
Citation: Zhang, G.; Khan, I.A.;

Daraz, A.; Basit, A.; Khan, M.I. Load

Frequency Control of Marine

Microgrid System Integrated with

Renewable Energy Sources. J. Mar.

Sci. Eng. 2023, 11, 844. https://

doi.org/10.3390/jmse11040844

Academic Editor: Yassine Amirat

Received: 20 March 2023

Revised: 7 April 2023

Accepted: 11 April 2023

Published: 17 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science 
and Engineering

Article

Load Frequency Control of Marine Microgrid System Integrated
with Renewable Energy Sources
Guoqiang Zhang 1, Irfan Ahmed Khan 2 , Amil Daraz 1,3,* , Abdul Basit 1,3 and Muhammad Irshad Khan 4

1 School of Information Science and Engineering, NingboTech University, Ningbo 315100, China
2 Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya,

Kuala Lumpur 50603, Malaysia
3 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
4 College of Electronics and Information Engineering, Nanjing University of Aeronautics and

Astronautics (NUAA), Nanjing 210000, China
* Correspondence: amil.daraz@nbt.edu.cn

Abstract: In seaports, low-carbon energy systems and energy efficiency have become increasingly
important as a result of the evolution of environmental and climate change challenges. In order
to ensure the continued success of seaports, technological advancements must be introduced to
a number of systems, such as seaport vehicles, harbor cranes, and the power sources of berthed
ships. Harbor areas might need a microgrid to handle these aspects. Typically, microgrids that
substitute conventional generator units with renewable energy sources (RES) suffer from system
inertia problems, which adversely affect microgrid frequency stability. A load frequency controller
(LFC) based on a novel modified proportional integral derivative with filter (MPIDF) is presented in
this paper for enhancing the performance of marine microgrid system (MMS). The serval optimization
algorithm (SOA), a recent bio-inspired optimization algorithm, is used to optimize the MPIDF
controller coefficients. This controller is tested on a marine microgrid containing a number of RES
such as wind turbine generators, sea wave energy, and solar generation. The efficacy of the proposed
MPIDF controller is verified with respect to other controllers such as PIDF and PI. Similarly, the
proposed meta-heuristic algorithm is validated as compared to other algorithms including particle
swarm optimization (PSO), ant colony optimization (ACO), and jellyfish swarm optimization (JSO).
This study also evaluates the robustness of the proposed controller to different perturbations in step
load, changes in system parameters, and other parameter variations.

Keywords: marine microgrid; load frequency control; PID controller; renewable energy sources;
serval optimization algorithm; optimization

1. Introduction

The evolution of environmental and climate change concerns has made low-carbon
energy systems and clean energy more crucial at seaports. A number of systems—including
seaport vehicles, harbor cranes, and the power source of berthed ships—must be upgraded
technologically in order to assure the seaport’s continuous prosperity. The harbor area
may require the establishment of a microgrid to address these aspects. The development of
microgrids, mostly for domestic use, has been widespread on the mainland and islands. As
a result, their development in such places faces several challenges, including high power
requirements and the managing and monitoring of a wide range of loads [1]. Generally,
difficulties with system inertia impair the frequency stability of microgrids in which renew-
able energy sources (RES) including sea wave energy (SWE), Photovoltaic (PV), and wind
turbines (WTs) replace conventional generator units. Vessels that use this technology can
reduce pollution, improve stability, and boost energy efficiency [2].

Maritime power systems that use wind turbine generators, SWE, photovoltaics (PV),
and ESSs are classified as a form of movable island—MG. As a result, a wide range of studies
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have been undertaken in this sector; for example, in [3], a hybrid photovoltaic, battery, and
diesel vessel power system was examined. As a result, the impact of sea transportation is
not considered in this paper. The authors described a feasibility analysis for the tidal energy
used in [4]; notwithstanding frequency stability issues, the assimilation of tidal and wind
power units to a power system grid was investigated. The authors of [5] utilized lithium-
ion batteries in conjunction with diesel generators for ship crane operations. The authors
presented a thorough study on the active performance of stall and pitch standardized tidal
turbines in [6]. Furthermore, Reference [7] discusses the economic and environmental
benefits of hybrid diesel–photovoltaic (PV) systems with an ESS. Reference [8] investigates
the stability of hybrid diesel-battery–PV vessel power systems. The authors of [9] developed
a multi-objective optimization approach in PV–diesel hybrid PS to address the sizing
problem. A mixed integer linear programming model proposed by Iris and Lam [10]
has been applied to the problem of planning and managing seaport operations together
with energy management in the context of smart grids, while taking into account the
uncertain generation of renewable energy. The authors of [11] proposed an interval-iterative
approach for efficient RES distribution in a diesel/PV/RES-based ship PS. The impact of
integrating a tidal power unit on a real-world grid was examined in [12]. The authors
of [13] showed maximum power-point tracking at various tidal speeds. Wave energy shows
a great capability for contributing to the goal of complete energy generation by renewable
energies; it can meet more than 10% of total world electricity consumption [14]. The authors
of [15] illustrated the formation of the Archimedes wave shift, which was modelled as an
unmanageable generation system in this work. In [16], the authors describe the design
and implementation of a monitoring system utilizing Internet of things technology for a
lithium-ion battery integrated into a hybrid microgrid.

A simple proportional integral derivative (PID) and PI controller was used in the LFC
design due to its simplicity [17,18]. For instance, to enhance the frequency response under
various load disturbances, Ref. [19] proposed a PI-LFC-based particle swarm optimization
(PSO) technique. In the presence of WT and PV, Alayi et al. [20] employed a PID controller
as a secondary regulator to stabilize the microgrid’s frequency in island mode. A micro-
grid system that employed battery and pump-hydro storage systems was examined by
the authors in [21] in order to analyze the frequency and power balance. Additionally,
various optimization algorithms—including the fitness dependent optimizer (FDO) [22],
ant colony optimization (ACO) [23], volleyball premier league algorithm (VPLA) [24], Fox
optimizer algorithm (FOA) [25], salp swarm algorithm (SSA) [26], whale optimization
algorithm (WOA) [27], improved fitness dependent optimizer (IFDO) [28], social-spider
optimizer (SSO) [29], Jaya intelligent algorithm [30], Jellyfish Search Optimizer (JSO) [31],
Antlion optimization (ALO) [32], PSO algorithm [33], and hybridization of sine cosine
algorithm (SCA) with FDO [34] techniques—have been used to tune controller parameters.
Additionally, some authors have introduced fractional-order PID controllers to address
the LFC issue in multi-region units. As part of the PIDF controller, a low-pass filter can be
added to the derivative coefficient of the PID controller to further enhance the dynamics
of the system. As a result of the filter, it is possible to reduce the amount of undesirable
high-frequency noise present in the control signal [35,36]. Furthermore, some researchers
have also recommended using fractional and tilt order controllers in addition to traditional
controllers in order to improve the performance of systems [37,38].

The previously stated control strategies have been applied to traditional production
units with high-order inertia. Furthermore, most of these strategies do not account for the
short-term frequency equilibration provided by intermittent RES. The maritime MG, mean-
while, is a low-inertia system that depends on irregular RES. For traditional microgrids
and conventional power systems, a number of control strategies have been put forward to
address the LFC problem; however, marine/shipboard microgrids have received very little
attention. Consequently, the contribution of this paper is emphasized in this study.
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• Various renewable energy resources have been considered for marine microgrids—
including sea wave energy (SWE), wind turbine generators (WTGs), and solar genera-
tion system.

• Various generation sources have been implemented with communication time-delay
nonlinearity to increase the PS’s practicality and realism.

• In order to develop a marine microgrid based on renewable and sustainable energy
sources, a novel, improved PIDF controller called the I-PDF controller was developed
and implemented.

• A modified PIDF controller was compared with other conventional controllers, such
as PIDF and PI.

• The coefficient of the proposed I-PDF controller was optimized with a novel meta-
heuristic algorithm known as the serval optimization algorithm (SOA). Other algo-
rithms such as the jellyfish swarm algorithm (JSO), particle swarm optimization (PSO),
and ant colony optimization (ACO) were used to verify the SOA’s effectiveness.

• In the proposed diverse renewable energy source-based marine microgrid, multi
objective functions of the integral time square error, integral time absolute error, and
integral square error were formulated.

• To demonstrate the robustness of the proposed frequency control technique, sensitivity
testing of the SOA-adjusted I-PDF controller was conducted under uncertain para-
metric variables such as the droop factor (R), Photovoltaic gain (KPV), and loading
conditions.

This work is structured as follows: Section 2 deals with marine microgrid modelling,
followed by subsections on wind turbines, sea wave energy, and photovoltaics. Serval
optimization algorithms are presented in Section 3, whereas controller structures and
objective functions are presented in Section 4. In Section 5, the results and implementation
are discussed, whereas Section 6 concludes the presented research with future directions.

2. Marine Microgrid Modelling

This section provides a detailed structural schematic analysis of the proposed marine
microgrid system, as shown in Figure 1. The suggested marine MG model is made up of
wind turbine generators (WTGs), SWE, and solar power generation (SPG). A full description
of the proposed renewable power-based marine microgrid system is presented in the
following subsection.

2.1. Modelling of Wind Turbine Generation

Traditionally, electricity is generated using wind turbines (WT). A WT’s output of
automated power is typically affected by the attributes of the turbine and the wind speed.
It has been shown [39] that the following equation can be used to describe a wind turbine’s
output:

p =
1
2

AρACpV3 (1)

A = πR2 (2)

A = 2hR (3)

where A represents the area for horizontal and vertical turbines, h is the height, V is the
wind speed, R is the radius, Cp is the power coefficient, and ρA is the air density. The
following formulas can be used to calculate the WT’s torque.
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TT =
P
ω

=
ρA ACpV3

2ω
=

ρA ACpV3

2λ3 w2 (4)

TG =
ρA ACMax

p V3

2λ3
E

w2 (5)

where CMax
p is the maximum extent of the power constant and (λ3

E) represents the tip speed
ratio. The power number (Np) can be expressed as follows, which is based on the Reynolds
number (Re) and type of impeller [39]:

NP =
Pg

ρwn3d5 (6)

where ρw is the liquid’s density, P is the energy supplied by the WT, g is the gravitational
force, d is the impeller’s diameter, and n is the blade’s speed. The Reynolds number is
expressed as follows:

Re =
ρwnd2

µ
(7)

where µ denotes the viscosity of the liquid. The relationship between the Reynolds number
(Re) and power number (NP) for both types of flow is given by [39]:

Np = BRez (8)

B =
Pg

ρwn3d5 (9)
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There is a quadratic relationship between the torque and load, and it can be expressed
as follows:

TG =
ρwBd5

8π3g
w2 (10)

ρA ACMax
p R3

2λ3
E

=
ρwBd5

8π3g
(11)

The diameter of the impeller can be determined as follows:

d =

(
4π3gρA ACMax

p R3

ρwBλ3
E

)0.2

(12)

The wind heat generator increases the temperature of the fluid used for heat transfer
by transforming mechanical energy into heat. Under lossless conditions, the energy given
by the WT to the heat generator determines the increase in fluid temperature, which can be
expressed as [39]:

∆T =
1

cm

∫
Pdt (13)

where c represents the specific heat and m is the mass of the fluid. The mechanical system
of a WT with a heat generator is described by the equation below:

JT + JG(
dω

dt
) = TT − TG (14)

where TT is the torque yielded by the WT, JT is the WT’s inertia, JG is the heat generator’s
inertia, and TG is the heat generator’s load torque. Figure 2 depicts a schematic diagram of
a wind turbine generator.
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2.2. Modelling of Sea Wave Energy (SWE)

Wave power will be generated by a permanent magnet synchronous generator. The
subsequent calculations describe the system’s dynamics using force (FW) and velocity
(VW) [40,41]:

Vw =
dx
dt

(15)

Fw = m f t
dVw

dt
+ Kcx + (βG + βW)Vw (16)
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where m f t is the total mass, x is the displacement of the floater and translator, βG is the
generator’s constant damper, and βW is the restriction of the wave swing. As a first-
order converter, first-order generator, and first-order inverter, the system is modelled in
Equation (17) [40]:

Gwave =
1

1 + sTconv

Kwave

1 + sTwave

1
1 + sTinv

(17)

where Gwave is the TF of the wave energy, Tinv and Tconv are the time constants of the inverter
and converter, respectively, Twave is the time constant, and Kwave is the gain constant.

2.3. Modelling of Photovoltaic Generation

Semiconducting material makes up Photovoltaic (PV) cells, which can convert photon
energy directly into electricity. In addition, series and parallel resistors are used to model
power loss in order to take border and external contacts, leakage current, and other factors
into account. Due to the unpredictable nature of PV power generation, the behavior of
PV can be represented by a random power supply. The TF of a solar system is shown by
Equation (18) [41]:

GPVG =

(
Kpv

Tpvs + 1

)
(18)

where Tpv and Kpv are the time and gain constant, respectively.

3. Serval Optimization Algorithm (SOA)

A serval optimization algorithm (SOA) was developed by the authors of [42], which
aimed to reproduce biological actions similar to those performed by servals in nature.
Based on the serval’s chasing tactic, the SOA mimics the hunting process in which prey
is attacked and then hunted. There are two phases in the process of SOA implementation
that are mathematically represented as exploitation and exploration. This analysis intends
to evaluate the SOA’s ability to solve optimization problems through the optimization
of 39 standard benchmark functions from CEC’s 2017 and 2019 test suites in order to
evaluate its efficiency. To evaluate further, the proposed SOA approach is compared to the
performance of 12 well-known optimization algorithms. In nature, the strategy of the serval
during hunting is one of its most distinctive characteristics. A metaheuristic algorithm can
be designed based on this intelligent process. The strategy of serval hunting is modelled in
the SOA’s layout, which is considered in the following section.

3.1. Initialization

By utilizing the search capabilities of its pursuit agents, the suggested SOA method-
ology is an inhabitant-based optimizer that can offer suitable solutions for optimization
problems. The methodology utilized by wild servals that hunt for prey in the wild is like
that used by search agents to find the best solution for a given problem. Servals compose
the SOA population from a mathematical perspective to find the best solution in the search
space. Thus, each of the servals represents a potential solution to the problem, and the value
of the decision variables depends on its location. Servals are vectors from a mathematical
perspective and the SOA population matrix—which can be represented using Equation (19).
Equation (20) is used to generate a random position for the servals in the seek place at the
start of the algorithm’s implementation.

X =



X1
...

Xi
...

XN


N×d

=



x1,1 · · · x1,i · · · x1,d
...

. . .
...

. . .
...

xi,1 · · · xi,j · · · xi,d
...

. . .
...

. . .
...

xN,1 · · · xN,j · · · xN,d


N×d

(19)
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xi,j = lbj + r.
(
ubj − lbj

)
, i = 1, 2, 3 . . . . . . ..N, J = 1, 2, . . . ., d (20)

where, d represents the decision variables, N indicates the number of servals, r belongs
to a random number in the limit [0, 1], and ubj and lbj are the upper and lower limits of
the jth decision variable, respectively. There is a population matrix of various locations
denoted by X. Since each decision variable represents a potential solution, the suggested
values of each approach can be used to assess the cost function of the problem. According
to Equation (21), the cost function values can then be represented by a vector [42].

F =



F1
...
Fi
...

FN


N×1

=



F(X1)
...

F(Xi)
...

F(XN)


N×1

(21)

where F is the cost functions’ vector. The optimal value among the computed values for
the fitness function is chosen as the finest optimal solution, and the population participant
pertaining to it is chosen as the best one. Considering that each SOA iteration updates the
positions of all members of the population, it would seem that the best member should also
be updated with the latest positions.

3.2. Mathematical Representation of SOA

Two phases that mimic the serval chasing tactic in life are used to update the SOA
elements of the population in the search space. These stages are meant to simulate global
search exploration and local search exploitation in SOA design.

3.2.1. Phase 1: (Exploration) Selection of Prey and Attacking

Servals are effective predators that utilize their excellent hearing skills to locate and
attack their prey. The roles of servals are updated in the first phase of the SOA established
on the computation of these approaches. The update triggers significant changes to the
location of servals and results in a thorough search. The aim of this phase is to enhance
the SOA exploration power in global searches as well as identifying the primary optimal
region based on the SOA results. The position of the inhabitant’s best partner is deemed
the target location in the SOA design. First, the serval’s new position is computed utilizing
Equation (22) to simulate the serval’s assault on the target. If the new role enhances the
fitness values, it substitutes the prior serval position, as shown in Equation (23).

xP1
i,j = xi,j + ri,j.(Pj − Ii,j. xi,j) i = 1, 2, 3 . . . . . . ..N, J = 1, 2, . . . ., d (22)

Xi =

{
XP1

i , FP1
i < Fi;

Xi, Otherwise
(23)

where xP1
i,j signifies the updated position, Ii,j are numbers taken at random from the set of

{1, 2}, FP1
i is the objective function values, P denotes the prey location, and ri,j are random

numbers Є [0, 1].

3.2.2. Phase 2: (Exploitation) Chase Process

Servals engage in a chase process after targeting their prey in order to stop them
before killing and devouring them. SOA uses this tactic in the second phase to update its
population position. The serval positions in the search space are slightly altered by the
model of the chase activity. In actuality, the goal of this SOA phase is to improve local
search and increase the SOA’s exploitation power. Equation (24) is used to calculate a
recent arbitrary position close to the serval to accurately model the pursuit of the prey.
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Equation (25) states that this new position of the corresponding serval replaces the previous
one if it increases the value of the cost function.

xP2
i,j = xi,j +

r.(ubj − lbj)

t
, i = 1, 2, 3 . . . . . . N, J = 1, 2 . . . . . . d, t = 1, 2 . . . . . . T (24)

Xi =

{
XP2

i , FP2
i < Fi;

Xi, Otherwise
(25)

where XP2
i,j is the updated position and FP2

i is the value of objective function. Figure 3
shows the flowchart for the suggested SOA approach.
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4. Proposed Control Techniques

Due to their simplicity and ease of implementation, PID controllers are broadly used
in engineering applications. Although PID controllers perform satisfactorily in most control
systems, updated PID control structures have demonstrated improved performance in
a variety of control systems, including the LFC interlinked power network. In order to
improve the system dynamics, the PIDF combines a PID controller with a low-pass filter
applied to the derivative term. By using a low-pass filter, the oscillations caused by high-
frequency oscillations can be suppressed in the system. To stabilize the frequency of the
system, a PIDF controller and its modified form are developed and implemented in this
work for marine microgrid systems. The proposed PIDF and I-PDF control structures are
depicted in Figures 4 and 5, respectively. Similarly, the TF for the proposed PIDF and I-PDF
can be found in Equations (26) and (27).

U(s) =
[

Kp +
Ki
s
+

Ns
N + s

Kd

]
E(s) (26)

U(s) = E(s)
[

Ki
s

]
−Y(s)

[
Kp +

Ns
N + s

Kd

]
(27)

where Y(s), U(s), E(s) are the output, control, and error signals. As a result, the optimal
solution to the LFC problem can be found by minimizing the cost function (J). As shown by
the following equations, several performance indices—such as ISE, ITAE, and ITSE—can
be utilized to reduce error signals.

JISE =
∫ t

0

(
∆F2

)
dt (28)

JITAE =
∫ t

0
(|∆F|)tdt (29)

JITSE =
∫ t

0

(∣∣∣∆F2
∣∣∣)tdt (30)
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5. Results and Discussion

The control method was validated by simulating a maritime microgrid system in MAT-
LAB/Simulink software (2022b). Appendix A has a list of maritime microgrid parameters.
The modified PIDF controller’s performance was compared to that of the PI and PIDF
controllers. Using the data in Appendix B, the SOA optimization algorithm optimized all
of the parameters of these controllers, which are listed in Table 1. The proposed control
mechanism was validated using real-time wind and solar emission data. The following
case studies evaluate the results of the analyzed marine microgrid system.

Scenario-1 (Controllers comparison using different performance indices)

Table 1. Parametric values of proposed techniques.

Controller
Gains I-PDF PIDF PI SOA JSO ACO PSO

Kp 19.11 10.18 09.98 19.40 13.20 13.08 11.23
Ki 11.91 18.86 18.01 17.13 05.02 23.10 11.98
Kd 12.56 14.07 11.90 09. 10 10.20 14.78 19.11
N 56.89 45.01 - 98.78 34.09 51.01 98.30

This study compared the efficiency of an I-PDF controller with the performance of
PI and PIDF controllers based on a number of different multi-objective cost performance
indices, including ITSE, ISE, and ITAE. The dynamic response of each controller, as shown
in Figure 6a–c, was evaluated with respect to a number of multi-objective cost performance
indices—such as ITSE, ISE, and ITAE—in order to determine the controller’s performance
over time. The undershoot (Ush), settling time (ST), and overshoot (Osh) for the ITSE,
ISE, and ITAE criteria are compared in Table 2. The I-PDF controller—which was tuned
using the SOA method—virtually had the same peak overshoot as the PIDF controller, but
it improved the ST for the ITAE and ISE by 29.10% and 52.82%, respectively, compared
to the PIDF controller. As shown in Table 2, I-PDF controllers have better performance
than PIDF controllers in terms of ST and Ush when applied to the ITSE, ISE, and ITAE,
where ST is improved by 51.11%, 34.09%, and 19.05%, respectively, and Ush is improved
by 89.00%, 78.13%, and 91.20%. In addition, we found that our recommended I-PDF
controller reduced peak overshoot by 64.09%, 59.51%, and 81.55% in comparison to a PI
controller, undershoot by 91.22%, 83.44%, and 56.78%, and settling time by 56.46%, 34.56%,
and 29.87%, respectively, for the ITSE, ISE, and ITAE. In Table 2, all of the performance
parameters were clearly shown to be outperformed by the proposed control strategies
when compared to PI and PIDF controllers. The best results are bolded in Table 2.
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Table 2. Comparison performance of various controllers using different performance indices.

Transient
Parameters

Performance
Indices PI Controller PIDF Controller I-PDF

Controller

Time Settling (ST)

ITSE 05.91 08.09 03.93

ISE 10.40 08.46 08.23

ITAE 04.68 07.83 02.96

Overshoot (Osh)

ITSE 0.00040 0.00009 0.00004

ISE 0.00603 0.00050 0.00027

ITAE 0.00301 0.00012 0.00000

Undershoot (Ush)

ITSE −0.00521 −0.00121 −0.00059

ISE −0.01376 −0.00500 −0.00178

ITAE −0.00883 −0.00202 −0.00084

Scenario-2 (Comparison of algorithms based on performance indices)

In this study, we compared the jellyfish swarm optimization (JSO), the ant colony opti-
mization (ACO), and the particle swarm optimization (PSO) algorithms with our proposed
serval optimization algorithm (SOA). Figure 7a–c illustrates the dynamic response of the dif-
ferent algorithms to several multi-objective cost performance indicators, including ITSE, ISE,
and ITAE. A comparison of different algorithms for transitory content—such as Osh, Ush,
and ST for ITSE, ISE, and ITAE—is presented in Table 3. Table 3 and Figure 7a–c indicate
that our recommended metaheuristic algorithms achieve better performance for Ush and
Osh for ITSE, ISE, and ITAE, when compared to JSO, ACO, and PSO, respectively. In Table 3,
it can be seen that our proposed SOA algorithm (Ush = −0.00065, Osh = 0.000129) had less
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undershoot and overshoot when compared with PSO (Ush = −0.00722, Osh= 0.001045),
JSO (Ush = −0.00119, Osh = 0.000218), and ACO (Ush = −0.00628, Osh= 0.000437). Ac-
cording to Table 3, particle swarm optimization had the lowest settling time for the ITAE
(ST = 5.98 s). The serval optimization algorithm (SOA) had the second lowest settling time
for the ITAE (ST = 6.72 s), followed by jellyfish swarm optimization (JSO) with an ST of
8.83 s, and ant colony optimization with an ST of 12.60 s. The SOA algorithm (ST = 4.420 s)
also outperformed existing algorithms such as JSO (ST = 5.02 s), PSO (ST = 8.89 s) and ACO
(ST = 6.533 s) for the ITSE objective criterion in a similar manner. In addition to taking
into account transient response criteria, we also found that our suggested SOA algorithm
performed admirably when compared to other competing algorithms such as JSO, PSO,
and ACO when considering ISE cost function indices. As shown in Table 3 and Figure 7a–c,
the current methodology outperformed JSO, PSO, and ACO in terms of ST, Osh, and Ush
for the ITSE, ISE and ITAE performance indices. The best results are bolded in Table 3.
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Scenario-3 (Sensitivity and Robustness)

Under various loading disturbances, this scenario tested the resilience of the proposed
SOA-based I-PDF controller. Figure 8 shows the frequency oscillations that took place when
the load was changed, along with the different controllers utilized for it. From Figure 8, it
can be noticed that the SOA-based I-PDF controller provided the best response to random
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load variations compared to the SOA-based PIDF and PI controllers. Compared to other
controllers, our proposed controller achieved less steady-state errors, faster responses, and
superior damped variation on a continuous basis. Furthermore, different load interruptions
fluctuating from ±25% to ±50% were applied to a marine microgrid system in order to
check the robustness of the proposed control scheme that was developed, and the results
are shown in Figure 9 for comparison. The results clearly demonstrated that the proposed
controller was able to produce the same fault-tolerance performance even when the load
was varied from ±25% to ±50%. This clearly shows the robustness of our proposed
controller. A sensitivity assessment was conducted by varying KPV, R, and Kwave by ±30%
in order to test the robustness of the proposed SOA-based I-PDF controller. The dynamic
responses of the model are illustrated in Figure 10 for the purpose of the above sensitivity
assessment. Under uncertain conditions, the system dynamics will not deviate significantly
from their base conditions, as shown in Figure 10. In Table 4, the transient response of
various parameters is shown up to a ±30% change in parametric values. Finally, it was
found that the parameters of the tuned I-PDF controller were quite robust to uncertainty as
well as parametric variations of the proposed marine microgrid.

Table 3. Comparison performance of different algorithms using different performance indices.

Transient
Response

Performance
Indices

ACO
Algorithm

PSO
Algorithm

JSO
Algorithm

SOA
Algorithm

Time Settling (ST)

ITSE 08.43 06.53 05.02 04.42

ISE 10.90 08.61 06.23 09.93

ITAE 05.98 08.83 12.60 06.82

Overshoot (Osh)

ITSE 0.00081 0.00036 0.00008 0.00001

ISE 0.00081 0.00040 0.0000437 0.00004

ITAE 0.001045 0.00043 0.0002180 0.00012

Undershoot (Ush)

ITSE −0.00922 −0.00664 −0.00135 −0.00094

ISE −0.00921 −0.00179 −0.00628 −0.00104

ITAE −0.00722 0.006270 −0.00119 −0.00065J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 22 
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Table 4. Sensitivity analysis for changes in parameters of the power system with various perfor-
mance indices.

Transient
Terms

Power System
Parameters % Change ITAE ITSE ISE

Time Settling
(ST)

Kwave
+30 14.09 3.47 12.72

−30 14.10 3.51 12.73

R
+30 14.21 6.38 13.45

−30 14.23 8.03 13.46

KPV
+30 14.60 6.10 12.79

−30 14.61 7.80 12.80
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Table 4. Cont.

Transient
Terms

Power System
Parameters % Change ITAE ITSE ISE

Overshoot
(Osh)

Kwave
+30 0.00064 0.000323 0.00068

−30 0.00054 0.000276 0.00047

R
+30 0.00094 0.000296 0.00037

−30 0.00098 0.000289 0.00030

KPV
+30 0.00083 0.000310 0.00014

−30 0.00075 0.000313 0.00017

Undershoot
(Ush)

Kwave
+30 −0.00610 −0.00315 −0.00240

−30 −0.00600 −0.00313 −0.00236

R
+30 −0.00693 −0.00489 −0.00713

−30 −0.00678 −0.00482 −0.00913

KPV
+30 −0.00731 −0.00361 −0.00780

−30 −0.00725 −0.00361 −0.00740

6. Conclusions and Future Recommendations

In this study, an innovative controller and optimization methodology were developed
for LFCs in a marine microgrid system with renewable energy sources. A modified PIDF
controller, known as the I-PDF controller, was implemented in this study in order to estab-
lish the dynamics of the system and compare them with various case studies. Furthermore,
the novel aspect of this work was the application of a newly developed serval optimization
algorithm (SOA) to tune the modified PID controller based on real-time wind data at the
time of tuning. It has been found that SOA-tuned I-PDF controllers perform better than
algorithmically tuned I-PDF controllers in terms of Ush, ST, and Osh. This study validates
the superiority of the proposed I-PDF controller compared with other controllers based
on the statistical performance evaluation. Our proposed I-PDF controllers showed better
performance than PIDF controllers in terms of ST and Ush when applied to ITSE, ISE, and
ITAE, where ST was improved by 51.11%, 34.09%, and 19.05%, respectively, and Ush was
improved by 89.00%, 78.13%, and 91.20%. Finally, SOA-based I-PDF controller parameters
were found to be very robust to uncertainty/parametric variation for marine microgrids.
In future, the proposed control scheme and other advanced controllers such as FLCs and
MPCs may be designed and implemented in Matlab/Simulink, as well as the practical use
of OPAL-RT simulators for marine microgrids, with the inclusion of renewable energies
and energy storage devices.
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Abbreviations

Acronym Definition Acronym Definition

WTB Wind Turbine Generator RES Renewable Energy Sources
LFC Load Frequency Control SLP Step Load Perturbation
SOA Serval Optimization Algorithm SWE Sea wave energy
ACO Ant Colony Optimization ∆F Frequency Deviation
IPS Interconnected Power System PID Proportional Integral Derivative
GHG Green House Gases PSO Particle Swarm Optimization
JSO Jellyfish Swarm Optimization ABC Artificial Bee Colony
PD Proportional Derivative MMS Marine Microgrid System
PV Photo Voltaic PS Power System
B Area Bias Factor PI Proportional Integral
WT Wind Turbine SWE Sea Wave Energy
HPS Hybrid Power System IMO International Maritime Organization
∆PD Load Deviation MG Microgrid
R Speed Regulation HMG Hybrid Microgrid
∆PG Deviation in the Output of Generator ∆XG Valve Position of Governor
ANN Artificial Neural networks FLC Fuzzy Logic Control
Kpv Photovoltaic Constant TIDN Tilt integral derivative with filter
ST Settling time Tw Wind Time Constant
Ush Undershoot LB Lower Boundary
PID Proportional-Integral-Derivative Kwave Gain of wave energy
Tp Time Constant of Power System TD Time Delay
Osh Overshoot TF Transfer Function
ISE Integral Square Error FO Fractional Order
M Inertia Constant PIDF Proportional Integral Derivative with Filter
H Power System Gain UB Upper Boundary
ITAE Integral Time Absolute Error ITSE Integral Time Square Error

Appendix A. Hybrid PS and Their Parametric Values [25,27,31]

LFC Model

Parameter Value Parameter Value

Tg 2 S TG 0.5 s

R 2.4 (pu.Mw/s) 2 H 0.2 (p.u.·s)

Tps2 11.49 D 0.012 (p.u./Hz)

Th 5 S Tcon 0.5 S

Tin 4 S TFESS 0.1 S

KVR 1 TBESS 0.1 S

TVR 0.08 S R 0.5 m

H 2 m KBE 1

TCE 0.4 S Kwave 1

Twave 5 S Cp 0.195

JG 1.53 km·m2 D 628 m

Ks 0.5 KT 1

Ts 1 TT 0.3

KWTG 1 TWTG 1.5

KPV 1
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Appendix B. SOA Coefficient and Their Values

Parameters of SOA Algorithm Values Parameters of SOA Algorithm Values

No. of Iterations 100 Lower limit (Lb) −2

No. of Population
(Np)

30 Constant (R) 0.05

No. of dimensions 4 Coefficient (a) 2

Random Number (r) [0, 1]
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