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Abstract: Floating structures have become a major part of offshore structure communities as offshore en-
gineering moves from shallow waters to deeper ones. Floating installation ships or platforms are widely
used in these engineering operations. Unexpected wave-induced motions affect floating structures,
especially in harsh sea conditions. Horizontal motions on the sea surface can be offset by a dynamic
positioning system, and heave motions can be controlled by a heave compensation system. Active heave
compensation (AHC) systems are applied to control vertical heave motions and improve safety and
efficiency. Predictive control based on machine learning prediction algorithms further improves the
performance of active heave compensation control systems. This study proposes a predictive control
strategy for an active heave compensation system with a machine learning prediction algorithm to
minimise the heave motion of crane payload. A predictive active compensation model is presented
to verify the proposed predictive control strategy, and proportion–integration–differentiation control
with predictive control is adopted. The reliability of back propagation neural network (BPNN) and
long short-term memory recurrent neural network (LSTM RNN) prediction algorithms is proven. The
influence of the predictive error on compensation performance is analysed by comparing predictive
feedforward cases with actual-data feedforward cases. Predictive feedforward control with regular and
irregular wave conditions is discussed, and the possible strategies are examined. After implementing
the proposed predictive control strategy based on a machine learning algorithm in an active heave
compensation system, the heave motion of the payload is reduced considerably. This investigation is
expected to contribute to the motion control strategy of floating structures.

Keywords: active heave compensation; predictive control strategy; machine learning; back
propagation neural network; long short-term memory recurrent neural network

1. Introduction

Offshore engineering has moved from shallow waters to deeper ones, and floating
structures have become a major part of offshore engineering communities. Ship and ocean
engineering platforms are affected by wave load, so undesirable motions affect many
engineering operations [1], including the equipment handling of oil and gas systems [2],
floating wind turbine installations [3], and equipment recovery [4]. Hence, high-quality
operability is required in harsh sea conditions. Horizontal motions on the sea surface can
be offset by a dynamic positioning (DP) system, which is actuated by a propeller in two
directions. Relative heave motion is controlled by a compensation system. A compensation
system has been developed from passive compensation to active compensation [5]. One of
the most important applications of the heave compensation system is the crane systems
of loading ships. In terms of the safety and efficiency of production loading in harsh sea
conditions, the crane system controls the velocity, load and displacement of payload to
minimise the operational download time or vibration [6].
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Controlling the vertical motion of the payload is important in keeping the loading
operation safe and efficient. The wave-induced motion of a ship leads to critical tension
of the rope [7], which should not be less than zero to avoid slack rope situations, and the
rope should not exceed the safety limit to avoid unrecoverable damage. Large undesirable
motions between the payload and ship pose a potential danger, and unexpected motions
are important causes of loading inefficiency. One of the objectives of heave compensation
is to decouple wave/wind-induced motion from payload motion for the payload to move
smoothly in an expected manner. Compensation systems are divided into two categories:
passive heave compensation (PHC) and active heave compensation (AHC). PHC works
as a vibration isolator placed between the payload and ship. It is regarded as a spring–
damper system that restores and releases energy to offset the wave-induced heave motion.
Hatleskog and Dunnigan (2006) simulated a PHC and showed that a passive compensator
can reduce the effects of heave in deep water but only to a limited extent [8]. It is inefficient
for many complex applications that require accurate compensation or involve the relative
motions of two bodies. Hence, AHC is proposed to obtain enhanced performance by detect-
ing the heave motion of the ship and transmitting the detected information to the controller;
the controller then makes corresponding actions to achieve compensation. Küchler et al.
(2010) used a feedforward controller with predicted motion to compensate for heave motion.
The proposed controller and the prediction algorithm decouple the motion of the rope-
suspended payload from the vessel’s motion. The active compensation system can achieve
enhanced compensation effects by collecting ship motion information [9]: the heave motion
of the ship is measured and fed back to a compensation controller [10]. Woodacre et al.
(2015) conducted a comprehensive review of heave compensation, especially in underwater
conditions, and established a future development direction of AHC systems.

The control accuracy of floating structures can be improved by eliminating the time
delay of the control system. Many researchers have studied the prediction of heave motion.
Shi et al. (2014) presented a crane active heave prediction modelling method based on a
support vector machine (SVR) for regression, and the parameters of the SVR were opti-
mised by the particle swarm algorithm to improve heave motion prediction accuracy [11].
Ngo et al. (2017) proposed a fuzzy sliding mode control strategy combined with a predic-
tion algorithm based on Kalman filtering to suppress the sway motion of the payload [12].
Least squares SVM has also been improved by an artificial immune algorithm to predict
the motion trend of offshore platforms [13]. Through the prediction of heave motion, the
short-term motion state can be effectively obtained and used as the input of the control
system. To acquire the best control scheme, proportion–integration–differentiation (PID)
control [14] and fuzzy PID control [15] have been widely used in engineering. Moreover,
the back propagation (BP) neural network PID control method [16] has been adopted to
perform simulation analyses because the neural network has self-learning capabilities.
An increasing number of machine learning algorithms have been introduced to control
strategies for prediction and control parameter optimisation in recent years [17,18].

In summary, heave motion prediction plays an important role in the AHC system.
Many control strategies have been used in heave compensation systems regardless of
whether feedback or feedforward control is involved. PID control is a control loop mech-
anism that employs feedback, and it is widely used in offshore compensation control
systems [19]. A PID controller continuously calculates the error value as the difference
between a desired set point and a measured process variable. Then, it applies correction
based on three terms: proportional, integral and differential terms. Thus, PID control has
the advantages of simple principle, convenience of utility, good stability and robustness [20].
As one of the most frequently used and efficient methods, it is implemented to minimise
the load motion. The predictive control strategy is a tool for optimising the performance
of offshore heave compensation systems, especially when it is coupled with advanced
machine learning techniques. With the predicted information of wave-induced motion,
the phase lag is expected to be eliminated. The BP neutral network can approximate
any nonlinear function, so its structure and learning algorithm are simple and clear [21].
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Long short-term memory recurrent neural network (LSTM RNN) algorithms are the most
popular type of RNN, and they can help overcome diminishing or exploding gradients
during the training process [22]. They can be used to adjust and optimise PID controller
parameters in accordance with the system state. Therefore, this study proposes an active
heave compensation system with PID based on machine learning prediction algorithms
(BPNN and LSTM RNN) which use predicted motions to minimise the deviation of the
heave compensation system. The accuracies of different machine learning prediction algo-
rithms with regular and irregular wave conditions are compared, and the influence of the
predictive motion data and actual-data feedforward cases on compensation performance is
analysed. The rest of the paper is organised as follows. Section 2 briefly addresses the AHC
system and the modelling process. A simplified heave compensation model is presented to
focus on the design predictive controller. Machine learning prediction algorithms, namely,
BPNN and LSTM RNN, are introduced, and a predictive PID control strategy is developed.
In Section 3, predictive feedforward control under regular structure motion is analysed. In
Section 4, predictive feedforward control under irregular structure motion is investigated
and compared with regular structure motion. The conclusions are presented in Section 5.

2. Control Strategy of the Heave Compensation System
2.1. Heave Compensation Model

For a crane on a ship or floating platform, the heave compensation system contains
a series of complex components, such as the controller, ropes, actuator and motor. The
present study focuses on the design of AHC predictive control and makes some assump-
tions to simplify the mechanism. The compensation mechanism is regarded as an integrated
unit, and the control command is the variable force of the rope. Hence, the heave mo-
tion compensation system is not influenced by the DP system that is used to modify the
horizontal loading motions of the ship. The motion reference unit (MRU) collects motion
information. It is assumed to directly collect heave motions between two bodies that have
been decoupled from the multi-degree-of-freedom motions.

The active heave compensation system described in this paper is shown in Figure 1. In
this paper, the motion of the floating structure is called the reference motion. The motion of
the payload is the compensated motion because the motion of the payload is controlled
by AHC. The displacement of the rope is the response motion of the controller. From the
view of the control system, the relative heave motion in each time step is the input of
the compensation system, namely, the set point. Given that the deformation of the rope
is disregarded here, the displacement of the rope is set as the process variable, which is
compensated to the payload. The actual heave motion of the payload is the error in the
control loop. The dynamic model of the crane is expressed as{ dv

dt = F
m

dz
dt = v

, (1)

where F is the force of the payload in the heave direction and m is the mass of the payload.
In the form of state space representation, Equation (1) can be rewritten as

x1 = z x2 = v u = F
m

[ .
x1.
x2

]
=

[
0 1
0 0

][
x1
x2

]
+

[
0
1

]
u

y =
[

1 0
][ x1

x2

]
+ [0]u

, (2)

where z is the vertical displacement of the payload, v is the vertical velocity of the payload,
u is the input variable of the compensation system, y is the output variable and x is the
state vector with a dimension of 2× 1.
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is known or can be predicted in advance, the effect caused by actuation time can be elim-
inated. Predictive control helps offset the lag with an accurate prediction algorithm. With 
the simplicity of the compensation system, the next step of the predictive control study is 
to address the prediction method of the future motion of the floating structure. In practical 
applications, the floating structure is a complex system that may be combined with other 
dynamic systems, such as mooring or DP systems. Moreover, the system changes because 
of ageing, malfunction, uploading and downloading. Analysing the system under every 
condition is difficult. By learning from the historical behaviour of the floating structure on 
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The whole control process is illustrated in Figure 2, which combines PID control
and motion prediction into an integrated system. The block that represents the predicted
heave motion is different from the feedback PID control. This block contains the predictive
machine learning algorithm to optimise the performance of the compensation system.
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2.2. Prediction Methodology

Feedback control is inevitably influenced by phase lagging in the control process.
Actuation implementation needs time to react even though the measured variable is perfect,
so feedback control cannot perform optimally in real-time applications. If the motion is
known or can be predicted in advance, the effect caused by actuation time can be eliminated.
Predictive control helps offset the lag with an accurate prediction algorithm. With the
simplicity of the compensation system, the next step of the predictive control study is to
address the prediction method of the future motion of the floating structure. In practical
applications, the floating structure is a complex system that may be combined with other
dynamic systems, such as mooring or DP systems. Moreover, the system changes because
of ageing, malfunction, uploading and downloading. Analysing the system under every
condition is difficult. By learning from the historical behaviour of the floating structure on
waves, the relationship between the wave motion and floating structure can be expressed
in an approximate form in the neural network. Two types of supervised machine learning
algorithms, namely, BPNN and LSTM RNN, are introduced to predict the future heave
motion of the loading ship.

2.2.1. BPNN

The BPNN shown in Figure 3 is a basic class of the artificial neural network (ANN)
community. Three types of layers describe the state of data, and the nonlinear transfor-
mation between layers is processed with the activation function. The left and right layers
store the input and output data. The hidden layer in the middle expresses the process of
nonlinear transformation with the neural network activation function. The perception units
of BPNN simulate the information transformation through brain neurons as follows:
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 zkl = σ(ξkl)

ξkl =
n
∑

k=1
(wk(l−1)·zk(l−1) + b(l−1))

l = 2, 3, . . . , N, (3)

where zkl is the output (heave motion of BPNN); ξkl is the input (wave elevation); the
subscripts k and l represent the layer and neuron numbers in the complex deep learning
neural network, respectively; and σ is the activation function. For the hidden layers, σ is
the sigmoid function, and for the output layer, σ is a linear function. w is the weight, and
b is the bias. The error propagation is a convex optimisation problem that is solved by back
propagation and gradient descent [23].
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2.2.2. LSTM RNN

BPNN is the most basic architecture of the ANN community and has an advanced
class for specific fields. With multi-layer BPNN, the majority of general requirements can
be met, and advanced techniques have been developed to push the limitations of BPNN
to high-nonlinearity or high-dimensional cases. In this section, a novel LSTM RNN is
introduced to predict time-series motions. The memory block in Figure 4 is the basic unit
of LSTM RNN, and it includes the input gate, output gate, forget gate and state cell. These
gates and cells exchange information through the constant error carousel to ‘keep memory’
of the characteristics in the time series. The gates control the information flow and transmit
information between short-term memory and long-term memory. The state cell stores the
long-term memory of the time series process. The new input enters the memory block and
becomes the long-term memory after a series of nonlinear transformations. LSTM RNN
is regarded as a deep learning architecture because of the existence of the memory block.
Therefore, LSTM RNN is the professional solution for time-series processes.

ft = σ(z f ) = σ(ω f ·ξ + b f )
it = σ(zi) = σ(ωi·ξ + bi)

ot = σ(zo) = σ(ωo·ξ + bo)
c̃t = tanh(zc̃) = tanh(ωc·ξ + bc)

ct = ft × ct−1 + it × c̃t
ht = ot × tanh(ct)

, (4)

where the subscripts, f , i, o represent the forget gate, input gate and output gate, respec-
tively; σ is the sigmoid function and the activation function in different types of neural
networks; and tanh is the hyperbolic tangent function. The operator × is defined as the
multiple operations of matrices and vectors [24]. The information transforms not only
through the layers but also through time. In BPNN, the error propagation through layers
is the only factor considered. Meanwhile, in LSTM RNN, the error propagations through
layers and time steps are considered simultaneously. The error propagation algorithm is
called back propagation through time.
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2.3. Predictive PID Control

The future motion is predicted based on a machine learning algorithm, and the
predicted motion is treated as the set point of the current time step in the PID control loop.
The feedback PID control law is expressed as

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de(t)
dt

, (5)

where u is the control command output of the controller and the input vector of the heave
compensation system shown in Equation (2); kp, ki and kd are the proportional gain, integral
gain and differential gain, respectively; e is the deviation signal; and t is the time duration
of the whole control process. The discrete form of the numerical simulation process is
expressed as

u(k) = kpe(k) + ki

k

∑
j=0

e(k)∆t + kd
e(k)− e(k− 1)

∆t
, (6)

e(k) = zm(k)− zu(k), (7)

where ∆t is the sampling, k is the sampling number, zm is the heave motion measured by MRU
and zu is the controller response of the heave compensation system. Equations (6) and (7) are
only for cases where all motion is the actual value in each sampling step. When the predicted
motion of the machine learning algorithm is used in the control strategy, the equation is
updated to replace the measured motion with the predicted motion in the PID control system.

u(k) = kpep(k) + ki

k

∑
j=0

e(k)∆t + kd
ep(k)− e(k− 1)

∆t
, (8)

ep(k) = zp(k)− zu(k) (9)

where ep is the calculated error between the predicted motion and controller response mo-
tion of AHC and zp is the predicted motion ahead of the current motion. Only proportional
and differential terms need to be updated due to the existence of the predicted motion, and
the integral term is not influenced by the predictive information because the integral term
only reflects the history accumulation effect of the control process.
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2.4. Data Processing

Given that the performance of machine learning prediction is influenced by the quality of
statistics, pre-processing is necessary to improve the accuracy and efficiency of the prediction
algorithm. Dataset normalization is shown below, and it covers the range of [−1, 1].

z = 2(
Z− Zmin

Zmax − Zmin
)− 1, (10)

where Z is the deformalized input and z is the normalized input. The subscripts max and
min are the maximum and minimum values of the input data, respectively. Normalization
of input and output data is not only beneficial to network training, as it eliminates the
errors caused by different magnitudes of inputs, but also allows for the comparison of
the prediction and control performance from different methods or sea conditions. At the
same time, the values of the control command can be inverse-normalized mathematically
in practical applications.

In this study, the results of the control strategy with actual information are called
actual-data feedforward motion, and the results of the control strategy with prediction
information are called prediction motion. For example, one-step actual-data feedforward
means that the control process involves one step of the actual future heave motion, and
two-step BPNN/LSTM prediction means that the control result considers the influence of
two-steps-ahead heave information. If no future information is involved in the PID control
process, that is, common feedback control, then the performance without feedforward is
compared with the performance with feedforward and prediction. To verify the predictive
control strategy, the performance is evaluated with the deviation form of mathematical
statistics analysis. Mean absolute error (MAE) and root mean square error (RMSE) are used
to describe the accuracy of the response results in this study.

MAE =
1
N

N

∑
1
|z− ẑ|, (11)

RMSE =

√√√√√ N
∑
1
(z− ẑ)2

N
, (12)

where z is the predicted value of heave motion, ẑ is the actual data value of heave motion
and N is the quantity of the prediction data. The performance of cases is compared based
on these statistical errors. The smaller these errors are, the better the performance is.

3. Predictive Feedforward Control under Regular Structure Motion

The study starts from regular motion cases, then extends to irregular motion cases.
The reference heave motion of a sinusoidal signal that has been normalized is depicted
in Figure 5. The normalized amplitude is 1, and the frequency of the structure motion is
0.25 Hz. The sampling frequency of the reference heave motion is 10 Hz, which means
that the feedforward frequency is 10 Hz as well. The heave motions of the compensation
unit based on feedback and feedforward control are compared in the same figure. The
reference motion is the compared target to evaluate the performance of different strategies
qualitatively. In the case without feedforward control, although the response motion
behaves in the same period and at the same amplitude as the reference motion, a response
lag still exists between the reference motion and the controller response motion. The reason
is that feedback control regards only the current reference motion as the control input.
The response does not consider the compensation component in the next step in advance.
Therefore, an inherent delay exists because of the nature of the feedback control strategy.
To reduce the influence of response time lag as much as possible, the influence of future
information in the control system is considered by the feedforward control strategy, thus
reducing the time lag and amplitude of load motion compared with feedback control.
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3.1. Actual-Data Feedforward Control

First, the compensation effect of actual-data feedforward control is analysed before
the predicted data are involved. The reference structure motion and the response motion
are compared, and the phase shift is illustrated clearly in Figure 5. When the forward
step rises from 0 (which is equivalent to feedback control) to 1, the time lag decreases
considerably. The closer the response motion is to the reference motion, the more accurate
the performance is. A similar phenomenon is also observed in the two-step feedforward
case, where the heave motion response is only slightly ahead of the reference heave motion.
However, when the number of steps ahead increases to 3, the performance of AHC is worse
than that of the two-step feedforward case because the phase shift of feedforward control
is larger in this case. In general, the response motions of the control system appear to
translate from right to left (from lagging to ahead). When the two-step feedforward control
is implemented, the effect of heave compensation control is the best of all listed cases.

The heave motions of the payload that can be compensated by feedforward control
are shown in Figure 6. When the reference motion is normalized to [−1, 1], even in the
worst cases (cases without feedforward and three-step feedforward control), the amplitudes
decreases to about 30%. Comparison of the phase shift shows no significant difference
between the one-step and two-step feedforward control. However, the amplitude of
load heave motion in the two-step feedforward case is almost half of that in the one-step
feedforward case. When the phase shift changes from lagging to ahead, the peak appears in
a certain moment, such as 2.0 s, and is then converted to a valley. Overall, in consideration
of both phase shift and amplitude reduction, two-step feedforward control with actual-data
future information is the best choice for the proposed heave compensation system.
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3.2. BPNN Feedforward Control

The actual-data feedforward control analysis shows that two-step feedforward control
is the best option. The next step is to determine how proximate predictive machine learn-
ing algorithms influence the performance of the control system. Although the two-step
feedforward case is the optimal choice when the future information is actual, whether that
conclusion is affected when the future information is predicted remains unknown. The
actual-data and prediction cases with the same feedforward steps are called corresponding
cases. In this study, the future motion is predicted based on two machine learning algo-
rithms: BPNN and LSTM RNN. As shown in Figure 7, BPNN prediction has the same
accuracy as LSTM prediction. No significant difference is observed between BPNN and
LSTM RNN prediction motions for a single harmonic motion. However, the trade-off
between time consumption and accuracy is considered here because BPNN is less time-
consuming than LSTM RNN. Thus, in the regular structure motion section, only the BPNN
prediction results are discussed, but the discussion is suitable for LSTM prediction.
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On the basis of prediction feedforward control, Figure 8 shows the controller response
motions to a sinusoidal signal. Figure 9 shows the heave motion of the payload. As shown
in Figures 8 and 9, the tendencies of phase deviation and compensated payload motion
are similar to those in the actual-data feedforward cases. The different deviation types
of amplitudes, phases and errors are listed in Table 1, which includes actual-data and
prediction feedforward cases. The difference in amplitude between the actual-data and
prediction feedforward cases is only 0.01. Given that the reference amplitude is 1, the
1% difference can be ignored. Therefore, the predicted information based on the machine
learning algorithm is reliable. The control strategy of using predicted data performs almost
the same as that of using actual data. To compare the phase deviation quantitatively in a
discrete form, the lagging step number is defined as follows:

n =
tlag

Ts
, (13)

where tlag is the length of lagging time, that is, the time gap between the peaks of reference
motion and controller response motion; Ts is the sampling period or the inverse number
of sampling frequency; and n is the lagging step number, which is an integer. When n is
positive, the response lags behind the reference motion; when n is negative, the response is
ahead of the reference motion.
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Table 1. Comparison of deviations based on actual data and prediction.

Types of Feedforward
Types of Deviation

Maximum
Amplitude Phase/Step MAE RMSE

Without forward 0.258 2 0.156 0.175

One-step actual-data feedforward 0.103 1 0.062 0.070

Two-step actual-data feedforward 0.055 0 0.033 0.038

Three-step actual-data feedforward 0.210 −1 0.127 0.143

One-step BPNN prediction 0.113 0 0.065 0.072

Two-step BPNN prediction 0.065 0 0.039 0.043

Three-step BPNN prediction 0.221 −1 0.127 0.143

Except for the case where the phase lag of one-step prediction is smaller than that of
the one-step actual-data feedforward case, the other corresponding cases have the same
lagging step number. MAE and RMSE initially decrease and then increase, and they present
the same tendency as the maximum amplitude. A comparison of these deviations is shown
in Figure 10. The analysis of the deviations shows that replacing the actual motion with the
well-predicted motion is feasible when the future information is unknown.
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3.3. Analysis of Optimal Forward Steps

Predicted motion based on BPNN has been proven to be an alternative variable
when the future motion is unknown in a certain case. If the number of prediction steps is
insufficient (0 or 1) or excessive (3 steps), it decreases the accuracy, as shown in Figure 11. To
determine the optimal steps for different regular sea conditions and compare the influence
of sampling frequency and structure motion frequency, two kinds of sampling frequency
ωs (10 and 100 Hz), five kinds of motion frequency ωm (1, 2, 4, 8 and 16 Hz) and six
kinds of step number k (0, 1, 2, 3, 4 and 5) are selected to accomplish a series of payload
motion calculations. The most common frequency of structure motion is about 0.1–1 Hz.
A sampling frequency that is more than 10 times the structure motion has been proven to
be reasonable via experimental tests or operational devices because the characteristics are
collected precisely. If the sampling frequency is fixed at 10 Hz and the motion frequency
increases from 1 Hz to 16 Hz, the measured data will become less precise. Thus, inaccuracy
sampling measurement is also considered in this study. Given that MAE and RMSE reflect
the same trend as amplitude does, only amplitude and phase deviation are analysed;
discussions of MAE and RMSE are not repeated in this section. Tables 2–5 show the
calculated results of different simulated cases.
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Table 2. Amplitude deviation with different numbers of prediction steps (ωs = 10 Hz).

Motion Frequency (Hz) 0.0625 0.125 0.25 0.5 1

Forward step

0 0.065 0.130 0.258 0.495 0.866

1 0.026 0.052 0.103 0.198 0.346

2 0.013 0.027 0.055 0.123 0.319

3 0.052 0.105 0.210 0.420 0.848

4 0.092 0.183 0.363 0.706 1.277

5 0.131 0.261 0.516 0.985 1.663

Table 3. Phase deviation with different numbers of prediction steps (ωs = 10 Hz).

Motion Frequency (Hz) 0.0625 0.125 0.25 0.5 1

Forward step

0 2 2 1 2 2

1 1 1 1 1 1

2 0 0 0 0 −1

3 −1 −1 −1 −1 −2

4 −2 −2 −1 −2 −3

5 −3 −3 −2 −3 −4

Table 4. Amplitude deviation with different numbers of prediction steps (ωs = 100 Hz).

Motion Frequency (Hz) 0.0625 0.125 0.25 0.5 1

Forward step

0 0.007 0.013 0.026 0.052 0.105

1 0.003 0.005 0.011 0.021 0.042

2 0.001 0.003 0.005 0.011 0.021

3 0.005 0.011 0.021 0.042 0.084

4 0.009 0.018 0.037 0.073 0.146

5 0.013 0.026 0.052 0.105 0.209

Table 5. Phase deviation with different numbers of prediction steps (ωs = 100 Hz).

Motion Frequency (Hz) 0.0625 0.125 0.25 0.5 1

Forward step

0 2 2 2 2 2

1 1 1 1 1 1

2 0 0 0 0 0

3 −1 −1 −1 −1 −1

4 −2 −2 −2 −2 −2

5 −3 −3 −3 −3 −3

As shown in Figure 11, when forward step number k rises from 0 to 1, the maximum
amplitudes of payload motion decrease to 40% for all frequencies of structure motion. The
reduction in the maximum amplitude is only 20% from 1 step to 2 steps in the case of the
0.0625 Hz structure motion, and this ratio increases to 36% if the frequency of structure
motion ωm is 1 Hz. When the frequency of structure motion ωm increases, the motion varies
more quickly than it does under a low frequency. Therefore, the control feedback does not
compensate for as much motion as the low-frequency cases do. From the two-step to five-step
cases, the payload motions increase in a linear manner. For the four-step and five-step cases,
the amplitudes of load motion exceed that of feedback control. In the case of ωs = 100 Hz and
ωm = 1 Hz, the amplitudes of the one-step and two-step cases are almost equal.
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The adopted control approach is a PID controller which is sensitive to errors from
the set point. The two-forward steps leave a distance deviation to generate a suitable
control force to minimize the distance gaps. When k is less than 2, the control response is
insufficiently large to compensate for the heave motion. When k is larger than 2, the future
motion is overestimated, which causes overshoot of the compensation. The higher the
frequency of the structure motion, the larger the overshoot of the control result. Therefore,
two-step-forward prediction is beneficial for low-frequency structure motion. However, for
high-frequency structure motion, two-step-forward prediction is unnecessary because no
significant improvement can be achieved.

As shown in Figure 12, the variable of the vertical axis is Ampmax·ωs/ωm, and it is
treated as the amplitude growth speed of motion frequency. When the sampling frequency
is 100 Hz (warm-colour cases), the curves are constant values. This situation means that
the relationships between the payload amplitudes and motion frequencies are linearly
proportional. When the sampling frequency is 10 Hz (cold-colour cases), the amplitude
growth speed drops with the increase in motion frequency in the 0-, 1-, 4- and 5-step
cases. If the number of prediction steps is 2 or 3, the amplitude growth speed will increase
with the increase in motion frequency. In other words, the performance of good models
worsens, whereas the performance of poor models improves. The amplitude deviation
with 100 Hz sampling frequency (Table 4) is less than that with 10 Hz sampling frequency
(Table 2). The amplitudes of payload motion are inversely proportional to the sampling
frequencies. In practical applications, the controller is designed as a continuous system,
which is described as a discrete form due to the information interaction and computational
capability. The higher the sampling frequency, the better the compensation performance.
The phase deviation transitions from lagging to ahead as the feedforward step increases.
All of the simulated cases in this section obey this rule of phase deviation. However, the
phase deviation is insensitive to the structure motion frequency and sampling frequency.
Comparison of Tables 3 and 5 shows that the phase deviation is more stable at high sampling
frequencies than at low ones. In summary, the two-step prediction feedforward cases are
the optimal choices amongst the 10 types of frequency combination.
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4. Predictive Feedforward Control under Irregular Structure Motion

After investigating regular structure motion cases and providing preliminary con-
cluding remarks, the cases of irregular structure motion are examined in this section. The
irregular structure motion of an offshore structure is obtained from Kelvin Hydrodynamic
Laboratory, University of Strathclyde. The irregular wave power density is distributed as
a wave power spectrum. In this paper, the wave power spectrum is a JONSWAP (Joint
North Sea Wave Project) spectrum. The irregular waves were composed of more than
50 components. The paper uses experiments to acquire data because there are currently no
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full-scale ship test conditions available. Firstly, the paper uses the JONSWAP spectrum in
model scale to validate the proposed method; the conversion scale ratio between themodel
and the full-scale ship is confirmed based on the Froude criterion. Secondly, if put into
use to fulfill prediction requirements in real seas, the proposed NN model and system
will need to be retrained with full-scale data that involves investigation and recording
of real-time motion or wave height. Additionally, if the real seas or the structure model
change, the prediction NN model and system will need to be retrained accordingly by
means of methods such as incremental training. Thus, the experimental data cannot be used
in real seas, whose simulation will be carried out based on the retraining of the prediction
NN model with full-scale data. The prediction results of the heave structure motion in
irregular waves are shown in Figure 13.
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Figure 13. Prediction results of the heave structure motion in irregular waves.

The sampling frequency of the height meter is 100 Hz. The recorded heave motion is
curved in the upper subfigure of Figure 14. The reference heave motion is normalized as the
regular motion case. The discussion in this section is separated into two parts. The first part
determines the optimal feedforward step of the PID control system, and the second part
compares the performance of the control system when the two machine learning prediction
algorithms are used.
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The dominant frequency of structure motion in Figure 14 is approximately 1 Hz. The
amplitude of the irregular motion case is 0.028 (Table 6) and that of the regular case with
1 Hz motion frequency is 0.021 (Table 4). Comparison of the performance of the actual-data
feedforward cases indicates that the amplitude of the irregular motion case is slightly larger
than that of the regular case under the dominant frequency. The compensation effect of
irregular motion is approximate to that of the dominant frequency. This result indicates
that the capacity of the proposed control method in irregular motion state is as good as that
in the regular motion condition. The difference between the two cases may be caused by
other components with a high vibration frequency. As shown in Figure 14, the one-step and
two-step feedforward control cases perform well. When the number of prediction steps
increases to three, the performance worsens again, but it is still a better choice than the
feedback control. Between the one-step and two-step cases, the latter is superior because
of its smaller motion amplitude of load heave. Therefore, the optimal step number is two
when the prediction process is implemented.

Table 6. Comparison of the deviation of different prediction algorithms.

Types of Feedforward Types of Deviation
Maximum Amplitude MAE RMSE

Without forward 0.120 0.023 0.030

One-step actual-data feedforward 0.048 0.008 0.010

Two-step actual-data feedforward 0.028 0.004 0.006

One-step BPNN prediction 0.122 0.023 0.030

Two-step BPNN prediction 0.069 0.010 0.013

One-step LSTM prediction 0.060 0.010 0.013

Two-step LSTM prediction 0.029 0.005 0.006

In the case of irregular structure heave motion, the BPNN prediction does not meet
the accuracy requirement as well as it does in the regular motion cases. The advanced
machine learning algorithm, namely, LSTM RNN, is also implemented to predict the future
motion in a feasible manner. Two pairs of curves almost overlap in Figure 15. The first
pair is the one-step BPNN feedforward case and the case without feedforward (feedback).
A possible reason for this overlapping phenomenon is the inaccurate prediction of the
BPNN algorithm. Irregular motion is a complex time series variation for BPNN. Therefore,
a simple BPNN model is expected to unsuccessfully predict the next step motion, but its
result is close to the current step motion. Thus, the curves overlap because they have almost
the same input. The second pair is the two-step BPNN feedforward case and the one-step
LSTM RNN feedforward case. From another indirect aspect, the LSTM RNN prediction
motion is proven accurate.

The overlapped cases mentioned above have similar deviation values regardless of
the maximum amplitude, MAE or RMSE. The heave motion of the BPNN prediction
cases is much larger than that of the actual-data feedforward control cases, so BPNN is
not a recommended prediction algorithm for irregular motions. Heave compensation
system control based on LSTM RNN prediction can minimise the motion amplitude with
different numbers of prediction steps. Two-step LSTM RNN prediction has the best effect
on compensating for the payload motion.
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5. Conclusions

To minimise the motion amplitude of payload with an active compensation system,
this study proposes a predictive control strategy with prediction algorithms based on
machine learning. To verify the proposed predictive control strategy, the reliability of
the prediction algorithms is validated, and different algorithms are adopted for regular
and irregular wave conditions. The optimal feedforward step of the prediction horizon is
determined with different structure motion and sampling frequencies. The influence of the
predictive motion on the compensation performance is analysed by comparing such a case
with actual-data feedforward cases. The following conclusions are derived:

(1) For the regular structure motion case, the BPNN algorithm has the advantage of low
computational cost. The computational cost of the compensation system with actual-
data feedforward control is reduced to 5.5% of the value for reference motion and 6.5%
of the value for machine learning predicted motion. Thus, machine learning-based
predictive control is reliable for use in active heave compensation systems.

(2) Comparison of the performance under different sampling and motion frequencies
shows that two-step feedforward control is the optimal prediction horizon for the
predictive control strategy for the current problem in the paper. The amplitude
of payload motion is proportional to the structure motion frequency and inversely
proportional to the sampling frequency. The phase deviation is insensitive to the
structure motion frequency and sampling frequency.

(3) In the irregular structure motion case, the LSTM RNN algorithm performs better than
BPNN. The amplitude of payload motion is compensated to 2.9% of the reference
motion via two-step feedforward control. The compensation effect of irregular motion
is approximate to that of the corresponding dominant frequency.

The work focuses on the predictive control strategy of active heave compensation,
and it is expected to contribute to motion control for floating structures under realistic
conditions. A mechanical actuator will be considered in future research to analyse the
practical efficiency of the proposed predictive control strategy.
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