized by improving the estimation accuracy of the
interference variable. The implementation process of unknown source localization is shown
in Figure 2.

Figure 2. Implementation flow of unknown source localization.

Step 1: Sensor position error estimation and correction
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In the localization case of this paper, the measured sensors are located at R1
′ and

R′ i,0(i = 2, . . . , M), and their corresponding virtual sensors that pass the primary and
secondary reflections of the sea surface and the seabed are located at R′ i,1 = (xi, yi, 2h− zi),
R′ i,2 = (xi, yi,−zi), R′ i,3 = (xi, yi, 2h + zi), and R′ i,4 = (xi, yi,−2h + zi), respectively.

Combining Equations (7) and (8) above, we arrive at

rc′
i1,l =

∥∥C−Ri,l
∥∥− ‖C−R1‖+ ni,l(i = 2, 3, . . . , M; l = 0, 1, . . . , L) (17)

In this paper, the true position Ri,l of the sensors is unknown, and we can only obtain
R′ i,L with the position error. For the above highly nonlinear function of the unknown, let us
linearize

∥∥C−Ri,l
∥∥ and ‖C−R1‖ by using the Taylor series expansion up to the linear term

rc′
i1,l =

∥∥C−R′ i,l +ωi,l
∥∥− ‖C−R′1 +ω1‖+ ni,l

=
∥∥C−R′ i,l

∥∥+ (C−R′ i,l)
‖C−R′ i,l‖ωi,l − (‖C−R′1‖+ (C−R′1)

‖C−R′1‖
ω1) + ni,l

(18)

The RDOA error εc caused by sensor position error can be expressed as

εc = rc
i1,l
′ − (

∥∥C−R′ i,l
∥∥− ‖C−R′1‖)

=
(C−R′ i,l)
‖C−R′ i,l‖ωi,l −

(C−R′1)
‖C−R′1‖

ω1 + ni,l
(19)

Equation (19) can be rewritten in a matrix form as

hc = Acω+ n (20)

where on the right side is

Ac[j, :] = [− (C−R′1)
‖C−R′1‖

, 0T
1×3(i−2)·L, (C−R′ i,l)

‖C−R′ i,l‖ , 0T
1×3(M−2)·L]

(j = (i− 2)L + (l + 1))
(21)

and on the left side is

hc =


rc′

21,0 − (‖C−R′2,0‖ − ‖C−R′1‖)
. . .

rc′
21,L − (‖C−R′2,L‖ − ‖C−R′1‖)

. . .
rc′

M1,L − (‖C−R′M,L‖ − ‖C−R′1‖)

 (22)

From the Bayesian linear model [32], because E(ω) = 0 and Qc are independent ofω,
the linear minimum mean square error solution to Equation (20) is

ω=(Q−1
β +AT

c Q−1
c Ac)

−1AT
c Q−1

c hc (23)

The estimation error in this step is

∆ω =ω−ω (24)

so that
E(∆ω) ' 0

cov(∆ω) ' (Q−1
β + AT

c Q−1
c Ac)

−1 (25)

The receiving sensors after position calibration are at

R′ = R′ −ω (26)
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Hence,
cov(R′)− cov(R′) = cov(ω)− cov(ω)

= Q−1
β − (Q−1

β +AT
c Q−1

c Ac)
−1 (27)

It can be easily concluded that Equation (9) is a positive semidefinite matrix, indicating that
the multipath calibration TDOA measurement method can improve the sensor position error.

Step 2: Preliminary estimation of the source location
After rewriting the RDOA (4) as ri,l = ri1,l + r1, squaring both sides, substituting

ri,l =
∥∥si,l −Ri,l

∥∥ and r1 = ‖s1 −R1‖, and ignoring the second-order noise terms form,
after simplification we obtain

RT
i,lRi,l − 2(Ri,l −R1)

Ts−RT
1 R1 = r′2i1,l + 2r′ i1,lr1 − 2r′ i,lni1,l (28)

Arrange the error items on the right side of the equation:

2r′ i,lni1,l = r′2i1,l + 2r′ i1,lr1 −RT
i,lRi,l + RT

1 R1 + 2(Ri,l −R1)
Ts (29)

The true values Ri,l and R1 of Equation (29) are unknown. Combining Equations (6),
(24) and (26), we can obtain

R = R + ∆ω (30)

Taking Equation (30) into (9), expanding it at r1 by using the Taylor series, and ignoring
the second-order error terms, we can obtain

2r′ i,lni1,l = r′2i1,l + 2r′ i1,lr1 −R′Ti,lR′ i,l − 2(s−R′ i,l)T · ∆ωi

+2(R′ i,l −R′1)Ts + R′T1 R′1 + 2[ (s−R′1)
‖s−R′1‖ r′ i1,l + s−R′1] · ∆ω1

(31)

where r1 =
∥∥s−R1

∥∥. Classifying the error items of Equation (31), we obtain

2r′ i,lni1,l + 2(s−R′ i,l)T · ∆ωi − 2[ (s−R′1)
‖s−R′1‖ r′ i1,l + s′ −R′1] · ∆ω1

= r′2i1,l + 2r′ i1,lr1 −R′Ti,lR′ i,l + R′T1 R′1 + 2(R′ i,l −R′1)Ts
(32)

We define the unknown vector ϕ1 = [sT , r1]
T , assume that sT and r1 are independent,

and form a set of linear equations

P1n + F1∆ω ' h1 −A1 ϕ1 (33)

where P1 is a diagonal matrix with a diagonal element R′ i,l , F1 = [Γ1; Γ2], Γ1 is an (M-1)L-

dimensional vector with (s−R′1)
‖s−R′1‖ r′ i1,l − (s−R′1)

T as the element, Γ2 is a diagonal matrix

with diagonal element (s−R′ i,l)
T , h1 is an (M-1)L-dimensional vector r′2i1,l − R′Ti,lR′ i,l +

R′T1 R′1, and A1[(i− 2)L + (l + 1), :] = −2
[
(R′ i,l −R′1)

T , r′ i1,l

]
.

The weighted least squares (WLS) estimate for Equation (33) is

ϕ1 = (AT
1 W1A1)

−1
AT

1 W1h1 (34)

where W1 is the weighting matrix:

W1 = P1QαPT
1 + F1(Q−1

β + AT
c Q−1

c Ac)
−1

FT
1 (35)

When the measurement noise is small relative to the true value, the noise effect in A1,
P1, and F1 can be ignored. The estimation error of ϕ1 is

∆ϕ1 = ϕ1 −ϕ1 ' (AT
1 W1A1)

−1
AT

1 W1(P1n + F1∆ω) (36)
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so that
E(∆ϕ1) ' 0

cov(ϕ1) ' (AT
1 W1A1)

−1 (37)

In practice, W1 is actually unknown. We set W1 = Q−1
α , obtain the initial estimate of

s from Equation (34) and the updated sensor position using Equation (26), generate W1
again, and calculate the improved estimate of ϕ1. We can repeat the above process two or
three times to obtain better ϕ1.

The solution in this step does not consider the relationship between s and r1, and the
precision of ϕ1 cannot reach the best CRLB performance. The next step is to explore this
relationship to improve the localization performance of the algorithm.

Step 3: Source location optimization
From the result of the previous stage, we can express ϕ1(1 : 3) as

ϕ1(1 : 3) = s + ∆ϕ1(1 : 3) (38)

where ϕ1(1 : 3) represents the first three elements of ϕ1 and ∆ϕ1(1 : 3) is the estimation
error of ϕ1(1 : 3).

For simplicity, let
z = ϕ1(1 : 3)−R′1 (39)

In this localization scenario, when ignoring the second-order error terms,

z� z =
(
s + ∆ϕ1(1 : 3)−R′1

)
�
(
s + ∆ϕ1(1 : 3)−R′1

)
= (s−R′1)� (s−R′1) + 2

(
s−R′1

)
� ∆ϕ1(1 : 3)

(40)

The fourth element of ϕ1 can be expressed as

ϕ1(4)2 = (r1 + ∆ϕ1(4))2

' r1
2 + 2 · r1 · ∆ϕ1(4)

(41)

We can obtain a set of linear equations

P2·∆ϕ1 = h2 −A2ϕ2 (42)

where on the right side is

h2 =

[
z� z
ϕ2

1(4)

]
(43)

A2 =

[
I3

13×1

]
(44)

and on the left side is
P2 = 2diag[

(
s−R′1

)T , r1] (45)

The WLS estimate for Equation (45) is

ϕ2 = (A2W2A2)
−1AT

2 W2h2 (46)

and the weighting matrix is

W2 = (P2cov(ϕ1)P2
T)
−1

(47)

When the estimation error of ϕ1 is relatively small such that the noise in P2 is negligible,
the estimation error of the third stage is given by

∆ϕ2 = ϕ′2−ϕ2 ' (A2W2A2)
−1AT

2 W2P2∆ϕ1 (48)
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Hence,
E(∆ϕ2) = 0

cov(ϕ2) = (A2W2A2)
−1 (49)

Finally, the source position is obtained by

s′ = sign(z)�
√
ϕ2 + R′1 (50)

After ignoring the second-order term, the localization error of the proposed method
can be expressed as

∆s′ ' P3
−1∆ϕ2 (51)

where
P3 = 2diag(s−R′1) (52)

Therefore, we obtain
E(∆s′) = 0

cov(s′) ' P−1
3 cov(ϕ2)P−T

3
(53)

Algorithm 1 summarizes the proposed closed-form estimator.
For the 3D positioning scenario considered in this paper, it can be shown that the

accuracy of the improved sensor position vector obtained by the proposed method can
reach the CRLB. Due to the introduction of multipath signals, only two sensors are needed
to obtain an accurate sound source estimation position.

Algorithm 1: The proposed closed-form estimator

Input: Sensor position parameters R′ i,l and R′0, a set of measurements TDOA, sea depth h, the
sound propagation speed c, covariance matrix Qα, Qβ, Qc
Output: Corrected values of sensor positions R′ and estimated value s of single sound source location
First step processing:
1: Obtain the virtual sensor positions R′ i,l
2: Calculate the corrected sensor position vector R
Second step processing:
3: Initialize W1 = Q−1

α and then update W1
4: For i = 1 to N (N is the number of iterations)
5: Obtain ϕ1 using (34)
6: substitute ϕ1 in (35) to update W1
7: End For
Third step processing:
8: Compute cov(ϕ1) by (37)
9: Calculate P2 and obtaining W2 using (47).
10: For i = 1 to N (N is the number of iterations)
11: compute ϕ2 from (46)
12: applying (46) to generate the estimates;
13: substitut ϕ2 in (35) to update W2
14: Compute s by (50)
15: End For

5. Performance Analysis

This section evaluates the performance of the three-step method proposed in this
paper and proves that the algorithm is valid in the near-field condition and in relatively
small noise conditions.
The positioning geometry model of TDOA determines the limitation of near-field conditions.
By comparing the absolute time difference between the signal and each sensor, a hyperbola
can be obtained, with a pair of sensors as the focus and the distance difference as the long
axis. The intersection point of the hyperbola is the location of the unknown source. More
specifically, if the ratio between the distance from the target to the sensor array and the
baseline is greater than 58 and if the angle between the signal sent from the target and the
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two ends of the sensor array is less than 1 degree, the target is located in the far field [33].
For far-field sources, the wave front turns to linear because it is too far away from the
sensor. The hyperbolic arcs from the sensor pairs become almost parallel and intersect at
very small angles. In this case, the TDOA algorithm is invalid.

According to the partitioned matrix inversion formula [33] and the CRLB(s′) given in
Equation (16), we obtain

CRLB(s′)−1
= [X11 − X12X−1

22 X21]
−1

(54)

Bringing Equations (49) and (47) into the second line in Equation (53), we obtain

cov(s′)−1
= PT

3 AT
2 P−1

2 AT
1 W1A1P−1

2 AT
2 PT

3 (55)

According to Equation (35)

W1 = P−T
1 [Qα + P−1

1 F1(Q
−1
β + AT

c Q−1
c Ac)

−1
FT

1 P−T
1 ]P−1

1 (56)

Hence

cov(s′)−1 = PT
3 AT

2 P−T
2 AT

1 P−T
1 Q−1

α P−1
1 A1P−1

2 A2P3 − (PT
3 AT

2 P−T
2 AT

1 P−T
1 Q−1

α P−1
1 F1

1)

(Q−1
β + AT

c Q−1
c Ac + FT

1 P−T
1 )(PT

3 AT
2 P−T

2 AT
1 P−T

1 Q−1
α P−1

1 F1)
(57)

For simplicity, let

cov(s′)−1
= DT

1 Q−1
α D1 − (DT

1 Q−1
α D2)(Q−1

β + AT
c Q−1

c Ac + DT
2 Q−1

α D2) (58)

where
D1 = P−1

1 A1P−1
2 A2P3 (59)

D2 = P−1
1 F1 (60)

We transform and approximate the form of cov(s′)−1 to compare the covariance matrix
cov(s′)−1 with CRLB(s′)−1.

Putting A1, P1 of Equation (33), A2 of Equation (44), P−1
2 of Equation (45), and P3 of

Equation (52) into Equation (59), respectively, we obtain

D1 =

[
(s−R′ i,l)

T

ri,l
− (s−R′1)

T

ri,l
−

r′ i,l
ri,l

]
×

 I
(s−R′1)

T

‖s−R′1‖

 (61)

When r1 � ri,l i = 2, . . . , M; l = 0, . . . , L and noise is small, we obtain

D1 '
[ (

s−R′ i,l
)T

‖s−R′ i,l‖
− r1

ri,l
·
(

s−R′1
)T

‖s−R′1‖
−
(

1− r1
ri,l

)]
×

 I(
s−R′1

)T

‖s−R′1‖


=

(
s−R′ i,l

)T

‖s−R′ i,l‖
−
(

s−R′1
)T

‖s−R′1‖
' (s−Ri,l)

T

‖s−Ri,l‖
− (s−R1)

T

‖s−R1‖

= ∂r
∂s

(62)
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According to Equations (33) and (21), we obtain

D1[j, :] =
[
−
(

1− r1
ri,l

) (s−R′1
)T

‖s−R′1‖
− r1

ri,l

(
s−R′1

)T

‖s−R′1‖
0T

(
s−R′ i,l

)T

ri,l
0T

]
'
[
− (s−R1)

T

‖s−R1‖
0T (s−Ri,l)

T

‖s−Ri,l‖
0T

]
= −

(
∂r
∂R

)
(j = (i− 2)L + (l + 1))

(63)

Ac '
[
− (C−R1)

T

‖C−R1‖
0T (C−Ri,l)

T

‖C−Ri,l‖ 0T
]

= −
(

∂rc

∂R

) (64)

Finally, we can obtain
cov(s′)−1 ' CRLB(s′)−1 (65)

Therefore, we can summarize three conditions, namely (i) the near-field condition,
(ii) r1 � ri,l i = 2, . . . , M; l = 0, . . . , L, and (iii) the low-noise condition.

When the above three conditions are satisfied, the above derivation is valid. The
near-field condition indicates that the unknown sound source is close to the sensors, and in
practice the sensor nearest to the unknown source is often selected as the reference source.

6. Simulation Results and Discussion

The performance of the proposed method is evaluated through different simulations
with the aim of verifying the theoretical results and comparing the proposed method
with the CRLB and similar methods [29] without considering multipath signals. All
positioning scenarios are set in a 3D underwater space, with a water depth of h = 500 m,
an acoustic propagation speed of c = 1500 m/s, the unknown acoustic source located at s,
and M sensors at R′ i0. The TDOA measurements are generated by adding zero mean white
Gaussian noise to the true values with covariance Qα = Qc = 0.5σ2

r (13ML×3ML + I3ML) and
Qβ = σ2

RI3ML. The mean squared error (MSE) is used as the standard for this performance

evaluation and is defined as MSE = ∑K
k=1

(
s′k − s

)
, where K = 5000 is the number of Monte

Carlo ensemble runs and s′k is the estimate of the acoustic source position at ensemble k.
We simulated the algorithm presented in this paper using MATLAB and compared its

performance with that of existing algorithms.

Simulation 1. A far underwater acoustic target and a near calibrated source.

Figure 3 shows the performance of the proposed multipath (MP) solution and CE
solution [29] as the value of the sensor position error σ2

s /σ2
r increases, where the distant

unknown underwater acoustic source is located at s = [3000, 2300, 300] and the near cali-
bration source is located at C1 = [2500, 2450, 170]. For the convenience of comparison, the
CRLB when the sensor position is accurately known (marked with AKR) is also presented.

The proposed MP closed form and CE solutions follow the CRLB performance well
until σ2

s /σ2
r = 45 dB. The thresholding effect occurs earlier in the CE method, which is due

to the nonlinear nature of the estimation problem.
Table 1 displays the percentage efficiency of CE and MP methods across diverse noise

levels in the scenario of Simulation 1. Efficiency is defined as the ratio of the estimated
positioning error to the CRLB. The results reveal that the efficiency ratio of CE and MP
algorithms can exceed 90% under low−noise conditions. However, as the noise level and
the CRLB escalate, the algorithm’s efficiency percentage declines, and, the CE’s localization
efficiency abruptly drops under moderate noise due to the thresholding effect.
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Figure 3. Performance of a far acoustic target and a near calibration source.

Table 1. Efficiency percentage of CE and MP methods (Simulation 1).

σ2
R/σ2

r (dB) −30 −10 10 30 50

Efficiency
percentage (%)

CE 93.2 95.7 89.1 79.3 52.3

MP 97.3 91.8 94.2 92.9 87.2

Notably, as the sensor position error increases, the MP method always provides an im-
provement of about 20 dB in localization performance. This is attributable to the introduction
of virtual sensors and source calibration in the MP method, which greatly reduces the CRLB
of the multipath method and hence significantly improves localization performance.

Simulation 2. A far underwater acoustic target and a far calibrated source.

The conditions shown in Figure 4 are consistent with those shown in Figure 3 except
that the calibration source is located at C2 = [300, 500, 200], farther away from the under-
water acoustic source. The proposed multipath and CE solutions follow the performance
well when the value is σ2

s /σ2
r ≤ 45 dB. Moreover, the MP solution has better behavior in

staying with the CRLB when the sensor position error is large, while the performance of
the CE method suddenly deteriorates. This is because the calibration source is far away
from the acoustic source, which greatly reduces the overall positioning accuracy, resulting
in the thresholding effect that appears earlier compared to Simulation 1.

The results presented in Table 2 demonstrate that in this simulation scenario, the MP
method achieves a positioning efficiency of over 80% under moderate noise, which out-
performs the CE algorithm by a considerable margin. This is due to the CE algorithm’s
performance deterioration with increased distance from the calibration source, while the MP
method offers distinct advantages. Moreover, the MP method exhibits better adherence to the
CRLB and consistently maintains high efficiency, making it superior in the general trend.

Table 2. Efficiency percentage of CE and MP methods (Simulation 2).

σ2
R/σ2

r (dB) −30 −10 10 30 50

Efficiency
percentage (%)

CE 94.9 87.9 89.1 63.3 22.3

MP 92.1 93.5 95.7 86.9 79.6
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Figure 4. Performance of a far acoustic target and a far calibration source.

Simulation 3. A near underwater acoustic target and a far calibration source.

Simulation 4. A near underwater acoustic target and a far calibration source.

Figures 5 and 6 compare the performance of the two algorithms when the target source
is located at s = [550, 780,−200] closer to the sensor array and the calibration source is
located at C1 and C2, respectively. This again verifies that the estimated performance is
better when the calibration source is closer to the underwater acoustic source. By comparing
these two figures with Figures 3 and 4, it can be seen that the performance of the near
source is much better than that of the far source and that the thresholding effect appears
later. The thresholding phenomenon here refers to the estimation performance that could
suddenly deviate from the optimum accuracy defined by the CRLB when the noise level
becomes large or when the source is moving away from the sensors. This is because the
classical TDOA localization algorithm estimates the position of the target under the near-
field assumption while the target is far away from the sensor network. As a result, the
performance of the algorithm will deteriorate to varying degrees.

Figure 5. Performance of a near acoustic target and a far calibration source.
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Figure 6. Performance of a near acoustic target and a near calibration source.

Tables 3 and 4 reveal that both the CE and MP algorithms exhibit high efficiency in the
Simulations 3 and 4 scenarios, despite the rapid decline in the efficiency of the CE algorithm
due to the threshold effect. The MP method exhibits an efficiency of over 90%, while the
CE algorithm achieves an efficiency of more than 80% prior to the onset of the thresholding
effect. It is important to note that the proposed algorithm in this paper outperforms other
methods in terms of adhering to the CRLB by consistently maintaining a CRLB advantage
of approximately 30 dB. These results suggest that the proposed algorithm is a more suitable
choice for localization applications in these scenarios.

Table 3. Efficiency percentage comparison table for CE and MP methods (Simulation 3).

σ2
R/σ2

r (dB) −30 −10 10 30 50

Efficiency
percentage (%)

CE 93.4 91.6 96.2 89.7 61.3

MP 96.8 93.9 95.1 92.6 89.9

Table 4. Efficiency percentage of CE and MP methods (Simulation 4).

σ2
R/σ2

r (dB) −30 −10 10 30 50

Efficiency
percentage (%)

CE 93.7 91.2 95.1 89.3 85.8

MP 92.3 96.2 96.7 93.1 90.9

Simulation 5: Minimum number of sensors.

In this scenario, the target source is located at s = [550, 780,−200] closer to the sensor
array, with the near calibration source located at C1 = [2500, 2450, 170]. We compare the
performance of both algorithms using simulations for 5, 4, and 3 sensors.

As illustrated in Figure 7, when the number of sensors is 5, the thresholding effect of
the CE method appears when the sensor position error is very small. When the number of
sensors is reduced to 4, the CE algorithm becomes inapplicable, as it fails to estimate the
location of the sound source.
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Figure 7. Performance with different numbers of sensors: (a) 5 sensors, (b) 4 sensors, (c) 3 sensors.

However, in sharp contrast, the MP method can follow the CRLB well in all three
subgraphs, and ideal positioning performance can be achieved by using just 3 sensors due
to the introduction of virtual sensors. This breaks the limitation that at least 5 sensors are
required for TSWLS-based methods in a 3D space.

Table 5 shows that with a reduction in the number of sensors to 4 or 3, the CE algorithm
becomes unsuitable for sound source localization, while the MP algorithm maintains an
efficiency of over 90% in low noise and above 80% in moderate noise. This is because the
CE algorithm relies on intermediate variables and requires at least 5sensors for accurate
localization, whereas the MP algorithm utilizes virtual sensors to enhance TDOA mea-
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surement information, making it effective even with only 3 sensors and ensuring high
localization efficiency.

Table 5. Efficiency percentage of the CE and MP methods (Simulation 5).

σ2
R/σ2

r (dB) −30 −10 10 30 50

Efficiency percentage (%)

5 sensors
CE 92.0 93.7 87.5 12 — 1

MP 97.3 95.1 97.1 93.5 88.5

4 sensors
CE — — — — —

MP 95 90 87.5 81.3 75.3

3 sensors
CE — — — — —

MP 89.3 93.2 86.5 80.3 78.2
1 An em dashe (—) indicate that the algorithm is invalid in this case.

7. Conclusions

This paper presents an improved UWAL multipath method using the WSL method
based on TDOA measurements, which solves the problem of lack of observation data
and floating sensor position in UWAL. The multipath method increased the number of
sensors by using the multipath nature of the underwater environment. At the same time, a
single calibration emission source with a known position is introduced to correct the sensor
position and improve positioning accuracy.

In the first stage of the algorithm, multipath signals are introduced to increase the
number of virtual elements, and a single calibration transmitting source is used to correct
the sensor position error to obtain a more accurate sensor position. In the second stage, the
nuisance variables are introduced to obtain the initial estimation of the underwater object.
In the final stage, the performance of the estimator is improved by using the nonlinear
relationship between the nuisance variables. The CRLB is also derived for the positioning
scenario in this paper. Theoretical analysis and simulation confirm that the proposed
algorithm can reach the CRLB at a low-noise level.

In addition, the proposed algorithm breaks through the limitation that the traditional
TDOA algorithm needs at least four sensors for positioning in a 3D space. The proposed
algorithm can locate the target with only three sensors, and the localization accuracy can
still reach the CRLB under conditions of small noise.

In underwater localization scenarios, the accuracy of TDOA-based positioning systems
can be significantly affected by the uncertainty of sound propagation speed. Since various
factors such as temperature, pressure, and salinity affect underwater acoustic propagation
speed, developing robust algorithms for real-time estimation of propagation speed based
on environmental factors is a potential direction for future research. Machine learning
techniques can also be incorporated into these algorithms to study the relationship between
environmental factors and propagation speed and improve the accuracy of estimation.
Another direction for future research is to investigate the impact of acoustic propagation
speed uncertainty on the performance of TDOA-based positioning systems. Quantifying
the influence of speed uncertainty on the accuracy of TDOA-based positioning systems can
help in developing appropriate mitigation strategies to account for this uncertainty.

In summary, developing algorithms for real-time estimation of acoustic propaga-
tion speed and investigating the impact of acoustic propagation speed can contribute to
enhancing the accuracy of TDOA-based positioning systems in underwater environments.
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Appendix A

The parameter definitions used are summarized in Table A1.

Table A1. Parameters and definition.

Parameters Definition

s Position of the single unknown source

C Position of the calibration source

M Number of sensors

R1 Position of the reference sensor

Ri,0 Position of the receiving sensors (i = 2, . . . , M)

Ri,l Position of the virtual sensor (l = 0, 1, . . . , L)

L Number of multipaths

R1
′ Position of the measured reference sensor

R′ i,0 Position of the measured receiving sensors

R′ i,l Position of the measured virtual sensor

r1 Distance between the sound source and the reference sensor

ri1,l Distance between the sound source and the i-th sensor

rc
i Distance between the calibration source and the i-th sensor

αi,l Attenuation coefficient of the l-th path

Ti,l Time delay of the -th path

wi(t) Noise function of the signal

s(t) Unknown source signal

Ci,l(τ) Cross-correlation function between the signals

(•)∗ Complex conjugate of the function

ni1 TDOA measurement error

ei1 RDOA measurement error

c Sound propagation speed
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Table A1. Cont.

Parameters Definition

r RDOA measurement vector, r = [r21,0, r21,1, . . . , r21,L, . . . , rM1,L]
T

e RDOA measurement noise vector, e = [e1, e2,0, . . . , e2,L, . . . , eM,L]

r′ r′ = r + e

R Sensor position vector, R = [R1,R2,0, . . . , R2,L, . . . , RM,L]

w Sensor position noise vector, w = [w1, w2,0, . . . , w2,L, . . . , wM,L]

R′ R′ = R +ω

rc RDOA measurement vector, rc = [rc
21,0, rc

21,1, . . . , rc
21,L, . . . , rc

M1]
T

n RDOA measurement noise vector, n = [n1, n2,0, . . . , n2,L, . . . , nM,L]

rc ′ rc ′ = rc + n

Qα Covariance matrix of r′,

Qβ Covariance matrix of R′

Qc Covariance matrix of rc ′

θ Parameter matrix of step 1 θ = [s,R]

εc RDOA error

hc Parameter matrix of step 1

Ac Parameter matrix of step 1

ω Sensor position error estimation

R′ Sensors position after calibration

∆ω Estimation error in step 1, ∆ω =ω−ω

ϕ1 Unknown vector ϕ1 = [sT , r1]
T

Pi Parameter matrix of step i, i = 2 or 3

Fi Parameter matrix of step i, i = 2 or 3

hi Parameter matrix of step i, i = 2 or 3

Ai Parameter matrix of step i, i = 2 or 3

ϕi Solution vector of step i, i = 2 or 3

Wi Parameter matrix of step i, i = 2 or 3
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