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Abstract: In order to simulate or control the coupled heave–pitch motion of ships in waves as realisti-
cally as possible, an appropriate mathematical model must be established in advance. In this paper,
a nonparametric identification method, based on a combination of a random decrement technique
(RDT) and support vector regression (SVR), was proposed to model the coupled heave–pitch motion
of ships by only using the measured random responses at sea. First, a mathematical model was
established to describe the coupled heave–pitch motion of ships in irregular waves. Second, the
random decrement equation and the random decrement signatures were obtained by using RDT.
Third, the damped frequency of the coupled heave–pitch motions were obtained by analyzing the
random decrement signatures. Fourth, SVR was applied to identify the unknown hydrodynamic
functions in the established mathematical model. The applicability and validity of the proposed
nonparametric identification method were verified by case studies which were designed based on
the simulated data and the model test data, respectively. Results of the study showed that the
nonparametric identification method can be applied to identify the coupled heave–pitch motion of
ships by only using the measured random responses in irregular waves.

Keywords: ships; nonparametric identification; coupled heave–pitch motion; random decrement
technique; support vector regression

1. Introduction

Nowadays, with the rapid development of intelligent ships, motion simulation plays
an increasingly important role for designers or operators in the study and control of the
coupled heave–pitch motion of intelligent ships in waves. Moreover, in order to make
realistic simulations or design an appropriate controller, a mathematical model accurately
describing coupled heave–pitch motion is a prerequisite. Usually, according to ship hy-
drodynamics, a mathematical model including hydrodynamic terms, i.e., added mass,
damping, restoring forces and wave exciting forces, can be established. For the purpose of
determining the hydrodynamic forces of ships in waves, two kinds of methods, namely,
a model test and numerical calculation method, are available. The model test method
is usually considered as the most accurate and as a benchmark for other methods [1–3].
According to the theory of fluid dynamics, numerical calculation methods can be divided
into the numerical calculation method based on potential fluid theory [4], and the com-
putational fluid dynamics (CFD) method based on viscous flow theory [5,6]. In addition,
the system identification technique, which aims to find the best mathematical model or
estimate the optimal parameters in the mathematical model by relating the output to the
input of the system, can also be applied to establish the mathematical model of ship motion.

Conventionally, the system identification technique includes parametric identification
and nonparametric identification. In parametric identification, the ship motion equation
with unknown hydrodynamic coefficients is established in advance, and the hydrodynamic
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coefficients are identified by the parametric identification method. For example: Sathyasee-
lan et al. [7] introduced an efficient Legendre wavelet spectral method to identify the
nonlinear damping coefficients in the ship roll motion model. Dai et al. [8] applied a multi-
objective evolutionary algorithm based on NSGA-II to identify the hydrodynamic coeffi-
cients in the coupled heave–pitch motion equations of a ship in regular waves. Xue et al. [9]
applied a parameter identification method based on a Bayesian rule to identify the hydro-
dynamic coefficients in a nonlinear ship maneuvering mathematical model. Wang et al. [10]
applied a real-time parameter identification method based on a nonlinear Gaussian fil-
tering algorithm to identify the unknown parameters in the nonlinear response model of
ship maneuvering motion. Zhao et al. [11] proposed a parameter identification method
combining the least squares under relaxed excitation condition and pseudo-random binary
sequence inputs to estimate the hydrodynamic coefficients in the ship maneuvering motion
equation. In nonparametric identification, the mathematical model for describing ship
motion is unknown or partially unknown, and the nonparametric identification technique
is applied to establish the mathematical model by analyzing the input and output of the
nonlinear system. For example: Jiang et al. [12] and Hao et al. [13] applied a deep neural
network to identify the nonparametric model for predicting nonlinear maneuvering motion
of KVLCC2 and KCS, respectively. Xue et al. [14] proposed an online identification method
of combining the input noisy Gaussian process and fully independent training conditional
algorithm to identify the nonparametric ship maneuvering model.

In the last decade, a robust system identification method based on support vector
regression (SVR) has been applied to identify the motion model of ships and floating
structures. Theoretically, SVR, constructed based on the criteria of structural risk mini-
mization, can not only achieve better generalization performance, especially in the case of
learning with small scale samples; but can also easily avoid the curse of dimensionality
by introducing the kernel function. According to the loss function, which is applied to
assess the training loss and the feature parameters, SVR can be divided into several types.
The least square SVR, ε-SVR and υ-SVR are mainly applied to identify the unknown pa-
rameters or mathematical model for ship motions. Using parameter identification, Hou
and Zou [15–17] applied ε-SVR to identify the unknown hydrodynamic coefficients in the
established mathematical models for describing ship roll motion and heave–pitch cou-
pled motion, respectively. Wang et al. [18] applied nu-SVR to identify the hydrodynamic
parameters in the maneuvering motion equation. Meng et al. [19] proposed a parameter
identification method based on a combination of support vector regression and a modified
grey wolf optimizer to identify the hydrodynamic parameters for the ship maneuvering
motion. Using nonparametric identification, Hou et al. [20] applied ε-SVR to identify the
nonlinear roll motion model of ships in irregular waves. Xu and Guedes Soares [21] applied
truncated least square SVR to identify the ship maneuvering motion model, and the optimal
feature parameters were selected by the quantum-inspired evolutionary algorithm.

In the present study, SVR was used to identify the nonparametric model of coupled
heave–pitch motions of ships. The objective of the study was to validate the applicability
of SVR on heave–pitch coupled motion of ships in waves, and to provide a supplement to
the prediction method of heave–pitch coupled motion for ships. In the following paper,
a mathematical model including the damped natural frequencies and the hydrodynamic
functions was first established to describe the coupled heave–pitch motion of ships in
irregular waves. Second, the random decrement technique (RDT) and SVR was combined
and applied to identify the mathematical model by analyzing ship motion responses in
irregular waves. In order to verify the accuracy, validation, and suitability for generalization
of the proposed method, case studies based on simulation data of a ship and model test
data of a FPSO were designed, respectively. Finally, some conclusions were drawn based
on the present study.
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2. Mathematical Model

In order to describe the motions of a ship, two different right-handed Cartesian
coordinate systems are adopted as shown in Figure 1. The first is the inertial reference
frame OXYZ fixed in space, with the OX axis in mean free surface, pointing to the heading
of the floating structure, and the OZ axis pointing upward. The second is the body-fixed
reference frame Gxyz, with its origin coinciding with the center of gravity, G, of the floating
structure. At the initial moment, the reference frame Gxyz coincides with the reference
frame OXYZ.
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With respect to the defined coordinate systems, the coupled heave–pitch motion of
ships can be described by two linear coupled second-order ordinary differential equations
of the form {

(M + M33)
..
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θ + D35

.
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Iyy + Jyy
) ..
θ + D55

.
θ + C55θ + M53

..
z + D53

.
z + C53z = M5

(1)

where z and θ are the heave linear displacement and pitch angle, respectively; M and Iyy
are the mass of inertia and pitch moment of inertia, respectively; M33 and Jyy are the added
mass and added moment of inertia, respectively; Dii and Cii, i = 3, 5 are the damping
coefficients and the restoring moment coefficients, respectively; Mij, Dij, and Cij, i, j = 3, 5
are the coupled hydrodynamic coefficients; F3 and M5 are the wave exciting force and
moment, respectively.

Multiplying Equation (1) by the inverse matrix of the inertia matrix, the normalized
heave–pitch motion equations are obtained{ ..

z + d33
.
z + d35

.
θ + c33z + c35θ = f3..

θ + d53
.
z + d55

.
θ + c53z + c55θ = f5

(2)

where (
d33 d35
d53 d55

)
=

(
M + M33 M35

M53 Iyy + Jyy

)−1( D33 D35
D53 D55

)
(

c33 c35
c53 c55

)
=

(
M + M33 M35

M53 Iyy + Jyy

)−1( C33 C35
C53 C55

)
(

f3
f5

)
=

(
M + M33 M35

M53 Iyy + Jyy

)−1( F3
M5

) (3)

For the purpose of predicting the coupled heave–pitch motion of ships in waves
accurately, the normalized damping coefficients, restoring force coefficients, and wave
exciting forces in Equations (2) and (3) need to determine according to ship hydrodynamics
in advance. However, for a ship navigating in waves, due to the action of restoring
force/moment, the ship’s heave–pitch coupling motion is a periodic reciprocating motion,
so the ship’s heave–pitch coupling motion equation in waves can also be expressed as

..
z + ω2

3z + G1

(
z, θ,

.
z,

.
θ
)
= f3

..
θ + ω2

5θ + G2

(
z, θ,

.
z,

.
θ
)
= f5

(4)
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where ω3 is the damped frequency of heave motion; ω5 is the damped frequency of pitch
motion; the unknown functions G1 and G2 consist of the damping terms and part of the
restoring terms.

Comparing Equation (4) with Equation (2), instead of determining eight hydrodynamic
parameters in Equation (2), only the two damped frequencies of heave–pitch motion
and the two hydrodynamic functions need to identify by means of the nonparametric
identification method.

3. Identification Method

The nonparametric identification method consists of random decrement technique
(RDT) and support vector regression (SVR). Therein, RDT is applied to extract random
decrement signatures from ship coupled heave–pitch motion responses; and SVR is applied
to identify and model unknown hydrodynamic functions.

3.1. Random Decrement Technique

RDT, as an averaging technique, has been successfully applied in system identification
in ship and ocean engineering [22,23]. According to the theory of RDT, the motion response
of a ship in irregular waves consists of deterministic component and random component.
Therein, the deterministic component is mainly determined by the initial motion state of
the ship; and the random component is mainly caused by external excitation. By applying
RDT on ship motion response, the random part is eliminated, leaving only the deterministic
part, which is called random decrement signature.

Define the following variable substitutions

y1 = z, y2 =
.
z, y3 = θ, y4 =

.
θ, Y = [y1, y2, y3, y4]

T (5)

Substituting Equation (5) into Equation (4), it follows
.
y1 = y2.
y2 = −ω2

3y1 − G1(y1, y2, y3, y4) + f3.
y3 = y4.
y4 = −ω2

5y3 − G2(y1, y2, y3, y4) + f5

(6)

Assume that the wave exciting moment satisfies the following conditions

E[ f3(t)] = 0, E[ f3(t1) f3(t2)] = ψ3δ(t1 − t2), E[ f3(t1) f5(t2)] = 0
E[ f5(t)] = 0, E[ f5(t1) f5(t2)] = ψ5δ(t1 − t2), E[ f5(t1) f3(t2)] = 0

(7)

where E[·] denotes the ensemble average; ψ3 and ψ5 are the variances of the excitation
functions; δ is the Dirac delta function.

The random process Y(t) is assumed as a Markov process, and the conditional proba-
bility density function conforms to the Fokker–Planck equation

∂P
∂t = − ∂

∂y1
(y2P)− ∂

∂y3
(y4P)− ∂

∂y2

{[
ω2

3y1 + G1(y1, y2, y3, y4)
]
P
}

− ∂
∂y4

{[
ω2

5y3 + G2(y1, y2, y3, y4)
]
P
}
+ ψ3

2
∂2P
∂y2

2
+ ψ5

2
∂2P
∂y2

4

(8)

where P = P(y1, y2, y3, y4, t|y1,0, y2,0, y3,0, y4,0) is the conditional probability density of the
random process Y(t) and its initial condition is

lim
t→0

P(y1, y2, y3, y4, t|y1,0, y2,0, y3,0, y4,0 ) = δ(y1 − y1,0)δ(y2 − y2,0)δ(y3 − y3,0)δ(y4 − y4,0) (9)

where y1,0, y2,0, y3,0, and y4,0 are the initial values of the heave displacement, heave rate,
pitch angle and pitch rate, respectively.
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Multiply both sides of Equation (8) by the variables y1, y2, y3 and y4 respectively,
and integrate the equation over the interval [−∞, ∞], and then the following equations
are obtained 

.
µ1 = µ2.
µ2 = −ω2

3µ1 − G1(µ1, µ2, µ3, µ4).
µ3 = µ4.
µ4 = −ω2

5µ3 − G2(µ1, µ2, µ3, µ4)

(10)

where µ1, µ2, µ3 and µ4 are the mean values of the heave displacement, heave rate, pitch
angle and pitch rate, respectively.

Transform Equation (10) into a second-order differential equation systems{ ..
µ1 + ω2

3µ1 + G1(µ1, µ2, µ3, µ4) = 0
..
µ3 + ω2

5µ3 + G2(µ1, µ2, µ3, µ4) = 0
(11)

According to Equation (4), the homogenous coupled heave–pitch equation describing
the free responses of heave and pitch motion can be written as

..
z + ω2

3z + G1

(
z, θ,

.
z,

.
θ
)
= 0

..
θ + ω2

5θ + G2

(
z, θ,

.
z,

.
θ
)
= 0

(12)

Comparing Equation (11) with Equation (12), it is obvious that the two equations have
very high similarity. Therefore, the damped frequencies ω3 and ω5, the unknown function
G1 and G2 in Equations (4) and (12) can be identified based on the random decrement
Equation (11) and the random decrement signatures.

In this study, Figure 2 shows the procedure of obtaining the random decrement
signatures. First, in order to preserve the phase shift between the coupled motions of a
ship, the heave motion is selected as the reference motion and the heave displacement is
correspondingly selected as the reference response. Second, the one-third significant value
of the heave displacement is selected as the trigger value of random decrement signatures.
Simultaneously, the time duration of the random decrement signatures is selected as 5 s.
Third, the heave displacement is equally divided into N segments, and the initial value of
each segment is equal to the selected trigger value. It should be noted that overlap may
occur between the adjacent segments, and the initial slopes of these segments alternate
between positive and negative, with half of the sections having a positive initial slope and
the other half having a negative initial slope. Fourthly, each segment has the same time
step and the heave displacement values at each discrete point are obtained by interpolation.
Then, the values of heave displacement at each discrete point with the same sequence are
superimposed and divided by the number of N segments, and the random decrement
signature µ1 of heave displacement is obtained. Finally, the random decrement signatures
µ2, µ3, and µ4 are obtained by using the similar procedure. The only difference is that the
starting times of every segment of the other three motion responses must coincide with the
starting times of the corresponding segments of the referred heave displacement.
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µ1(τ) =
1
N

[
N/2
∑

i=1
zi(ti + τ) +

N/2
∑

j=1
zj
(
tj + τ

)]

µ2(τ) =
1
N

[
N/2
∑

i=1

.
zi(ti + τ) +

N/2
∑

j=1

.
zj
(
tj + τ

)]

µ3(τ) =
1
N

[
N/2
∑

i=1
θi(ti + τ) +

N/2
∑

j=1
θj
(
tj + τ

)]

µ4(τ) =
1
N

[
N/2
∑

i=1

.
θi(ti + τ) +

N/2
∑

j=1

.
θ j
(
tj + τ

)]
t = ti, z(ti) = zs,

.
z(ti) > 0

t = tj, z
(
tj
)
= zs,

.
z
(
tj
)
< 0

(13)

where τ is the time length of the random decrement signature; zs is the selected trigger
value of the random decrement signature.

3.2. Support Vector Regression

The training set is assumed to be

S = {(xi, yi), i = 1, 2, · · · , l} ∈ (<n ×<)l (14)

where xi ∈ <n is the ith n-dimension input of training set; yi ∈ < is the corresponding
output of training set; l is the number of training samples; <n is the n-dimension Euclidean
space and < is the set of real numbers.

The purpose of learning based on training set is to find the feature function g(x)

g(x) = wTΦ(x) + b (x ∈ <n) (15)

where Φ(x) is a mapping function that maps the input vector x in lower dimensional space
to a higher dimensional feature space by X = Φ(x); w ∈ <n is a weight matrix; b ∈ < is
a bias.
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According to statistical learning theory, the function estimation problem of finding the
characteristic function in Equation (15) by learning from the training set in Equation (14) is
transformed to the following quadratic optimization problem

min
w, ξ(∗)

J(w, ξ, ξ∗) = 1
2 wTw + C

l
∑

i=1
(ξi + ξ∗i )

Subject to [〈w, Φ(xi)〉+ b]− yi ≤ ε + ξi
yi − [〈w, Φ(xi)〉+ b] ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0; i = 1, 2, · · · , l

(16)

where C > 0 is the penalty factor; ξ and ξ* are the slack factor vectors; 〈·, ·〉 denotes the
inner production; ε > 0 is the insensitive zone parameter.

Define the Lagrange function

L f (w, b, ξ, ξ∗; α, α∗, η, η∗) = 1
2 wTw + C

l
∑

i=1

(
ξi + ξ∗i

)
−

l
∑

i=1

(
ηiξi + η∗i ξ∗i

)
+

l
∑

i=1
αi(〈w, φ(xi)〉+ b− yi − ε− ξi) +

l
∑

i=1
α∗i
(
yi − 〈w, φ(xi)〉 − b− ε− ξ∗i

) (17)

where αi, α∗i , ηi, η∗i ≥ 0 are introduced Lagrange multipliers.
According to the duality theorem, by introducing the Lagrange function, the original

quadratic optimization problem in Equation (16) is transformed into the saddle-point
problem for solving the Lagrange function

max
α,α∗ ,η,η∗

min
w,b,ξ,ξ∗

L f (w, b, ξ, ξ∗; α, α∗, η, η∗) (18)

Through Equation (18), in order to obtain the optimal solution, first of all, the mini-
mum value problem of the Lagrange function Lf with respect to parameters w, b, ξ, ξ* is
solved. Moreover, the dual optimization problem of Equation (16) with respect to Lagrange
multipliers is deduced based on Equation (18). It should be noted that the optimal solu-
tion of the dual optimization problem is the optimal solution of the original optimization
problem in Equation (16). Finally, the optimal solution is obtained by solving the dual
optimization problem with suitable numerical algorithm.

According to the conditions of the minimum value, the partial derivatives of Lf with
respect to the primal variables have to vanish for optimality. It follows

∂L f
∂w = 0→ w =

l
∑

i=1
(α∗i − αi)Φ(xi)

∂L f
∂b = 0→

l
∑

i=1
(αi − α∗i ) = 0

∂L f
∂ξi

= 0→ αi + ηi = C
∂L f
∂ξ∗i

= 0→ α∗i + η∗i = C

(19)

By substituting Equation (19) into Equation (18), the dual optimization problem of the
original optimization problem in Equation (16) can be obtained

min
α,α∗

W(α, α∗) = 1
2

l
∑

i=1

l
∑

j=1
(α∗i − αi)(α

∗
j − αj)K(xi, xj) + ε

l
∑

i=1
(α∗i + αi)−

l
∑

i=1
yi(α

∗
i − αi)

subject to
l

∑
i=1

(αi − α∗i ) = 0, αi, α∗i ∈ [0, C]
(20)

where K is the kernel function matrix and its element K(xi, xj) equals to the inner product
of the two input vectors in the higher dimensional feature space.
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Similarly, by substituting Equation (19) into Equation (15), the target feature function
of SVR can be rewritten as

g(x) =
N

∑
i=1

(α∗i − αi)K(xi, x) + b (21)

where N is the number of support vectors.
Through Equation (20), it is clear that the dual optimization problem is a convex

quadratic programming problem, and therefore theoretically the local optimal solution is
the global optimal solution. For the purpose of solving the dual optimization problem in
Equation (20) to obtain the global optimal solution of the original optimization problem
in Equation (16), any kind of optimization algorithms for solving quadratic programming
problem can be used, such as inner point method, effective set algorithm, etc. In the present
study, to improve the efficiency of solving the dual optimization problem, the sequential
minimum optimization (SMO) algorithm [24] is selected. Compared with the traditional
optimization algorithms for solving quadratic programming problem, the biggest advan-
tage of the SMO algorithm is to train SVR analytically rather than explicitly calling a
time-consuming numerical quadratic programming optimizer. The basic procedure of the
SMO algorithm consists of three steps:

First, the Lagrange multipliers αk, α∗k , k = 1, 2, · · · , l and the SVR bias b are initialized
with arbitrary value, respectively;

Second, two Lagrange multipliers that violate the optimality conditions in Equation (19)
is chosen by the heuristics search algorithm, and a quadratic optimization problem for the
two selected variables is constructed as follows

W(λi, λj) =
l

∑
k=1, k 6=i,j

λkλiK(xk, xi) +
l

∑
k=1, k 6=i,j

λkλjK(xk, xj) +
1
2 λ2

i K(xi, xi)

+λiλjK(xi, xj) +
1
2 λ2

j K(xj, xj) + ε|λi|+ ε
∣∣λj
∣∣− yiλi − yjλj

(22)

where λk = α∗k − αk;
Finally, the optimal solution of the above quadratic optimization problem is solved,

and the bias b and the training error of SVR are updated respectively by substituting the
optimal solution into Equations (20) and (21). After that, go to the second step until all
the Lagrange multipliers satisfy the optimality conditions in Equation (19). If no two
Lagrange multipliers are found to violate the optimality conditions, the iterative calculation
is terminated and the SVR is trained.

4. Nonparametric Identification

In this section, the proposed method consisting of RDT and SVR is applied to non-
parametric identification model for ship coupled heave–pitch motion by using the random
responses in irregular waves.

Firstly, the random decrement signatures of the coupled heave–pitch motion are ex-
tracted from the random responses by use of the random decrement technique. Therein, the
pitch angle and the heave displacement are selected as the reference response, respectively.
The significant value of the reference response, i.e., the arithmetic mean of the one-third
maximum reference response, is selected as the trigger value of the random decrement
signatures and the time duration is selected as 5 s. From the obtained random decrement
signatures, the damped frequencies ω3 and ω5 can be determined.

Secondly, according to Equations (10) and (11), the discretized random decrement
equation is obtained by the numerical difference.{

G1,n(µ1,n, µ2,n, µ3,n, µ4,n) =
µ2,n−µ2,n+1

h −ω2
3,iµ1,n

G2,n(µ1,n, µ2,n, µ3,n, µ4,n) =
µ4,n−µ4,n+1

h −ω2
5,iµ3,n

(23)
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where G1,n denotes the value of the function G1 at the nth time step; µ1,n is the random
decrement signature of heave displacement at the nth time step; h is the time step size; ω3,i
and ω5,i are the identified damped frequencies from the random decrement signatures.

According to Equation (23), the training samples set of SVR are constructed as

Heave : Input = {µ1,n; µ2,n; µ3,n; µ4,n}
Output =

{
µ2,n−µ2,n+1

h −ω2
3,iµ1,n

}
Pitch : Input = {µ1,n; µ2,n; µ3,n; µ4,n}

Output =
{

µ4,n−µ4,n+1
h −ω2

5,iµ3,n

} (24)

Thirdly, the kernel function, the penalty parameter C, and the insensitive zone param-
eter ε need to choose for SVR in advance. In this paper, the Gauss radial basis function
expressed in Equation (25) is selected as the kernel function of SVR,

K
(
x, x′

)
= exp

(
−‖x− x′‖2/2σ2

)
(25)

where σ means the width parameter of kernel function.
The penalty parameters C, the insensitive zone parameter ε and the width parameter

σ are chosen by the grid search method. With respect to the constructed training samples
set, the dual optimization problem in Equation (20) can be constructed and solved by the
SMO algorithm.

Finally, comparing Equation (23) with the feature function of SVR in Equation (21),
once the training process of SVR is finished, the unknown function G1 and G2 can be
substituted by the trained SVR model. Substitute the identified damped frequencies and
the trained SVR model into Equation (11); it is transformed into the following form

..
µ1 + ω2

3,iµ1 + SVRh(µ1, µ2, µ3, µ4) = 0
..
µ3 + ω2

5,iµ3 + SVRp(µ1, µ2, µ3, µ4) = 0
(26)

where SVRh(µ1, µ2, µ3, µ4) and SVRp(µ1, µ2, µ3, µ4) are the trained SVR model for heave
and pitch, respectively. Integrating Equation (26) by the fourth order Rung–Kutta method,
the random decrement signatures can be predicted.

Figure 3 gives the flow chart of the proposed nonparametric identification method.
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To validate the applicability, accuracy and the generalization ability of the proposed
identification method, case studies based on the simulated data of a ship model and the
experimental data of a FPSO model are designed, respectively.
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4.1. Identification Example Based on the Simulated Data

In order to test the accuracy and validity of the parametric identification procedure, the
coupled heave–pitch motion of a vessel model [25] is simulated. The principal dimensions
of the vessel model are given in Table 1, and the mathematical model for simulating the
coupled heave–pitch motion of the vessel model is given in Equation (27).{ ..

z + 2.823
.
z + 0.157

.
θ + 34.096z + 0.223θ = f3..

θ + 0.579
.
z + 2.632

.
θ + 0.626z + 30.785θ = f5

(27)

Table 1. Principal dimensions of the vessel model.

Item Symbol Unit Value

Length between perpendiculars Lpp m 2.1985
Length of waterline Lwl m 2.3250

Breadth B m 0.4840
Mean draft T m 0.1735

Displacement volume ∇ m3 0.1190
Wetted surface area S m2 1.1335

Transverse metacentric radius Rx m 0.122
Longitudinal metacentric radius Ry m 2.4

For simulating the random responses, the white noise and the JONSWAP spectrum
are used as the external excitation, respectively.

With respect to the white noise excitation, the normalized wave exciting force f 3 and
moment f 5 are consisted of 70 sinusoidal components with constant amplitude 0.07 m/s2

and 0.15 rad/s2. The frequency range of the excitation is taken between 2.0 and 5.0 rad/s.
The wave exciting force and moment are expressed as

f3(t) =
70
∑

i=1
0.07 cos(ωit + αi)

f5(t) =
70
∑

i=1
0.15 cos(ωit + αi)

(28)

where αi is the phase shift between these wave exciting force components and taken as a
random variable uniformly distributed between 0 and 2π.

With respect to the JONSWAP spectrum excitation, the significant height and the
modal frequency of the wave spectrum are 0.05 m and 4.398 rad/s, respectively. The
frequency range of the external excitation is taken between 0 and 4π rad/s. The normalized
wave exciting force f 3(t) and moment f 5(t) are assumed to be consisted of 70 sinusoidal com-
ponents with different amplitudes. The wave exciting force and moment are expressed as

f3(t) =
70
∑

i=1
f3A,i cos(ωit + αi)

f5(t) =
70
∑

i=1
f5A,i cos(ωit + αi)

(29)

where f 3A,i and f 5A,i are the amplitudes of the wave exciting force components, respectively.
Substituting Equations (28) and (29) into Equation (27) and taking 0.05 s as the time

step size, the Equation (27) can be solved by the fixed-step fourth order Runge–Kutta
method. The simulated heave and pitch coupled motion responses of the ship model under
the two external excitations are obtained and shown in Figure 4. In this figure, the symbol
“w” and “q” denote the heave speed and the pitch rate, respectively.
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Figure 4. Simulated heave and pitch coupled responses.

By using RDT, the random decrement signatures are extracted from the simulated
data. In the present study, two kinds of random decrement signatures are obtained: one is
obtained in the case that the heave displacement is selected as the reference motion; the
other is obtained in the case that the pitch angle is selected as reference motion. For the
white noise excitation, the trigger values of the two kinds of random decrement signatures
are selected as: zs = 0.019 m in the case of the heave displacement as the reference motion;
θs = 2.177 deg in the case of the pitch angle as the reference motion. For the JONSWAP
spectrum excitation, the trigger values are selected as: zs = 0.028 m in the case of the
heave displacement as the reference motion; θs = 0.632 deg in the case of the pitch angle
as the reference motion. The random decrement signatures, which are extracted from the
simulated heave and pitch coupled responses under the white noise excitation and the
JONSWAP spectrum excitation, are shown in Figures 5 and 6, respectively.

By analyzing the random decrement signatures, the damped frequencies of heave and
pitch motions are identified and given in Table 2 in comparison with the known values.
From Table 2, it clearly demonstrates that the identified damped frequencies under the
white noise excitation are more accurate than the identified values under the JONSWAP
spectrum excitation.
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Figure 5. Random decrement signatures from simulated data, white noise excitation.
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Figure 6. Random decrement signatures from simulated data, JONSWAP spectrum excitation.

Table 2. Identified damped frequency.

White Noise Excitation JONSWAP Spectrum Excitation

Frequency Known Identified Error (%) Identified Error (%)

ω3 4.488 4.483 0.111 4.171 7.063

ω5 4.597 4.533 1.392 4.379 4.742

According to Equation (24), the training set is constructed. The penalty parameter
C, the insensitive zone parameter ε, and the width parameter σ of the Gauss radial basis
kernel function are selected as: C = 105, ε = 0.05, σ = 0.5 for the white noise excitation; C = 1,
ε = 0.05, σ = 2.5 for the JONSWAP spectrum excitation. After that, the SMO algorithm is
applied to train SVR, and the training results are shown in Figure 7.

From Figure 7, it is seen that the trained SVR model describes the constructed training
samples accurately. It means that the function G1(y1, y2, y3, y4) and G2(y1, y2, y3, y4) can be
substituted by the trained SVR model. For the purpose of validating the identified results,
the identified damped frequencies and the identified SVR model of the unknown function
are substituted into the random decrement equation to predict the random decrement
signatures. Integrating Equation (26) by the fourth order Rung–Kutta method, the random
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decrement signatures with different reference responses and different trigger values are
predicted. The predicted random decrement signatures are shown in Figures 8 and 9,
respectively, in comparison with that obtained from the simulated responses by using the
random decrement technique.
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Figure 7. Training results of SVR for the simulated data.
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Figure 8. Predicted random decrement signatures, white noise excitation.



J. Mar. Sci. Eng. 2023, 11, 676 14 of 21J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 21 
 

 

  
(a) zs = 0.028 m (b) zs = 0.015 m 

(c) θs = 0.632 deg (d) θs = 0.3 deg 

Figure 9. Predicted random decrement signatures, JONSWAP spectrum excitation. 

In Figures 8 and 9, the heave displacement is selected as the reference response of the 
random decrement signatures in Figure 8a,b with different trigger values, and the pitch 
angle is selected as the reference response of the random decrement signatures in Figure 
8c,d with different trigger values. From these two figures, it can be seen that the predicted 
random decrement signatures are generally reasonable though there are some discrepan-
cies between the predicted results and the simulated results. The discrepancies may be 
ascribed to the factor of the SVR�s parameters. Although the grid search method is used, 
the selected penalty parameter C, the insensitive zone parameter ε and the width param-
eter σ may be not optimal. Actually, a universal and effective method for the selection of 
the optimal SVR�s parameters is still challenging. 

Moreover, the identified damped frequencies and SVR models are submitted into 
Equation (26) to predict the coupled heave–pitch motion in irregular waves. The predicted 
results are compared with the simulated responses and shown in Figures 10 and 11 to-
gether with the time histories of prediction errors, respectively. The prediction errors are 
calculated by 

100%, 100%

100%, 100%

p k p k

error error

rms rms

p k p k

error error

rms rms

z z w w
z w

z w

q q
q

q

θ θ
θ

θ

− −
= × = ×

− −
= × = ×







 (30)

where the subscripts �p� and �k� denote the predicted and known values, respectively; the 
subscript �rms� denotes the root-mean-square value. 

0 1 2 3 4 5
-0.04

-0.02

0

0.02

0.04

time (s)

μ 1
 (m

)

 

 
simulated predicted

0 1 2 3 4 5
-0.2

-0.1

0

0.1

0.2

time (s)

μ 2
 (m

/s
)

 

 
simulated predicted

0 1 2 3 4 5
-1

-0.5

0

0.5

1

time (s)

μ 3
 (d

eg
)

 

 
simulated predicted

0 1 2 3 4 5
-4

-2

0

2

4

time (s)

μ 4 (d
eg

/s
)

 

 
simulated predicted

0 1 2 3 4 5
-0.02

-0.01

0

0.01

0.02

time (s)

μ 1
 (m

)

 

 
simulated predicted

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

time (s)

μ 2 (m
/s

)

 

 
simulated predicted

0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

time (s)

μ 3 (d
eg

)

 

 
simulated predicted

0 1 2 3 4 5
-2

-1

0

1

2

time (s)

μ 4
 (d

eg
/s

)

 

 
simulated predicted

0 1 2 3 4 5
-0.04

-0.02

0

0.02

0.04

time (s)

μ 1 (m
)

 

 
simulated predicted

0 1 2 3 4 5
-0.2

-0.1

0

0.1

0.2

time (s)

μ 2
 (m

/s
)

 

 
simulated predicted

0 1 2 3 4 5
-1

-0.5

0

0.5

1

time (s)

μ 3
 (d

eg
)

 

 
simulated predicted

0 1 2 3 4 5
-4

-2

0

2

4

time (s)

μ 4 (d
eg

/s
)

 

 
simulated predicted

0 1 2 3 4 5
-0.02

-0.01

0

0.01

0.02

time (s)

μ 1 (m
)

 

 
simulated predicted

0 1 2 3 4 5
-0.1

-0.05

0

0.05

0.1

time (s)

μ 2
 (m

/s
)

 

 
simulated predicted

0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

time (s)

μ 3
 (d

eg
)

 

 

simulated predicted
0 1 2 3 4 5

-2

-1

0

1

2

time (s)

μ 4 (d
eg

/s
)

 

 
simulated predicted

Figure 9. Predicted random decrement signatures, JONSWAP spectrum excitation.

In Figures 8 and 9, the heave displacement is selected as the reference response of
the random decrement signatures in Figure 8a,b with different trigger values, and the
pitch angle is selected as the reference response of the random decrement signatures in
Figure 8c,d with different trigger values. From these two figures, it can be seen that the
predicted random decrement signatures are generally reasonable though there are some
discrepancies between the predicted results and the simulated results. The discrepancies
may be ascribed to the factor of the SVR’s parameters. Although the grid search method
is used, the selected penalty parameter C, the insensitive zone parameter ε and the width
parameter σ may be not optimal. Actually, a universal and effective method for the selection
of the optimal SVR’s parameters is still challenging.

Moreover, the identified damped frequencies and SVR models are submitted into
Equation (26) to predict the coupled heave–pitch motion in irregular waves. The predicted
results are compared with the simulated responses and shown in Figures 10 and 11 to-
gether with the time histories of prediction errors, respectively. The prediction errors are
calculated by {

zerror =
zp−zk
zrms
× 100%, werror =

wp−wk
wrms

× 100%

θerror =
θp−θk
θrms
× 100%, qerror =

qp−qk
qrms
× 100%

(30)

where the subscripts ‘p’ and ‘k’ denote the predicted and known values, respectively; the
subscript ‘rms’ denotes the root-mean-square value.
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Figure 10. Comparisons between the predicted and simulated responses, white noise excitation.
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Figure 11. Comparisons between the predicted and simulated responses, JONSWAP spectrum excitation.
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From Figures 10 and 11, it is seen that the coupled heave–pitch motion can be predicted
using the identified damped frequencies and SVR models. Therefore, it can be concluded
that the nonparametric method can be applied to identify the dynamic characteristics of the
coupled heave and pitch motions of ships in irregular waves based on the simulation data.

4.2. Validation/Verification Based on the Experimental Data

For the purpose of validating the applicability and generalization ability of the pro-
posed method, it is applied to identify the coupled heave–pitch motion of a FPSO model by
analyzing the measured heave and pitch coupled responses in irregular waves.

The model scale is 1:81 and the principal dimensions of the model are given in Table 3.
The model is subjected to the irregular waves of the JONSWAP spectrum. The significant
height of the wave spectrum is 0.1852 m, and the peak spectral period is 1.68 s. The
model test condition corresponds to the 100-year survival condition at full scale, where
the significant height of the wave spectrum is 15 m, and the peak spectral period is
15.1 s. The measured heave displacement and pitch angle are shown in Figure 12. Based
on the measured responses, the heave speed and pitch rate are obtained by numerical
differentiation and also shown in Figure 12.

Table 3. Principal dimensions of the FPSO model.

Item Symbol Unit FPSO Model

Length over all Loa m 309.31 3.82
Length between
perpendiculars Lpp m 300.80 3.71

Breadth B m 54.5 0.67
Depth D m 25.98 0.32

Mean draft T m 12.5 0.15
Block coefficient Cb - 0.97 0.97

Radius of roll gyration kx m 18.4 0.23
Radius of pitch gyration ky m 75 0.93

Bilge keel Lk × Bk m 230.4 × 0.64 2.85 × 0.01
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Figure 12. Measured heave and pitch responses of the FPSO model.

By the random decrement technique, two kinds of random decrement signatures are
extracted from the measured motion responses. One is obtained on a basis of the heave
displacement as the reference response and zs = 1.007 m as the trigger value; the other is
obtained on a basis of the pitch angle as the reference response and θs = 1.190 deg as the
trigger value. The obtained random decrement signatures are shown in Figure 13.
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Figure 13. Random decrement signatures from the measured responses.

By analyzing the random decrement signatures, the damped frequencies of heave and
pitch in irregular waves are identified and given in Table 4. Because of the true values
of the damped frequencies are unknown, the accuracy of the identified results cannot be
clearly shown by use of the comparison between the identified values and the true values
in this table.

Table 4. Identified damped frequencies of the FPSO model.

Frequency ω3 ω5

Value 3.037 3.649

Based on the obtained random decrement signatures of the heave and pitch motion,
the training set is constructed according to Equation (24), and the penalty parameter C, the
insensitive zone parameter ε, and the width parameter σ of the Gauss radial basis kernel
function are selected as C = 100, ε = 2.5, σ = 20, respectively. Then SVR is trained by the
SMO algorithm and the training results are shown in Figure 14.
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Figure 14. Training results of SVR based on the experimental data.
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From Figure 14, it is clearly seen that the SVR can describe the constructed training
samples set accurately. It means that the function G1(y1, y2, y3, y4) and G2(y1, y2, y3, y4)
can be substituted by the trained SVR model. For the purpose of validating the identified
results, the identified damped frequencies and the identified SVR model of the unknown
function are used to predict the random decrement signatures. Integrating Equation (26)
by the fourth order Rung–Kutta method, the random decrement signatures with different
reference responses and different trigger values are predicted. The predicted random
decrement signatures are shown in Figure 15 in comparison with that obtained from the
measured heave and pitch coupled responses by use of the random decrement technique. In
Figure 15a,b, the heave displacement is used as the reference response of the random decre-
ment signature with different trigger values, and in Figure 15c,d, the pitch angle is used as
the reference response of the random decrement signature with different trigger values.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 21 
 

 

function are used to predict the random decrement signatures. Integrating Equation (26) 
by the fourth order Rung–Kutta method, the random decrement signatures with different 
reference responses and different trigger values are predicted. The predicted random dec-
rement signatures are shown in Figure 15 in comparison with that obtained from the 
measured heave and pitch coupled responses by use of the random decrement technique. 
In Figure 15a,b, the heave displacement is used as the reference response of the random 
decrement signature with different trigger values, and in Figure 15c,d, the pitch angle is 
used as the reference response of the random decrement signature with different trigger 
values. 

  
(a) zs = 1.0 m (b) zs = 0.6 m 

  
(c) θs = 1.2 deg (d) θs = 0.8 deg 

Figure 15. Comparisons between the predicted values and the measured values of the FPSO model. 

From Figure 15, it can be seen that the agreements between the predicted random 
decrement signatures and that from the measured responses are generally satisfactory. 
The discrepancies between the predicted results and the measured results may be caused 
by the following reasons: the first is that the SVR�s parameters are not optimal so that the 
SVR model cannot represent the unknown function G1 and G2 in the equation precisely; 
the second is that the random decrement signatures cannot exactly satisfy the random 
decrement equation. 

5. Conclusions 
In the present study, RDT and SVR were combined and applied to identify the non-

parametric model of ship heave and pitch coupled motion in irregular waves. To deter-
mine the unknown damped and hydrodynamic functions, the random decrement signa-
tures were extracted by RDT from the measured motion response, and then the damped 
frequencies were determined, and the hydrodynamic functions were identified by SVR. 
In order to validate the applicability, accuracy and generalization ability of the proposed 

0 2 4 6
-1

-0.5

0

0.5

1

1.5

time (s)

μ 1 (m
)

 

 
measured predicted

0 2 4 6
-4

-2

0

2

4

time (s)

μ 2 (m
/s

)

 

 
measured predicted

0 2 4 6
-1

-0.5

0

0.5

1

time (s)

μ 3 (d
eg

)

 

 
measured predicted

0 2 4 6
-3

-2

-1

0

1

2

3

time (s)

μ 4 (d
eg

/s
)

 

 
measured predicted

0 2 4 6
-1

-0.5

0

0.5

1

time (s)

μ 1
 (m

)

 

 
measured predicted

0 2 4 6
-3

-2

-1

0

1

2

time (s)

μ 2 (m
/s

)

 

 
measured predicted

0 2 4 6
-0.5

0

0.5

1

time (s)

μ 3
 (d

eg
)

 

 
measured predicted

0 2 4 6
-2

-1

0

1

2

time (s)
μ 4 (d

eg
/s

)
 

 
measured predicted

0 2 4 6
-1

-0.5

0

0.5

time (s)

μ 1 (m
)

 

 

measured predicted

0 2 4 6
-3

-2

-1

0

1

2

time (s)

μ 2 (m
/s

)

 

 

measured predicted

0 2 4 6
-1.5

-1

-0.5

0

0.5

1

1.5

time (s)

μ 3 (d
eg

)

 

 
measured predicted

0 2 4 6
-6

-4

-2

0

2

4

time (s)

μ 4 (d
eg

/s
)

 

 

measured predicted

0 2 4 6
-0.6

-0.4

-0.2

0

0.2

0.4

time (s)

μ 1 (m
)

 

 

measured predicted

0 2 4 6
-2

-1

0

1

2

time (s)

μ 2 (m
/s

)

 

 

measured predicted

0 2 4 6
-1

-0.5

0

0.5

1

time (s)

μ 3 (d
eg

)

 

 

measured predicted

0 2 4 6
-3

-2

-1

0

1

2

3

time (s)

μ 4 (d
eg

/s
)

 

 

measured predicted

Figure 15. Comparisons between the predicted values and the measured values of the FPSO model.

From Figure 15, it can be seen that the agreements between the predicted random
decrement signatures and that from the measured responses are generally satisfactory. The
discrepancies between the predicted results and the measured results may be caused by
the following reasons: the first is that the SVR’s parameters are not optimal so that the
SVR model cannot represent the unknown function G1 and G2 in the equation precisely;
the second is that the random decrement signatures cannot exactly satisfy the random
decrement equation.
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5. Conclusions

In the present study, RDT and SVR were combined and applied to identify the nonpara-
metric model of ship heave and pitch coupled motion in irregular waves. To determine the
unknown damped and hydrodynamic functions, the random decrement signatures were
extracted by RDT from the measured motion response, and then the damped frequencies
were determined, and the hydrodynamic functions were identified by SVR. In order to
validate the applicability, accuracy and generalization ability of the proposed method, the
simulated data and experimental data were analyzed, respectively. First, the identification
method was applied to analyze the simulated data of a vessel model under the white
noise excitation and the JONSWAP excitation, respectively. The satisfactory agreements
between the predicted responses, identified results, and the simulated responses using
the known simulated model demonstrated that the identification method can be applied
to the nonparametric identification of the coupled heave–pitch motion by analyzing the
simulated data. Second, the identification method was applied to the experimental data
of a FPSO model in irregular waves. The reasonable agreement between the predicted
responses and the measured values indicated that the proposed identification method can
be applied to identify heave and pitch coupled motion in irregular waves by analyzing the
model test data.

From the present study, it can be concluded that the identification method can be
applied to the nonparametric identification model for coupled heave–pitch motion of ships
at sea by using only the motion responses, which are relatively easy to measure. However,
it must be pointed that the accuracy of the identification method needs to improve by
developing a universal and effective method to find the optimal parameters of SVR. This
will be the subject of a future study.
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Glossary

Symbol Description
z heave linear displacement
θ pitch angle
M mass of inertia
Iyy pitch moment of inertia
M33 added mass
Jyy added moment of inertia
Dii (i = 3, 5) damping coefficients
Cii (i = 3, 5) restoring moment coefficients
Mij, Dij, Cij (i, j = 3, 5, i 6= j) coupled hydrodynamic coefficients
F3, M5 wave exciting force and moment
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ω3, ω5 damped frequency
E[·] ensemble average
ψ3, ψ5 variances of the excitation functions
δ Dirac delta function
µi, (i = 1, 2, 3, 4) random decrement signature
τ time length of the random decrement signature
zs selected trigger value of the random decrement signature
l number of training samples
Φ(x) mapping function of SVR
w weight matrix
b bias value
C penalty factor
ξ, ξ* slack factor vectors
ε insensitive zone parameter
αi, α∗i , ηi, η∗i Lagrange multipliers
K kernel function matrix
h time step size
σ width parameter
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