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Abstract: Due to light absorption and scattering underwater images suffer from low contrast, color
distortion, blurred details, and uneven illumination, which affect underwater vision tasks and
research. Therefore, underwater image enhancement is of great significance in vision applications.
In contrast to existing methods for specific underwater environments or reliance on paired datasets,
this study proposes an underwater multiscene generative adversarial network (UMGAN) to enhance
underwater images. The network implements unpaired image-to-image translation between the
underwater turbid domain and the underwater clear domain. It has a great enhancement impact on
several underwater image types. Feedback mechanisms and a noise reduction network are designed
to optimize the generator and address the issue of noise and artifacts in GAN-produced images.
Furthermore, a global–local discriminator is employed to improve the overall image while adaptively
modifying the local region image effect. It resolves the issue of over- and underenhancement in
local regions. The reliance on paired training data is eliminated through a cycle consistency network
structure. UMGAN performs satisfactorily on various types of data when compared quantitatively
and qualitatively to other state-of-the-art algorithms. It has strong robustness and can be applied to
various enhancement tasks in different scenes.

Keywords: image enhancement; generative adversarial networks; underwater; noise reduction

1. Introduction

Underwater imaging is a significant source of oceanic information, advancing the
study of marine biology, marine archaeology, marine ecology, and naval military [1,2]. The
effects of absorption and scattering on the underwater imaging process lead to significant
image deterioration with low contrast, color distortion, blurred details, and uneven illumi-
nation [3]. Degraded images seriously affect underwater vision tasks and research. It is of
great scientific significance to improve the visual quality of original underwater images
with the help of image processing technology. However, the degree of deterioration and the
existence of issues differ from one underwater image to the next. Therefore, underwater
image enhancement for different scenes is a challenging task.

To address the issue of underwater images, researchers are currently employing a
variety of techniques, including contrast enhancement [4,5], frequency domain enhance-
ment [6,7], color constancy [8,9], and image fusion [10,11]. However, these techniques
frequently focus on a single data type. They have low robustness and do not handle
different styles of underwater images very well. With the development of image processing
technology [12–16], deep learning techniques have advanced significantly in the field of
image processing in recent years. An increasing number of researchers are applying deep
learning methods to underwater image enhancement [17–21]. Compared with traditional
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methods, deep learning methods trained with enormous amounts of data can better handle
images in different scenes.

A generative adversarial network called UMGAN has been proposed for the enhance-
ment of several underwater scene images. GAN is adopted to build unpaired mappings
between turbid and clear underwater image spaces, which frees us from the reliance on
precisely paired images. According to the characteristics of the underwater environment, a
feedback mechanism for underwater image quality measurement is proposed. Based on
the quality of the created images, feedback is provided to the generator to continuously
optimize the generated results. A noise reduction network is designed to prevent the
creation of image noise during the training process since artifacts and texture noise are
frequently present in the images produced by GAN. In addition, dual discriminators are
used to balance global and local enhancements. The issues of over- and underenhancement
in local regions are avoided by adaptive modification of the enhancement effect in each
region. Figure 1 shows the underwater images of different scenes and enhancement effects.
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Figure 1. Different types of underwater images enhanced with UMGAN. Columns 1, 3, and 5 are
turbid underwater images, while columns 2, 4, and 6 are corresponding images enhanced by UMGAN.
(a) Greenish images. (b) Yellowish images. (c) Blueish images. (d) Low-light images. (e) Images with
white fog. (f) Low-contrast images.

The main contributions of this work are summarized according to three aspects. First,
a feedback mechanism for the characteristics of underwater images is proposed. The
generator is optimized by providing constant feedback about the image quality, achiev-
ing image enhancement for a variety of underwater scenes. Second, the noise reduction
network is designed. The problem of artifacts and textural noise in the images generated
by GAN is solved. Third, a global–local discriminator is employed. Dual discrimina-
tors weight the image results and adaptively enhance local regions while enhancing the
global image.
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2. Related work
2.1. Underwater Image Enhancement

When light is transmitted in water, it is affected by both absorption and scattering.
Therefore, underwater images often suffer from low contrast, color distortion, blurred
details, and uneven illumination [22]. Two contrast enhancement methods, ICM [23] and
UCM [4], were proposed by Iqbal et al., who were the first to research underwater image
enhancement. Inspired by Iqbal et al., a two-stage technique for underwater image contrast
enhancement and color correction was presented by Ghani et al. [5]. A series of histogram
equalization methods (HE [24], AHE [25], and CLAHE [26]) was also used to enhance
underwater images [27,28]. Jin et al. [29] combined CLAHE with Gaussian differential
pyramids to solve the problem of low-contrast and blurred details in underwater images.

Frequency domain techniques such as Fourier transform and wavelet transform are
used by researchers for underwater image enhancement [6,7]. Retinex is a widely used
technique for enhancing images that is based on scientific research and analysis. Extended
multiscale retinex was utilized by Zhang et al. [8] to enhance underwater image quality.
Zhou et al. [30] used multiscale retinex to extract the light components to adjust the three
channels for color correction. Image fusion entails performing several picture improvement
procedures on the source image before merging the various improved images by weighting.
Following the adjustment of the white balance, Ancuti et al. [10] performed a multiscale
fusion of underwater images. A combination of enhanced background filtering and wavelet
fusion methods was used by Ghani et al. [11]. Then, they integrated homomorphic filtering,
recursive overlapping CLAHS, and dual-image wavelet fusion for underwater image
enhancement [31]. Lei et al. [32] implemented underwater image enhancement based on
color correction and dual-image multiscale fusion.

2.2. Deep Learning Methods

In recent years, an increasing number of researchers has applied deep learning meth-
ods to underwater image enhancement. Depending on the network model used, deep-
learning-based underwater image enhancement methods can be classified as convolutional
neural network (CNN)-based or generative adversarial network (GAN)-based methods.
Wang et al. [33] first applied CNN to underwater image enhancement. Li et al. proposed
Water-Net [21] and UWCNN [20] to implement end-to-end underwater image enhancement.
To better support the deployment of underwater exploration missions on portable devices,
Shallow-UWnet [34] maintains performance while reducing the number of participants.

WaterGAN [17] is an example of the early use of GAN for underwater image en-
hancement. It eliminates the reliance on training data, and the model synthesizes in-air
RGB-D images and depth maps into underwater images. Researchers have focused on the
application of GAN in underwater image enhancement from two directions: a conditional
generative adversarial network (cGAN) and a cycle-consistent generative adversarial net-
work (CycleGAN). Guo et al. [35] proposed a multiscale dense GAN for underwater image
enhancement. Zhou et al. combined the physical model with GAN and used an underwater
imaging model to simulate an underwater training dataset from RGB-D data. Inspired by
CycleGAN [36], a weakly supervised color-transfer method was proposed by Li et al. [18]
to solve the color distortion problem in underwater images. On this basis, Lu et al. [19]
proposed a multiscale CycleGAN (MCycleGAN) by combining the dark channel prior
and CycleGAN. FUnIE-GAN [37] implements real-time underwater image enhancement.
Du et al. [38] added a content-loss regularizer and a blur-promoting adversarial loss regu-
larizer to CycleGAN to retain detailed information about the enhanced images.

3. Materials and Methods

An underwater multiscene generative adversarial network (UMGAN) is proposed
for the purpose of underwater image enhancement. In the forward process, the turbid
underwater image is converted to a clear image by the G generator and the noise reduction
network. A quality feedback mechanism was designed. The generated images feed the
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image quality back to the generator to continuously optimize the generated results. Then,
the global–local discriminator is developed to jointly determine the effect of the generated
image. In the same way, the F generator maps the clear image domain to the turbid image
domain. SSIM loss is also used to control the consistency of the image structure in both
domains. The overall framework is shown in Figure 2.
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3.1. Underwater Image Quality Measure Feedback

A non-reference underwater image quality measure (UIQM) was proposed by
Panetta et al. [39]. The UIQM includes three image attribute measures: the underwa-
ter image colorfulness measure (UICM), the underwater image sharpness measure (UISM),
and the underwater image contrast measure (UIConM). Inspired by Panetta et al.’s work,
a feedback mechanism for underwater images is proposed. The UIQM loss function is
designed to evaluate the quality of the generated images in terms of colorfulness, sharpness,
and contrast, which is fed back to the generator to optimize the generated image results.
During the training process, G mapping continuously receives feedback from the UIQM
loss function, and the quality of the generated images is gradually improved. In the forward
process, the UICM, UISM, and UIConM values of the generated images are fed back to the
generation module. The UIQM loss of the image is expressed as follows:

LUIQM(I, G) = 1
n

n
∑

pix=1

(
λ1 − LUICM

(
G
(

Ipix
)))

+ 1
n

n
∑

pix=1

(
λ2 − LUISM

(
G
(

Ipix
)))

+ 1
n

n
∑

pix=1

(
λ3 − LUIConM

(
G
(

Ipix
))) (1)



J. Mar. Sci. Eng. 2023, 11, 447 5 of 14

where I denotes the input turbid image, G(·) denotes the enhanced output of the
generator, pix denotes each pixel of the image, and n denotes the total number of pixels.
λ1, λ2, and λ3 are set to 1, 2.5, and 2, respectively, as determined by extensive experiments
on the training dataset.

3.2. Noise Reduction Network

The images generated by GAN networks frequently include noise. In this case, a noise
reduction network is proposed, which is added after the generator. Before being predicted
by the discriminator, the image matrix created during each training round is sent into
the noise reduction network, which improves the quality of the generated images in each
round. The network’s filter is based on Gaussian filtering. A 3 × 3 Gaussian kernel is used
to convolve the generated images. The noise reduction network can effectively improve the
problem of severe textural noise in the images generated by the GAN. A visual comparison
after adding the noise reduction network is shown in Figure 3.
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(b) Enhanced image after removing the noise reduction network. (c) Enhanced image of UMGAN.
Adding the noise reduction network significantly reduces the noise in the image.

3.3. Global–Local Discriminators

Different scenes in a picture are located at different distances from the camera. Light
conditions also differ depending on the region. Global discriminators alone often cannot
adaptively enhance every local region in an image. Inspired by previous work [40], a
global–local discriminator structure for underwater image enhancement is designed. It
adaptively enhances local areas while enhancing the global image. The original global
discriminator judges the full map enhancement effect. The local discriminator crops out
random local blocks from the generated image for determination. This method avoids the
problems of over- and underenhancement of local areas. The comprehensive results of the
two discriminators are:

D(I) = αDGlobal(I) +
n

∑
k=1

βkDLocal

(
Iij
k

)
(2)

where α and βk are the weights of the two discriminators, and α + ∑n
k=1 βk = 1. i and j

denote the height and width of the randomly cropped block, respectively (i = 64, j = 64).
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To ensure the stability of the cycle structure, local discriminators are introduced in both
the forward and backward processes. The visual comparison after adding the global–local
discriminator is shown in Figure 4.
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Figure 4. Visual comparison after adding the global–local discriminator. (a) Turbid underwater
image. (b) Enhanced image after removing the global–local discriminator. (c) Enhanced image of
UMGAN. After adding the global–local discriminator, the local area detail enhancement is better,
and the problem of insufficient local area enhancement is solved.

3.4. Loss Function

UMGAN can realize underwater image enhancement by learning unpaired datasets,
which eliminates the dependence on paired training data. For this purpose, a set of loss
functions are proposed to evaluate the effect of image enhancement. The following four
loss functions are used to train the network.

3.4.1. UIQM Loss

UIQM is introduced to measure the three aspects of colorfulness, sharpness, and
contrast of the generated images. The evaluation results are fed back to the generator
to optimize the generation results. Since only the enhanced image generated from the
blurred image needs to be enhanced, the UIQM loss is only applied in the forward process.
Referring to Equation (2), the UIQM loss of the algorithm is expressed as follows:

LUIQM(X, GX2Y) =
1
n

n
∑

pix=1

(
λ1 − LUICM

(
G
(
Xpix

)))
+ 1

n

n
∑

pix=1

(
λ2 − LUISM

(
G
(
Xpix

)))
+ 1

n

n
∑

pix=1

(
λ3 − LUIConM

(
G
(
Xpix

))) (3)

3.4.2. Adversarial Loss (Global–Local)

Adversarial loss is used to train the generators and discriminators to make the gener-
ated images more realistic. The loss function at the global level is as follows:

LGlobal
GAN (G, DY, X, Y) = Ey∼pdata(y)[logDY(y)] +Ex∼pdata(x)[log(1− DY(G(x))] (4)
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The mapping function ( F : Y → X ) and its discriminator (DX) are introduced with a
similar adversarial loss, i.e., LGlobal

GAN (F, DX , Y, X). The loss function on the local discriminator is:

LLocal
GAN(G, DL, X, Y) = Eyij∈y

y∼pdata(y)

[
logDL

(
yij
)]

+Eyij∈G(x)
y∼pdata(y)

[log(1− DL(G(x))] (5)

Referring to Equation (3), the total adversarial loss is:

LGAN = α
[

LGlobal
GAN (G, DY, X, Y) + LGlobal

GAN (F, DX , Y, X)
]
+

n
∑

k=1
βk

[
LLocal

GAN(G, DL, X, Y) + LLocal
GAN(F, DX , Y, X)

] (6)

3.4.3. Cycle Consistency Loss

The space of potential mapping functions is constrained by cycle consistency loss.
In the forward process, each image (x) from domain X can be transformed to itself after
mapping G and mapping F, i.e., x → G(x)→ F(G(x)) ≈ x . Similarly, G and F should sat-
isfy the backward cycle consistency, i.e., y→ F(y)→ G(F(y)) ≈ y . The cycle consistency
loss is:

Lcyc(G, F) = Ex∼pdata(x)[F(G(x))− x1] +Ey∼pdata(y)[G(F(y))− y1] (7)

3.4.4. SSIM Loss

There is a strong correspondence between the enhanced image and the original image.
SSIM loss preserves the content and structure between them [18]. The formula for SSIM is:

SSIM(p) =
2µxµy + C1

µx2 + µy2 + C1
·

2σxy + C2

σx2 + σy2 + C2
(8)

where p is the center pixel, and x and y are the image patches in X and G(x), respectively.
A 13 × 13 sliding window is used for convolutional filtering. µx is the mean of x, σx is the
standard deviation of x, and σxy is the covariance of x and y. C1 = 0.02, and C2 = 0.03.
SSIM losses can be expressed as follows:

LSSIM(x, G(x)) = 1− 1
n

n

∑
pix=1

(SSIM(p)) (9)

where n is the number of pixels. SSIM losses are calculated in both the forward and
backward processes. Similarly, the SSIM loss in the backward process is LSSIM(y, F(y)).

The total loss function is a linear combination of the above four losses and is expressed
as follows:

Loss = LUIQM + LGAN + Lcyc + LSSIM (10)

4. Discussion
4.1. Dataset and Implementation Details

Since UMGAN has the unique ability to train using unpaired underwater turbid/clear
images, it is possible to collect unpaired training sets covering different image qualities
and contents. A large number of training samples ensures the performance of the model
and avoids overfitting. The UIEB [21] and EUVP [37] datasets are numbered by natural
numbers starting from 1. The entire dataset totals 15,980 clear images and 18,405 blurred
images. The images for training were selected using the method of generating random
numbers. We used the entire dataset for training, and the training time exceeded 72 h. After
comparing the experimental results, it was found that there was no significant difference
between the training effect of the randomly selected images and the full dataset, meaning
that the amount of data from the randomly selected images is enough to guarantee the
effectiveness of the algorithm. To ensure the efficiency of completing extensive training
during the subsequent ablation experiments and comparison experiments, we adopted
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a random selection of images. The final selection from the dataset was 2397 underwater
turbid images and 2635 clear images. All input images were converted to PNG format and
resized to 256 × 256 × 3 pixels. Training dataset samples are shown in Figure 5.
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Figure 5. Samples from the training dataset. First row: underwater clear images. Second row:
underwater turbid images.

First, 100 epochs are trained from scratch with a learning rate of 10−4. Then, another
100 epochs are performed, and the learning rate decays linearly to 0. The learning rate is
set to 10−4 because there are a number of parameters in the algorithm that affect the final
result of the image. These parameters interact with each other. The lower learning rate
ensures that we do not miss any local minimum values. This avoids overadjustment of one
parameter in one training session, which could lead to large changes in other parameters.
Using the Adam optimizer, the batch size was set to 16. The entire training process took
14 h on four Nvidia 2080Ti GPUs.

4.2. Ablation Study

To demonstrate the effectiveness of each component in the algorithm, several ab-
lation experiments were performed. Specifically, three experiments were designed by
removing the components of UIQM loss, noise reduction network, and local discriminator,
respectively. The effects of the noise reduction network and the local discriminator are
demonstrated in Figures 3 and 4, respectively. In Figure 6, the first row shows the input
images. The second row shows the effect of the algorithm in enhancing the image without
UIQM loss. The third row shows the effect of the algorithm in enhancing the image without
the noise reduction network. The fourth row shows the enhanced image using only the
global discriminator. The last line is produced by the final version of UMGAN. The color
enhancement of the images is significantly reduced after removing UIQM losses. After the
noise reduction network is removed, more noise and artifacts are produced. After reducing
the local discriminator, the enhancement effect of some edge details is insufficient.

Full-reference image quality evaluation metrics such as MSE, PSNR, and SSIM and
no-reference image quality evaluation metrics such as UCIQE and UIQM were used to
objectively evaluate the underwater image enhancement effect. A total of 300 underwater
images of different styles were used to evaluate the results of the ablation experiments. As
shown in Table 1, UMGAN showed the best MSE, PSNR, SSIM, UCIQE, and UIQM scores.
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Table 1. Quantitative evaluation of ablation experiments (best scores are bolded; the numbers in
parentheses represent the percentage boost after adding the module).

Metric Without
UIQM Loss

Without Noise
Reduction Network

Without Local
Discriminator UMGAN

MSE 532.58 (1.24%) 678.45 (28.97%) 561.63 (6.76%) 526.05
PSNR 23.33 (0.94%) 21.48 (9.64%) 23.07 (2.08%) 23.55
SSIM 0.8934 (0.68%) 0.8214 (9.51%) 0.8915 (0.90%) 0.8995

UCIQE 0.4208 (4.66%) 0.4372 (0.73%) 0.4232 (4.06%) 0.4404
UIQM 3.191 (9.40%) 3.268 (6.82%) 3.193 (9.33%) 3.491

4.3. Qualitative Evaluation

A comparison was made between our algorithm and several other algorithms. The
results are shown in Figure 7. The first row shows the turbid underwater images. The
second to tenth rows show the enhanced images obtained by the UCM algorithm [4], the
CLAHE algorithm [26], the white balance algorithm [41], the retinex algorithm [9], the
image fusion algorithm [10], the UWCNN algorithm [20], the CycleGAN algorithm [36],
the FUnIE-GAN algorithm [37], and the Shadow-UWnet algorithm [34], respectively. The
last line shows the results generated by our proposed UMGAN.
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Figure 7. Visual comparison of various underwater image enhancement methods. (a) Input images,
(b) UCM, (c) CLAHE, (d) White balance, (e) Retinex, (f) Image fusion, (g) UWCNN, (h) CycleGAN,
(i) FUnIE-GAN, (j) Shadow-UWnet, (k) UMGAN. Columns one to five are greenish, with white haze,
blueish, low contrast and yellowish images respectively.



J. Mar. Sci. Eng. 2023, 11, 447 11 of 14

The contrast of the enhanced images was improved to some extent using the UCM
method. Colors such as red and green are more prominent. However, the image is still
blurred, and the defogging effect is poor. The CLAHE method considerably optimizes
the color cast as compared to the UCM method. The distribution of red, green, and blue
pixels is equal, but little noise and few artifacts are introduced. The white balance method
highlights the red color, but the images’ overall color is dark, and some of them have more
artifacts. The retinex method improves image brightness and contrast while introducing
a tiny degree of artifacts. Over- and underenhancement issues are successfully resolved
by the image fusion technique. The image contrast is high, and the color cast is greatly
improved, but the colors are not very vivid. UWCNN trained the weight files for a variety
of scenarios, and the red color was significantly enhanced, but the results were all darkened.
The CycleGAN method is better at restoration, but overenhancement produces artifacts and
textural noise. There are artifacts in the images generated by FUnIE-GAN. Shallow-UWnet
has fewer parameters and runs fast, but the output image is low in pixels. In contrast,
UMGAN has the best overall visual appearance. In addition, in the detail processing step,
UMGAN not only adaptively enhances each region of the image but also reduces artifacts
and noise.

4.4. Quantitative Evaluation

A total of 300 underwater images of different styles were selected for quantitative
analysis of the above method. As shown in Table 2, among all the methods, UMGAN
showed the best MSE, PSNR, SSIM, and UIQM scores, improving on the second-place
finisher by 27.49%, 7.93%, 1.49%, and 2.57%, respectively. The proposed achieved good
overall performance.

Table 2. Quantitative evaluation results of several algorithms (best scores are bolded).

Method MSE PSNR SSIM UCIQE UIQM

UCM 725.47 21.82 0.8863 0.4114 3.0164
CLAHE 1924.31 15.67 0.5573 0.4528 2.9699

White balance 8238.24 10.61 0.4266 0.3089 2.3813
Retinex 2873.83 14.18 0.6353 0.4417 3.1860

Image fusion 1884.54 16.75 0.7336 0.4202 3.3534
UWCNN 1959.92 16.22 0.8095 0.3498 3.1654

CycleGAN 1150.65 19.05 0.7431 0.4587 3.3417
FUnIE-GAN 952.22 19.15 0.7481 0.4224 3.4052

Shadow-UWnet 740.95 20.15 0.8460 0.3758 3.0890
Ours 526.05 23.55 0.8995 0.4404 3.4911

4.5. Results and Significance

The UMGAN algorithm is trained and tested using publicly available datasets. Abla-
tion experiments demonstrate the effectiveness of each module of the algorithm. UIQM
loss improves the performance of the algorithm to enhance images. The noise reduction net-
work removes artifacts and noise from the image. The global–local discriminator adaptively
adjusts local region image effects. In the qualitative evaluation, UMGAN demonstrates
the best visualization. Artifacts and noise are eliminated. In the quantitative analysis,
UMGAN has the best overall score. Among them, MSE, PSNR, SSIM, and UIQM scored
first. According to testing of different types of images in several datasets, UMGAN can
enhance different types of underwater images very well. It solves the common problems of
greenish, yellowish, and blueish images; low light; white fog; and low contrast of underwa-
ter images. The problem of artifacts and textural noise in the images generated by GAN is
also solved by the designed module. UMGAN can be successfully applied to various types
of underwater image enhancement tasks.
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5. Conclusions

An image enhancement network called UMGAN, which is an end-to-end network
trained by unpaired datasets, is proposed for a variety of underwater scenes. To force
the generator to produce clear, high-quality, noise-free underwater images, an image
quality feedback mechanism and a noise reduction network were designed. A global–
local discriminator was created to ensure the enhancing effect in the local region using
adaptive weighting loss to balance the impact of the two discriminators. Our algorithm’s
performance was demonstrated through an ablation study. The results of qualitative
and quantitative analysis show that our algorithm outperforms other algorithms in the
processing of various styles of underwater images. In the future, we will attempt to
improve the algorithm’s performance in terms of image detail information retention and
training speed.
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