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Abstract: To yield environmental benefits, fine sediments with ~10% organic matter, termed muck,
were dredged from a tributary to the Indian River Lagoon. Key changes were documented by
sampling amphipods, sediments, and the water column near the bottom before dredging, and
approximately one month and one year after dredging. Overall, muck yielded the fewest taxa, muck
or sediments in creeks that were dredged yielded a moderate number of taxa, and undisturbed
sediments in the lagoon yielded the highest number of taxa. Amphipods did not appear in areas with
muck until one month and one year after dredging. In contrast, amphipods in sediments that were
not muck decreased after dredging. Increases in the occurrence of amphipods paralleled increases
in concentrations of dissolved oxygen and decreases in the water, silt/clay, and organic content of
sediments. Overall, results indicated that conditions for amphipods were improved by removing
muck, and that dredging sandier sediment led to decreased taxonomic richness and numbers of
amphipods, which resembled the effects of navigational dredging. Thus, this study suggested that
managers should consider the type of sediment to be dredged when permitting projects.

Keywords: benthic infauna; sediment; restoration; Indian River Lagoon

1. Introduction

Dredging commonly has been used to improve navigability by increasing the depth
of a water column, and surveys of benthic fauna have documented detrimental changes
from such activity at the population and assemblage levels. Following such dredging,
numbers of individuals often were reduced (e.g., [1,2]), in some cases up to 95% [3]. For
this reason, many agencies and coastal managers have required surveys of infauna, or
instituted policies specifying methods that limit negative impacts from dredging [4–6].

In contrast, dredging to improve benthic habitats by removing polluted or inhospitable
sediments has been designed to increase, rather than decrease, populations of infauna
(e.g., [7]). For example, Fuller et al. (2021) [8] found that diversity and abundance of
infauna were lower in organic-rich sediments, and Cox et al. (2018) [9] found that removing
fine-grained sediments prone to hypoxia or anoxia, termed muck, induced colonization
by polychaetes. Muck has been defined as sediment with >75% water by weight, >60%
silt/clay, and >10% organic matter, with bacterial decomposition of organic matter often
creating hypoxic or anoxic conditions (oxygen concentrations < 2 mg L−1) in the sediments
and overlying water column [10]. In addition to low concentrations of oxygen, hydrogen-
sulfide gas produced by sulfur-oxidizing bacteria in the hypoxic and anoxic muck has
been found to be toxic [11]. In fact, multiple studies indicated that hypoxia and toxicity
reduced benthic diversity and productivity, constrained populations, altered food webs,
and disrupted trophic links [12–21].

Until recently, muck covered approximately 10% of the bottom in the Indian River
Lagoon (IRL), a diverse, shallow, subtropical estuary in Florida, USA [22–28]. Muck was
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targeted for removal because it potentially was associated with several undesirable effects,
beyond creating low concentrations of dissolved oxygen and high concentrations of toxic
hydrogen sulfide. It smothered benthic vegetation and infauna, and it fueled harmful algal
blooms when bacterial activity released nitrogen and phosphorus into the water column [25].
In turn, algal blooms limited light availability and hampered photosynthesis by benthic
macroalgae and seagrass, as was seen during the “superbloom” in 2011 [25,29–31]. The
resulting extensive loss of seagrass contributed to an unusual mortality event for manatees,
because toxic bacteria in their guts reacted to increased consumption of macroalgae [32].
Furthermore, mass mortalities of fish resulted from low concentrations of dissolved oxygen
generated by the senescence and decomposition of some blooms [25]. Overall, muck
in the lagoon created a detrimental feedback loop. Senescing and sinking algal cells
combined with other particles to form muck that contained a reservoir of organic matter,
and decomposition of this matter led to reduced concentrations of dissolved oxygen,
increased concentrations of hydrogen sulfide, and increased fluxes of bioavailable nutrients
that fueled additional algal blooms [20].

An opportunity to examine the effects of removing muck arose when Brevard County,
a county that borders much of the IRL, conducted environmental dredging to remove muck
and improve the health of an embayment at the mouth of a creek. As in other evaluations
of dredging, the abundances and distributions of benthic fauna represented key measures of
the system’s health, due to their ecological importance and relatively limited mobility [33–40].
In particular, amphipods were of interest because previous work has shown: (a) they
constitute a significant portion of many macroinvertebrate assemblages in the benthic and
pelagic habitats of freshwater and marine environments [2,34,41–48]; (b) they fill multiple
ecological roles as grazers, predators, parasites, or non-native invaders [41–43,49,50]; and
(c) they serve as food for other invertebrates, fish, and seabirds [51]. Their simple life
cycle, site fidelity, high abundances, broad environmental tolerances, and rapid growth
have made amphipods good candidates for biological monitoring [1,2,52–55]. Furthermore,
amphipods have been shown to be sensitive to environmental conditions, which led to their
use in bioassays, including those testing the toxicity of sediments [44,56–61]. In fact, the
U.S. Environmental Protection Agency recognized their importance and required data on
amphipod populations before permitting projects that could impact benthic habitats [34].

Our goal was to detect changes in the assemblages of amphipods that were related to
environmental dredging. Detecting changes associated with dredging, or any unreplicated
disturbance, using a mensurative experiment based on sampling disturbed and control lo-
cations can be complicated by spatiotemporal variation that is not related to the disturbance
and cannot be controlled to the same extent as in a manipulative experiment [62,63]. We
anticipated such challenges, because dredging was limited to the mouth of a single creek
and sampling was constrained by logistics. To address spatial variation in assemblages,
we sampled several undisturbed locations at differing distances from the area that was
dredged, and to address temporal variation, we sampled assemblages before, one month
after, and one year after dredging.

Given this background, we tested the following null hypotheses: (a) sediments in
different locations had similar characteristics before and after dredging, and (b) the assem-
blages of amphipods did not differ before and after dredging.

2. Materials and Methods

The IRL system comprises three lagoons—Mosquito Lagoon, Banana River Lagoon,
and Indian River Lagoon proper—that span 40% of the east coast of Florida, USA and
the transition from subtropical to temperate biogeographic regions [64–66]. The system is
shallow (mean depth ~1.2 m) and relatively narrow (width 0.8–8.0 km) [66]. Concentrations
of dissolved oxygen decrease with seasonal increases in water temperatures [66]. Salinities
vary along the length of the system, being high in the northern portion due to limited
freshwater inflows and higher rates of evaporation, high in the southern portion due to tidal
exchange through four inlets, and lower in the central portion due to the lack of inlets and
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the presence of tributaries and canals that deliver fresh water [66]. Except for areas near the
inlets, circulation and exchange are driven mainly by wind [66]. The resulting month-long
to year-long residence times in most of the system means that nutrients accumulate, which
can cause blooms of phytoplankton [25,66–70]. The restricted circulation and limited mixing
also facilitate the accumulation of fine-grained organic-rich sediments, commonly called
muck, which have accumulated on top of the natural sand and shell since the watershed
was developed [7]. Muck becomes hypoxic or anoxic, and contains hydrogen sulfide due
to bacterial decomposition of organic matter, which along with metals and organic toxins
can inhibit use by infauna [7].

Samples of sediment and infauna were collected near two tributaries: Turkey and
Crane creeks (Figure 1). Dredging commenced in Turkey Creek in February 2016, and
following a shutdown for manatee season, resumed in September 2016 and continued until
January 2017 [7]. Sampling in both locations was undertaken one month prior to dredging
(January 2016), approximately one month after dredging was completed (February 2017),
and approximately one year after dredging was completed (December 2017). During each
event, samples were collected at: (a) four stations in Turkey Creek where muck was dredged
(TC1 to TC4); (b) two stations in Crane Creek where muck was present, but not dredged
(CC1 and CC2); (c) two stations in Turkey Creek that lacked muck and were not dredged
(TC5 and TC6); (d) two stations in Turkey Creek that lacked muck and were dredged (TC7
and TC8); and (e) four stations in the Indian River Lagoon proper that were near each
tributary, lacked muck, and were not dredged (TC9 to TC12 and CC3 to CC6; Figure 1).
Thus, logistics associated with dredging resulted in a sampling design that was unbalanced,
with no data being available for sediments in the lagoon that were dredged (Table 1).

At each station, during each sampling event, two types of sampling were undertaken.
Three replicate samples were collected to characterize infauna and an additional sample
was collected to characterize properties of the sediment. These samples were taken with
a petite ponar grab that sampled 225 cm2. In addition, salinity, pH, temperature, and
concentrations of dissolved oxygen were determined near the bottom using a Yellow
Springs Instruments multimeter.

Samples of infauna were sieved through 0.5 mm mesh, and the material retained
was bagged and frozen. Numbers of infauna in these samples obviated counts of entire
samples. For this reason, one-eighth aliquots of thawed samples were examined via
stereomicroscopy (8–35× magnification), a process that required an average of two hours
of sorting per sample. Amphipods were identified to the lowest possible taxonomic
level, and all individuals in the aliquots were counted. This approach yielded more than
100 individuals of abundant taxa per sample.

Samples collected to characterize sediments were analyzed for percentage of water by
weight via drying at 135 ◦C for 24 h, percentage of silt/clay combined based on dry weights,
and percentage of organic matter (via loss on ignition; [71]). To determine percentages of
silt/clay, 10 g of muck or 30 g of sediments that were not muck were sieved through a
63 µm sieve. Material that was retained was heated at 135 ◦C for 24 h and re-weighed to
obtain the weight of silt/clay.

Table 1. Sampling design showing the number of stations in categories used in analyses.

Location Sediment Treatment Number of Stations

Lagoon Not muck Undisturbed 8
Muck Dredged 0

Creek Not muck Undisturbed 2
Dredged 2

Muck Undisturbed 2
Dredged 4

Total 18
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adjacent Indian River Lagoon. CC1 and CC2 = stations in Crane Creek where muck was not dredged, 
CC3–CC6 = stations in the lagoon near Crane Creek where sediment that was not muck remained 
undisturbed, TC1–TC4 = stations in Turkey Creek where muck was dredged, TC5 and TC6 = stations 
in Turkey Creek where sediment that was not muck remained undisturbed, TC7 and TC8 = stations 
in Turkey Creek where sediment that was not muck was dredged, TC9–TC12 = stations in the lagoon 
near Turkey Creek where sediment that was not muck remained undisturbed. 
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Figure 1. Florida and the region of interest in the Indian River Lagoon (box on inset), along with the
stations in: (a) Crane Creek and the adjacent Indian River Lagoon, and (b) Turkey Creek and the
adjacent Indian River Lagoon. CC1 and CC2 = stations in Crane Creek where muck was not dredged,
CC3–CC6 = stations in the lagoon near Crane Creek where sediment that was not muck remained
undisturbed, TC1–TC4 = stations in Turkey Creek where muck was dredged, TC5 and TC6 = stations
in Turkey Creek where sediment that was not muck remained undisturbed, TC7 and TC8 = stations
in Turkey Creek where sediment that was not muck was dredged, TC9–TC12 = stations in the lagoon
near Turkey Creek where sediment that was not muck remained undisturbed.

Data characterizing sediments and counts of amphipods were analyzed with permu-
tation analyses of variance (PERMANOVAs; [72]). The PERMANOVAs treated the muck,
sediments in the creeks that were not muck, and sediments in the lagoon as levels of a
fixed factor termed Sediment. The PERMANOVAs also treated dredged and undisturbed
as levels of another fixed factor termed Treatment. Finally, the model treated before, one
month after, and one year after as levels of a random factor, nested in the interaction of
sediment and treatment, which was termed Event. The nesting acknowledged the repeated
measures approach arising from sampling at fixed sites where abundances of amphipods
were expected to follow potentially unique temporal trajectories [62,63], and the factor was
treated as random in recognition of the fact that the chosen times were not the sole focus
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of the analysis. Before Euclidean distance was used to generate the required resemblance
matrix, data characterizing sediments were range standardized across all samples ([value—
minimum value]/range). Similarly, counts of amphipods were range standardized before
Bray–Curtis distances were calculated, so that the focus was on patterns rather than abso-
lute abundances. Due to the unbalanced design, Type III sums of squares were used in the
PERMANOVAs [65]. To visualize similarity among different sediment types, non-metric
multidimensional scaling was used [73].

Significant effects in the PERMANOVAs were examined further using non-metric
multidimensional scaling for the average characteristics of sediments, and a similarities
percentages analysis (SIMPER) for counts of amphipods [65]. Data for amphipod taxa
highlighted by SIMPER were used to prepare graphs showing the proportion of total
individuals found in the appropriate set of samples.

3. Results

Analysis of the data characterizing sediments indicated that those characteristics var-
ied among Events across the interaction between Sediment and Treatment, i.e., differing
temporal trajectories among sites that could be distinguished by type of sediment and
treatment accounted for a significant proportion of the variation in the data (Table 2).
Non-metric multidimensional scaling applied to the relevant range-standardized mean
values indicated that undisturbed creek sediments that were not muck were more similar to
sediments in the lagoon, unless they were dredged, and then they became more similar to
undisturbed muck shortly after dredging (Figure 2). In contrast, muck that was dredged be-
came more similar to undisturbed sediments in the creeks (Figure 2). Creek sediments that
were dredged exhibited a decrease in mean concentrations of dissolved oxygen (7.4 mg L−1

down to under 3.2 mg L−1), an increase in mean organic content (8% to over 15%), and an
increase in mean silt/clay content (31% to over 54%). In contrast, muck that was dredged
exhibited an increase in mean concentrations of dissolved oxygen (<1 mg L−1 to 2 mg L−1),
a decrease in mean organic content (21% to 9%), and a decrease in mean silt/clay content
(93% to 47%).

Table 2. Results of permutation analyses of variance. Se = type of sediment (muck in a creek, sediment
that was not muck in a creek, and sediment in the lagoon), Tr = treatment (undisturbed or dredged),
Ev = sampling event (before dredging, one month after dredging, and one year after dredging).

Data Source df SS MS Pseudo-F Ratios p Unique
Permutations

Sediment Se 2 8.59 4.30 15.32 0.002 999
Tr 1 0.16 0.16 0.67 0.501 997
Se × Tr 1 1.32 1.32 5.67 0.021 998
Ev(Se × Tr) 10 3.06 0.30 2.89 0.001 999
Residual 39 4.13 0.10
Total 53 23.46

Counts Se 2 1230 615 1.08 0.414 999
Tr 1 316 316 0.68 0.584 997
Se × Tr 1 388 388 0.84 0.517 999
Ev(Se × Tr) 10 6234 623 3.45 0.001 996
Residual 147 26,499 180
Total 161 34,601

The compositions of the assemblages of amphipods also varied significantly among
sampling events, i.e., a significant proportion of the variation in the data was due to differ-
ing temporal trajectories among sites that could be distinguished by type of sediment and
treatment (Table 2). According to SIMPER, all eight taxa found in samples contributed to
significant differences, i.e., Grandidierella sp., Cymadusa compta, Cerapus tubularis, Corophium
sp., Grandidierella bonnieroides, Jassa sp., Eusirus cuspidatus, and Gammarus mucronatus
(Figure 3), with Jassa sp. found only in undisturbed sand one year after dredging
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(Figure 3a). Cymadusa compta was the only amphipod found at stations with undisturbed
muck (Figure 3d), and several taxa occurred primarily at stations in the lagoon where
sediments were not disturbed (Figure 3a). Stations where muck was dredged showed
an increase in the occurrence of three taxa, and the most taxonomically rich assemblage
appeared one month after dredging (Figure 3e). Stations in Turkey Creek with sediments
that were not muck, but were dredged, only yielded one taxon (C. compta), and it was less
prevalent after dredging (Figure 3c).
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Although the amphipod assemblage varied in space and through time irrespective of
dredging, the results indicated two important patterns. Dredging sandy sediments reduced
the taxonomic richness and occurrence of amphipods as has been noticed in previous
studies, whereas removing muck led to colonization by amphipods.
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Figure 3. Proportion of each amphipod taxon found in (a) sediments in the lagoon that were not
muck and were not dredged, (b) sediments in the creeks that were not muck and were not dredged,
(c) sediments in Turkey Creek that were not muck and were dredged, (d) sediments in the creeks
that were muck and were not dredged, and (e) sediments in Turkey Creek that were muck and were
dredged, with the number of individuals in parentheses following the taxon. Note the differences
in the y-axes. Grand = Grandidierella sp., Cyma = Cymadusa compta, Cera = Cerapus tubularis, Coro
= Corophium sp., Gbonn = Grandidierella bonnieroides, Jass = Jassa sp., Eus = Eusirus cuspidatus, and
Gamm = Gammarus mucronatus.

4. Discussion

Dredging to improve navigability has reduced populations of infauna in many cases
(e.g., [1–3]). Such effects have prompted agencies and coastal managers to require surveys of
infauna or enforce strict policies about how dredging occurs to limit detrimental impacts [4–6].
In contrast, environmental dredging of muck, such as that conducted in association with this
study, has different objectives. The main goal of the environmental dredging in this study was
to improve benthic habitats by removing sediments that were polluted or uninhabitable for
most macrobenthic organisms, so that populations of infauna would increase [7]. Although
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the taxonomic richness, composition of assemblages, and densities of individual taxa varied
independently of dredging, amphipods did colonize areas following the removal of muck.

Abundances of amphipods often have been associated with increased concentrations
of oxygen and reduced amounts of organic matter. In fine sediments with high organic
content, hypoxia has been a common phenomenon [9,15,20,74–76], and amphipods have
been shown to be sensitive to high organic content and low concentrations of dissolved
oxygen [44,56,77]. The environmental dredging in this study removed 160,000 m3 of muck
from Turkey Creek, and as a result, mean organic matter in the sediment (±standard
error) was reduced from 20.8 ± 0.6% to 16.0 ± 1.9% immediately following dredging
(2016–2017), and fell below the 10% operationally defined threshold for muck by one year
after dredging [10]. As expected, removing muck increased concentrations of dissolved
oxygen in the water near the bottom from 0.2 mg L−1 or almost anoxic to over 2.0 mg L−1

one year after the dredging. However, the organic content of dredged sediment was still
above the 2% threshold that was shown to be conducive to healthy assemblages of benthic
macrofauna [78].

The appearance of C. compta, C. tubularis, and Corophium sp. by one month after
dredging suggested that the removal of organic matter improved the habitat. A tendency
to colonize sandier sediments that support construction of tubes and dietary preferences
may have fostered colonization of dredged habitats by amphipods [79,80]. After dredg-
ing, settlement of resuspended and newly oxidized organic matter should have offered
new food resources to detritivorous and opportunistic amphipods [3,41,79–83]. In addi-
tion, mobile, opportunistic amphipods have exploited a variety of habitats. For example,
G. bonnieroides in the IRL has been found in diverse soft sediments ranging from sandy
to muddy and in areas dominated by algae [84]. Its varied diet included fungi, bacteria,
detritus, and epiphytes [80,85], and this adaptability may have contributed to its presence
in sediments in the lagoon and its colonization of areas where muck was dredged.

In general, the taxa that colonized areas where muck was dredged, i.e., C. compta,
C. tubularis, Corophium sp., and G. bonnieroides, may have been those that were most adapt-
able. Although amphipods generally have been described as environmentally sensitive [86],
some taxa have been considered tolerant of stress or pollution. For example, Corophium
ellisi has been recorded in Sykes Creek, a polluted tributary of the IRL (Grizzle, 1984), and
Corophium lacustrae was present and abundant in contaminated sediments in the Gulf of
Mexico [86]. In contrast, Corophium salmonis recolonized sediments only after discharges
of sewage effluent ceased [87], and abundances of Medicorophium runcicorne declined near
sewage outfalls [77]. Overall, past work has underscored the fact that different taxa have
different degrees of tolerance for stress [12].

Spatial variation often has been reported for benthic fauna [9,88–90], and stations in
the lagoon tended to have more taxa and higher numbers of amphipods than stations in
the mouths of the creeks, throughout this study. In addition, the significant proportion of
the variation in the data accounted for by sampling events in an analysis of the occurrence
of amphipods meant that changes likely were due to a combination of dredging and
proximity to freshwater inputs, proximity to structural habitats, or other factors that altered
the temporal trajectories of abundances at any site. For example, Nelson et al. (1982) [91]
observed highly variable abundances of amphipods in the IRL, and time of year and
proximity to seagrasses played roles in this variability. In this study, spatial variation
influenced but did not obscure responses to dredging.

In addition to spatial variation, temporal variation appeared responsible for some
of the differences in occurrences of amphipods, because a significant proportion of the
variation in the data was accounted for by sampling events. For example, numbers of
individuals differed in the second and third sampling events. In other studies, temporal
variation among sampling events has made the comparison of affected and unaffected
areas problematic, with dredged areas recovering after a few months and undisturbed
control areas exhibiting variable abundances [3,53]. Short-term extreme events, such as
hurricanes, storms, and monsoons, also have reduced abundances, and sometimes preceded
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the disappearance of particular taxa in other studies [92–95]. In this study, Hurricane Irma,
which landed in central Florida in September 2017, and warmer water temperatures in
December 2017, may have influenced densities of amphipods because similar temporal
changes have been reported before [53,91]. Nevertheless, statistically significant variations
in the temporal trajectories of amphipod assemblages were identified, i.e., amphipods
colonized areas where muck had been dredged and became less prominent in areas where
other sediments were dredged.

Time for colonization and recovery after disturbances has varied among studies,
i.e., the temporal trajectories for abundances of amphipods at sites that were disturbed
varied. After storm impacts on benthic habitats in the Swan–Canning Estuary, macrofauna
recovered in three to four months [19]. Recovery from navigational dredging took six
months for the infaunal assemblage in La Coruña Bay, Spain [96], nearly eight months in
Danube harbors [97], and a full year for assemblages in the North Sea [98] and Guadalquivir
Estuary, Spain [99]. Recovery from oil spills took longer. Nikitik and Robinson (2003) [100]
reported that recovery of amphipods after the Sea Empress oil spill in 1996 in Milford Haven
Waterway took five years. In addition, it took eight years for an ampeliscid amphipod to
reappear after the Amoco Cadiz oil spill near the coast of Brittany, France in 1978, and full
recovery took longer [101]. In this study, four amphipod taxa appeared at the stations where
muck was dredged by one month after dredging (February 2017), but sediments in the
mouths of creeks always yielded fewer taxa and individuals. Thus, a rigorous assessment of
recovery awaits further sampling. Dissimilarities between this study and others suggested
that removal of sediments with high organic content resulted in colonization by amphipods.
Short-term improvements and recoveries suggested that focusing on removal of organically
enriched sediments showed promise for restoring benthic habitats, although the assemblage
did not achieve the taxonomic richness or numbers of individuals that characterized stations
in the lagoon with sandier sediments within a year.

5. Conclusions

Environmental dredging of muck reduced sediment organic content and associated
stressors (e.g., silt/clay content and low concentrations of dissolved oxygen in water near
the bottom). Following these changes, amphipod taxa colonized stations where muck was
dredged. In contrast, amphipods became less numerous at stations where creek sediments
that were not muck were dredged. Overall, the results pointed to beneficial effects on
amphipod assemblages from dredging that removed muck; therefore, managers should
consider such dredging as different from traditional dredging of hospitable sediments to
improve navigation [7–9].
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