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Abstract: The steady turning motion of merchant ships is modeled according to industry specifi-
cations. However, challenges arise when motorboats are modeled. This study proposes a novel
data-driven multi-block fuzzy cognitive map (FCM) model trained based on sea trials with four
ship states. The optimal positions sampled by two different types of sensors were modeled using
inverse variance weighting, which takes both Cartesian coordinate transformation and the constraints
of the locations of the apparatuses into consideration. Combining these samplings with a scheme
of multi-block FCMs, we conducted a study on data from motorboat trials. Our results closely
approximate the data from motorboat trials at sea and are validated by a generated dataset of the
classical model. Furthermore, we reveal the characteristics of our scheme, including the number of
data blocks, the boundary of each block, and the parameters of the FCM for each block. As opposed
to the classical method, the proposed scheme is insensitive to speed. This study presents a promising
step toward mining modeling information from ship trials.

Keywords: fuzzy cognitive maps (FCMs); ship trials; ship motion modeling; data-driven; steady
turning motion

1. Introduction

Motorboats are divided into several categories according to their usage, including,
but not limited to, lifeboats used for survivors, yachts for entertainment, and unmanned
surface vessels (USVs) for scientific research. Determining how to steer efficiently is crucial
to navigation safety, environmental protection, and research on autonomous ships, which
are closely related to the productivity and livelihood of various stakeholders.

The steady turning motion of a vessel can influence movement performance [1]. These
parameters are printed in the wheelhouse poster, which is posted in a conspicuous space
on the bridge for officers or pilots [2]. Many alternative methods are available for the
modeling schemes of vessels, such as the mechanism model, computational fluid dynamics
(CFD), and the identification model. However, the actual effectiveness of these solutions in
nautical practice and their applications still deserve further study.

In the last decade, the mechanism model, represented by the Abkowitz [3] model or
the maneuvering mathematical modeling group model (MMG) [4], has provided a stan-
dard solution to this problem for the shipping industry [5]. For example, the mechanism
model is used to perform a quick check for ship design to determine whether the ship
meets the IMO criteria [6]. This is a framework used to investigate a mathematical model
for a ship maneuvering simulator, such as the ship–ship interaction related to restricted
water areas [7]. Furthermore, it is also a means of verifying the effectiveness of the nu-
merical [8] method or system identification method [9]. One of the mechanism model’s
core technologies is obtaining the hydrodynamic derivatives for a mathematical model
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of ship maneuvering motion. These can be obtained using captive model tests [7], sys-
tem identification techniques applied to free-running model test results [10], or numerical
computations [8]. However, this model depends on towing tanks with a certain amount
of investment. Few institutions worldwide can meet the needs of basic research. These
constraints make modeling the movement of motorboats difficult.

The CFD scheme was successfully applied for form-changeable boats [11], the dy-
namic behaviors of drifting ships [12], a high-speed planning boat [13], and flying boat
planing [14]. Meanwhile, there have been many research achievements in the applciation
of combinations of CFD and mechanism model methods. Sukas et al. used a URANS
approach to obtain hydrodynamic derivatives and then implemented them in an MMG
model for a twin-propeller/twin-rudder ship [15]. Sakamoto et al. proposed a similar
CFD-MMG approach [16]. However, the computational burden of this scheme is heavy
due to the large computational grid. Moreover, the verification data limit its application
in engineering.

The identification scheme is another important method. Abkowitz [17] identified
the Esso Osaka model with 59 parameters using an extended Kalman filter. However,
some variables in this training set are easily disturbed during measurements, such as sway
velocity and yaw rating. In addition, there are effects of drift parameters and dynamic
cancelation. Subsequently, Källström et al. [18] used the pseudorandom binary sequence
(PRBS) signal to excite the system, but this may reduce the safety of the ship in practice [19].
According to [20–22], the data in the model or full-scale tests can reduce this risk. There
are other ways to cope with the nonlinearity of ship maneuvering motion. Bai et al.
proposed using locally weighted learning to approximate the nonlinear function using
segmented linear functions [23]. Ouyang et al. explored the use of Gaussian process
regression optimized by a genetic algorithm [24], local Gaussian process regression [25],
Gaussian process regression [26], and adaptive hybrid-kernel function-based Gaussian
process regression [27] to conduct research on ship nonlinear motion modeling and obtained
satisfactory results. However, these methods depend on the numerous states of ship
movement. Some variables, such as sway speed or yaw rating, are easily disturbed by the
external environment and are challenging to collect in practice. Therefore, these studies
may be limited in practical application.

A classical scheme is used to identify the maneuvering indices of K and T in the
Nomoto model [28]. When the Nomoto model is combined with the linear mathematical
model of the ship [3], the linear hydrodynamic derivatives are estimated by Clarke’s
regression formula [29] using seven parameters. We can then approximate the indices of K
and T using these derivatives. However, this linear model applies to a small and medium
rudder angle and is sensitive to speed. Perera et al. [30] proposed a modified nonlinear
steering model to expand the range of working conditions. Subsequently, they performed a
second-order Nomoto model with nonlinear constraints to design course-tracking based on
stable conditions [31], but this still needs to be studied under unstable conditions. Due to
the nonlinearity of the movements of vessels, building a model that fulfils the requirements
of structural simplicity and functional generalization is challenging.

The neural network model is a black-box identification scheme. Moreira et al. [32]
proposed a modeling method based on a time-delayed recurrent neural network. In [33,34],
an approach was used that combined neural networks with other functions. Although these
studies only rely on data, network structures have no any explanation in terms of semantics.
In practice, we have observed such a phenomenon. Crewmembers who do not know
any mathematical models still master their steering skills through more training, which
indicates that such models still have room for improvement.

An identification scheme is also applied when modeling motorboats. Wang et al. [35]
proposed the constrained multistep prediction (CMSP) method to identify a USV model
with 32 parameters. However, the risk of the motorboat being driven by the PRBS excitation
signal increases during the test. In [36], a USV model with four thrusters was identified
using the normal equation. Although there were fluctuations between the truth values and
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the predictions, their study showed the potential significance of the data-driven model
based on sea trials. Xiong et al. [37] realized the berthing task for a USV by using a real-time
attitude meter and microwave radar sensors. However, there are few such sensors installed
on-board. Furthermore, when the signal accuracies signals are low, ships may collide with
the wharf due to the large inertia, which is consistent with the investigation in [38].

Based on previous research, full-scale or towing tank model tests require a high level
of investment. Due to the high risk of operation and the necessity of sampling readily
disturbed variables simultaneously, professional technicians are indispensable. Further-
more, these methods neglect the seafarers’ prior knowledge. Therefore, this study focused
on building an FCM modeling framework based on a combination of the generalization
utilization of data in nautical practice and the dominant acquaintance of officers.

An FCM is an intelligent soft computing method that combines fuzzy and neural
networks [39,40]. Gao et al. [41] has theoretically proved the feasibility of modeling a steady
turning motion. However, engineering applications have rarely been directly examined.
First, the training data are derived from ship simulators without disturbances and any loss
of sampling [42]. Second, the effect of projection transformation on safety has not yet been
explored. Because coordinate transformation can affect the accuracy of positions on charts,
it is necessary to verify practicability. Third, the work conditions of the sensors on-board
were not checked. Therefore, it is important to design a data-driven modeling scheme
based on fuzzy cognitive maps using measurements in nautical practice.

This study aimed to develop a practical framework to model a steady turning motion
based on a data-driven multi-block FCMs model using motorboat sea trials. First, sea trials
were organized to measure the states of motorboats using sensors. Subsequently, the posi-
tions sampled by the multi-source sensors were transformed to XY plane coordinates using
Mercator projection, and the optimal positions were then estimated by inverse variance
weighting. These sampled data were used to train the model of the multi-block FCMs
according to the divide-and-conquer strategy. Finally, the experimental results indicate
the effectiveness of the presented scheme. The contributions of the current work can be
summarized as follows.

• We organized sea trials to collect four states (λ, ϕ, ψ, and δ) of motorboats at sea and then
combined the coordinate transformation with the inverse variance weighting method to
achieve optimal sampling positions. These measurements were employed to train the
multi-block FCMs model to model the steady turning motion of motorboats.

• The simulation results show that the proposed model is effective and insensitive to
speed, as opposed to the classical model. This scheme has potential application value
in the field of marine science.

The rest of this paper is organized as follows. In Section 2, we motivate our approach
by presenting prior related research. After that, we propose an integrated scheme of data-
driven multi-block FCMs to model the steady turning motion of motorboats based on
sea trials. The experimental simulations are described in Section 4, while discussions are
provided in Section 5. Finally, we provide the conclusions in Section 6.

2. Preliminaries
2.1. Fuzzy Cognitive Maps (FCMs)

An FCM is defined by a four-tuple structure {C, W, A, f } with conceptual nodes and
directed edges [43]. The direction of the edges represents the causal relationship, and the
weights represent the causal strength.

The symbol C represents the set of conceptual nodes, C = {C1, C2, · · · , CN}, Ci repre-
sents the i-th node, and N represents the number of nodes. Nodes are symbols abstracted
from the system variables, which are the elements of an FCM.

The expression W : (Ci, Cj) → wij indicates that conceptual node Ci has a causal
impact on the other node Cj with causal strength wij. The range of wij is from –1 to 1.
If wij > 0, the conceptual node Ci enhances Cj. If wij < 0, Ci harms Cj. If wij = 0, Ci does
not affect Cj. W is the adjacency matrix in Equation (1):
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W =


w11 w12 · · · w1n
w21 w22 · · · w2n

...
...

. . .
...

wn1 wn2 · · · wnn

 (1)

The column vector Vj = [w1j, w2j, · · · , wnj]
T indicates the influence of other conceptual

nodes on the j-th node. At this time, the activation value of the j-th node is the dependent
variable, and other nodes, except the j-th node, are the independent variables, which
constitutes a submodule of the fuzzy cognitive map that can be used to simplify the system.

The symbol A : Ci → Ai represents the activation value of the i-th node. Ai(t)
indicates the activation value of the i-th node after t iterations. A(0) represents the initial
activation values of all nodes. A(t) represents the activation values of all nodes after t
iterations. f (x) represents the activation function. Usually, a hyperbolic tangent or sigmoid
function is selected for practical purposes [43–45].

The activate value of each node in the FCM updates with iteration. The reasoning
mechanism [43] is expressed in Equation (2).

Aj(t + 1) = f (
N

∑
i=1,i 6=j

Ai(t)wij + Aj(t)) (2)

The reasoning modes of the high-order fuzzy cognitive map are studied in [44,45].
In practice, an appropriate mode of reasoning is chosen based on our needs.

An FCM is different in the construction of map structure, the settings of hidden nodes,
and the semantics between nodes compared with the traditional neural network. The map
structure of the FCM can be created by fusing experts’ experiences, system states, and the
mechanism models. Furthermore, it has no hidden nodes, and this model is easy to train.
The learned weights describe the semantic relationship between these two nodes.

2.2. Mercator Projection

Since the sampling positions occur in the spherical coordinate system and the positions
of the proposed model are found at the XY coordinates, we map these data to the XY
coordinates through the Mercator projection [46] shown in Figure 1.
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Figure 1. Mercator projection transformation between the ellipsoid coordinate and the XY plane coor-
dinate. (a) Earth ellipsoid coordinate. (b) Projection of the trapezoidal surface at the XY coordinates.

Figure 1a is the Earth’s ellipsoid. PN is the North Pole. O and O
′

are the centers of
the Earth’s ellipsoid and the parallel of latitude, respectively. OPN is the Earth’s axis. ϕ
defines the latitude, and λ defines the longitude. dϕ and dλ are the micro-elements of
latitude and longitude, respectively. R denotes the radius of the Equator, which flattens the
ellipsoid. r denotes the radius of the parallel of declination. The trapezoidal ABCD on the
ellipsoidal surface is a tiny surface formed by the intersection of meridians and parallels
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of declination.
_

AB is the arc of the meridian, and d _
AB

is the micro-element of
_

AB.
_

PN M

and
_

PN N are the two meridians of the Earth’s ellipsoid, respectively.
_

MN is the arc of the

Equator,
_

MN = R · dλ, and
_
BC is the arc of the parallel of declination,

_
BC = r · dλ.

Figure 1b illustrates the transformation of the ellipsoidal coordinates to the XY plane
using the Mercator projection. The mapped meridians of the ellipsoid are lines with equal
spacing and are parallel to each other. x is the distance from the Greenwich meridian to
any meridian. y is the distance from the Equator to any declination parallel. dx and dy are
the micro-elements of x and y, respectively. The rectangular abcd is a trapezoidal ABCD on
the ellipsoid, transformed into an XY coordinate plane by Mercator projection. The line ab

stands for the projection of the arc
_

AB on the meridian. The line bc represents the projection

of the arc
_
BC on the declination parallel.

By combining Figure 1a,b, we can obtain the formula for the micro-element of x in
Equation (3):

dx = R · dλ (3)

Let b stand for the projection of B on the ellipsoid of the Earth in Figure 1. According
to the projection nature of the equiangular, the local scale of any point in any direction is
equal in the XY coordinate plane exhibited in Equation (4):

lim
_

AB→0

ab
AB

= lim
_
BC→0

bc
BC

(4)

By substituting the symbols in Figure 1b into Equation (4), we can obtain the relation-
ship between the two coordinates in Equation (5):

dy

d _
AB

=
R · dλ

r · dλ
=

R
r

(5)

where r = R·cos ϕ√
1−e2·sin2 ϕ

. e is the eccentricity. d _
AB

= R·(1−e2)

(1−e2·sin2 ϕ)
3
2

dϕ. dy = R·(1−e2)

1−e2·sin2 ϕ
· dϕ

cos ϕ .

By integrating both sides of Equations (3) and (5), we can obtain the positions of the
XY coordinate plane [46] in Equation (6):

x = R · λ

y = R · ln[tan(
π

4
+

ϕ

2
) · (1 + e · sin ϕ

1− e · sin ϕ
)

e
2 ]

(6)

2.3. Optimal Estimation of Positions at the XY Plane Coordinates

Due to the meridional parts, the samplings are transformed to XY plane coordinates
using Mercator projection and are optimized from Equation (7) to Equation (10).

The position measured by the i-th piece of equipment is (xi, yi), i = 1, 2, · · · , n. Let
the abscissa of the optimal position be x∗ in Equation (7).

x∗ =
n

∑
i=1

ki · xi (7)

where ki denotes the weight of the abscissa of the i-th GPS sensor.
From the unbiasedness, the relationship between the weights can be found in Equation (8).

n

∑
i=1

ki = 1 (8)
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From the efficiency, the constraint equation (Equation (9)) is obtained.
arg min
k1,k2,··· ,kn

D(
n

∑
i=1

ki · xi)

s.t.
n

∑
i=1

ki = 1
(9)

Equation (9) can be solved by inverse variance weighting [47], and the weight of each
sensor is then calculated in Equation (10).

α = −2 · ( 1

∑n
i=1

1
σ2

i

)

ki = −
α

2 · σ2
i

(10)

where α denotes a Lagrange multiplier, and σi is the i-th systematic variance of GPS sensor.
y is obtained in the same way.

3. The Scheme of the Data-Driven Multi-Block FCMs Based on Ship Trials

This section focuses on the multi-block FCMs model based on ship trials. The goal is to
demonstrate a practical engineering scheme and verify its potential value. The framework
of this scheme is demonstrated in Figure 2. This covers data collection, preprocessing,
the construction of the FCMs model, and its application. In what follows, we center this
designed framework in our in-depth investigation of the proposed model.

Data Collection Data Processing Multi-FCMs Model Application
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Figure 2. The framework of data-driven multi-block FCMs model based on motorboat sea trials.

3.1. Sea Trials of Motorboats

Considering the safety, operability, and economy of the sea trials, we measured turning
motion using external sensors on the motorboat. Before organizing sea trials, the scheme,
instruments, auxiliary kits, methods, layout, contingency measures, and emergency spares
had to be prepared.

The plan was to conduct turning tests with a rudder deflection of of 20◦/30◦. The pre-
requisites were as follows. The water areas are sufficient, the wind does not exceed Beaufort
Level 3, the ocean currents are stable, and the ship’s speed reaches its maximum output.
In practice, to obtain reliable sampled data, we can increase the number of experiments to
reduce the effect of the contingency. The main instruments and other types of equipment
are shown in Figure 3.
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In Figure 3, part I is a motorboat made of glass-fiber-reinforced plastics that do not
measure interference. Part II is a manually recorded rudder angle indicator. Part III is a
Garmin sensor used for sampling positions, and its variance is ±7.0 m. Part IV is software
that SDI-225R can use to record time series. Part V is an SDI-225R sensor used to sample
positions and headings. The sampling frequency is 1 Hz. The variance of the headings is
±0.2◦, and the variance of the positions is ± 1.0 m. The independent layout of the SDI-225R
and Garmin sensors on the motorboat is shown in Figure 4. Figure 4a shows the SDI-225R
sites, while Figure 4b displays the locations of all sensors from a top view. We fixed the SDI-
F and SDI-S sensors at the centerline and placed the Garmin sensor at the stern. In addition,
we prepared other experimental supplies, such as computers, mobile power supplies, belts,
scissors, and hand boards.

V

I II

III

IV V

I II

III

IV

Figure 3. Main instruments and apparatuses for marine motorboat tests. I. Motorboat. II. Rudder
recorder. III. Garmin sensor. IV. The SDI-225R software. V. SDI-225R sensor.

Receiver 
Antennae

SDI-F

SDI-S

Garmin

Receiver 
Antennae

SDI-F

SDI-S

Garmin

(b)(a)

Figure 4. Experimental layout: (a) installation sites; (b) top view of sensors.

We had to overcome many adverse factors during the experiments. These factors
include the following: (1) The hull was easily damaged. (2) There was a risk of grounding.
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(3) There was improper listing due to a loss of balance. (4) These apparatuses needed to
be fixed individually. (5) A rudder angle indicator needed to be installed and recorded
manually. (6) There was an error in manual steering. (7) The sensors had limitations.
(8) Other critical factors, such as power persistence, hardware, and software inspection,
had to be considered.

The measured data of the motorboat sea trials with a rudder deflection of 20◦ and 30◦

are shown in Table 1. This shows the sensor’s name, data attributes, and data dimensions.
The symbol ‘

√
’ represents the measured data, while the symbol ‘×’ denotes that the

measured value is unavailable for this attribute. We employed the Garmin and SDI_225R
sensors to measure the positional samplings to enhance the system’s reliability and then
applied Equation (10) to optimize these positional samplings.

Table 1. The measurements of the motorboat sea trials with a rudder deflection of 20◦ and 30◦.

Sensor Name
Data Attributes

Data Size
Time Latitude Longitude Rudders Headings

Garmin

√ √ √
20◦ × 113 × 4

√ √ √
30◦ × 66 × 4

SDI_225R

√ √ √
20◦ × 113 × 4

√ √ √
30◦ × 66 × 4

GPS Compass

√
× × 20◦

√
113 × 2

√
× × 30◦

√
66 × 2

3.2. Preprocessing for the Samplings of Ship Trials

The samples of ship trials can be affected by disturbances, random noise, and projec-
tion transformation. Therefore, it is necessary to preprocess these data. The main task of
this section is to visually exhibit the sensor samplings. We performed coordinate transfor-
mations twice for the longitude and latitude samplings of Garmin and SDI_225R sensors
and used inverse variance weighting to obtain optimized estimations. Finally, we oriented
the modeling methodology of the multi-block FCMs.

3.2.1. Samplings from Ship Trials

Constrained by the sensors, we could only extract these samplings after the tests and
obtained two data series on the steady turning motion. Subsequently, we imported these
collected ‘∗.GPX’ files into the MATLAB [48] in Figure 5.

Positions from Garmin Sensor

Positions from SDI-225R Sensor

Figure 5. Schematic diagram of the motorboat sampling data in harbor. Red points indicate positions
with a rudder deflection of 20◦.
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In Figure 5, the large and small red circles represent the positions sampled by SDI-225R
when the command rudder angle is 20◦ and 30◦, respectively, while the large and small
yellow circles represent the positions collected by the Garmin sensor, respectively. The left
side of Figure 6 demonstrates the headings sampled by SDI-225R when the rudder angle
is 20◦ and 30◦, respectively. On the right side of Figure 6, the red and blue circles are the
longitude and latitude data from the Garmin and SDI-225R sensors, respectively.
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Figure 6. Sampling diagram of the sensors during the sea trial of motorboats. (a) Headings with a
rudder deflection of 20◦; (b) Positions with a rudder deflection of 20◦; (c) Headings with a rudder
deflection of 30◦; (d) Positions with a rudder deflection of 30◦.

3.2.2. Data Fusion for the Multi-Source Position Samplings

In practice, using a variety of sensors to measure the same physical variable is a
common strategy to ensure navigation safety. As the sensors installed on the fore and aft
centerline collected data independently, we propose a fusion algorithm for multi-source
position samplings to obtain optimal estimations.

According to Equation (6), we transformed the sampling data of two sensors from
spherical to XY plane coordinates, as shown in Figure 7. The figure shows the mapped
position samplings from the ellipsoidal coordinate to the geocentric plane coordinate,
obtained by Mercator projection with a rudder deflection of 30◦, where the red circle and the
green cross at the geocentric plane coordinates represent the mapping data corresponding
to the Garmin and SDI_225R samplings, respectively.

According to [49], the data transformation form should help to achieve the data mining
scheme. Because the data used for training come from historical samplings, the ranges
of attributes in the nonlinear ship system vary significantly. The diameter of the ship’s
turning circle is approximately 50 m, and the order of magnitude of the geocentric plane
coordinates is 107 m. Some sampled data, with a rudder deflection of 20◦ according
to the Garmin sensor, and their transformed values are shown in Table 2. However,
having an excessive number of digits in the geocentric plane coordinates increases the
computational burden. The changes in the trajectories of the turning circle will overshadow
the differences in coordinates in the geocentric plane, which may lead to the failure of the
proposed model. Therefore, it is necessary to translate the sampling coordinates into the
water areas, as shown in Equations (11)–(13).
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Table 2. Some sampled data by the Garmin sensor and their transformed values with rudder 20◦.

No.
WGS-84 Coordinate System Geocentric XY Coordinate

Headings/◦
λ/◦ ϕ/◦ X/m Y/m

1 121.533916 38.865964 13,529,093.6431056 4,675,673.81488860 73.1

2 121.533932 38.865970 13,529,095.4242174 4,675,674.66922383 76.5

3 121.533950 38.865974 13,529,097.4279682 4,675,675.23878070 80.0

4 121.534026 38.865978 13,529,099.3203996 4,675,675.80833759 83.6

...
...

...
...

...
...
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Figure 7. Sampling transformation diagram from the spherical coordinate to the geocentric coordinate
plane with a rudder deflection of 30◦.

Suppose that X and Y express the position samplings in the geocentric plane coordi-
nates, and their mean values are MX and MY, respectively. The coordinates (0, 0) are then
translated to (MX, MY) in Equation (11):{

XT = X−MX

YT = Y−MY
(11)

where XT and YT denote the positions after translation, and the subscript T represents the
new coordinates.

If the positions are derived from the Garmin sensor, then the translated coordinates
are described in Equation (12): {

XG
T = XG −MXG

YG
T = YG −MYG

(12)

where the superscript G describes the Garmin sensor, and XG
T and YG

T represent the positions
of the Garmin samplings after translation.

If the positions are from the SDI-225R sensor, then the translated coordinates are
described in Equation (13): {

XS
T = XS −MXS

YS
T = YS −MYS

(13)
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where the superscript S describes the SDI-225R sensor, and XS
T and YS

T represent the
positions of the SDI-225R samplings after translation.

According to Equation (10), the optimal estimations are expressed in Equation (14):{
X∗T = K11 · XG

T + k21 · XS
T

Y∗T = K12 ·YG
T + k22 ·YS

T

(14)

where the superscript ∗ describes the optimal value and X∗T and Y∗T are the optimal positions
after translation. kij is the weight of the i-th sensor in the j-th variable, where i = 1 and
i = 2 define the Garmin and SDI-225R sampling data, respectively; j = 1 and j = 2 denote
the abscissa and ordinate, respectively.

By substituting Equations (12) and (13) into Equation (14), we can obtain Equation (15):
X∗T = (k11 · XG + k21 · XS)︸ ︷︷ ︸

X∗

− (k11 ·MXG + k21 ·MXS)︸ ︷︷ ︸
MX∗T

Y∗T = (k12 ·YG + k22 ·YS)︸ ︷︷ ︸
Y∗

− (k12 ·MYG + k22 ·MYS)︸ ︷︷ ︸
MY∗T

(15)

where X∗ and Y∗ are the optimal positions in the geocentric coordinate plane. Equation (15)
can then be simplified in Equation (16):{

X∗ = X∗T + MX∗T
Y∗ = Y∗T + MY∗T

(16)

We employ two sensors to sample the sea trial of a motorboat as an illustrative example
for data preprocessing, as shown in Figure 8. Figure 8a,b demonstrates the position diagram
using the SDI-225R, and Garmin sensors and the proposed algorithm after coordinate
translation. They are the red circle, the magenta cross, and the green square, respectively.
Due to the higher accuracy of the SDI-225R sensor, the optimized estimations are close.
Figure 8c,d demonstrate the trajectory errors compared with the optimized values with
a rudder deflection of 20◦ and 30◦. As can be seen from Figure 8, two sensors can ensure
measurement reliability. Meanwhile, the optimized results are as close as possible to the
sensor samplings, with a higher accuracy.

Figure 9 demonstrates that these optimal positions (X∗, Y∗) in the geocentric coordi-
nate plane were mapped to the spherical coordinate plane by inverse Mercator projection
(ϕ∗, λ∗). The yellow and red lines are the measured positions of the Garmin and SDI-225R
sensors, respectively. The blue line is the optimal estimation derived by combining these
two samplings. Because the measurement accuracy of an SDI-225R sensor is higher than
that of the Garmin sensor, the red and blue lines almost coincide, which is in line with
reality. In summary, the multi-source data fusion scheme can improve the accuracy and
reliability of the system.
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Figure 8. Graphs of the optimized positions, Garmin positions, and SDI-225R positions after coor-
dinate translation. (a) The trajectories with rudder 20◦; (b) the trajectories with rudder 30◦; (c) the
errors with rudder 20◦; (d) The errors with rudder 30◦.

Positions from Garmin Sensor

Positions from SDI-225R Sensor

Positions from Optimized Sensors

Figure 9. Garmin, SDI-225R, and the optimized position are mapped to the spherical coordinate
plane by inverse Mercator projection.

3.3. A Data-Driven Multi-Block FCMs Model

We usually observe the following four steps when modeling with fuzzy cognitive maps:

• Step 1: Convert the time series of the sampling into activate values.
• Step 2: Construct a multi-block FCMs model, then train it with these activations.



J. Mar. Sci. Eng. 2023, 11, 442 13 of 27

• Step 3: Transform the activations generated by the FCMs model to the actual physical
system. An FCM can predict any node’s activation after any iteration given any initial
value, which is inversely mapped to the physical space to simulate the actual scenario.

• Step 4: Apply the trained model to predict or control the system.

3.3.1. Mapping for Activate Values

These samplings were activated by the method in Equation (17) [50]:
Aj(t) = f ((Sj(t)−

max(Sj) + min(Sj)

2
) · Λmax

Λj
)

f (x) =
1

1 + e(−η·x)

(17)

where Aj(t) is the activation of the j-th conceptual node at the t step. j is the node number,
and j = 1, 2, · · · , N. N denotes the number of concept nodes. t denotes the t-th sample,
and t = 1, 2, · · · , T. T is the number of samples. A is the matrix of activations, and

A =


A1(1) A2(1) · · · AN(1)
A1(2) A2(2) · · · AN(2)

...
...

. . .
...

A1(T) A2(T) · · · AN(T)

. f (x) denotes an activation function, and η is a slope pa-

rameter. Sj is the physical value of the j-th node, where Sj = {Sj(1), Sj(2), · · · , Sj(T)}. Λj is the
range of the sampling physical state of the j-th conceptual node, where Λj = max(Sj) −min(Sj).
Λmax is the maximum physical state of all nodes, where Λmax = max(Λ1, Λ2, · · · , ΛN).

All physical values are mapped to an open interval between 0 and 1 using Equation (17),
which constructs a training dataset learned by a multi-block FCMs model. The advantage
is that the trend is consistent between the activations and values of the original system.
Meanwhile, considering the monotonicity of the activation function, these activation values
can easily be reversely converted to the states of the actual physical system.

3.3.2. The Structure of an FCM for Motorboats

The structure of an FCM can be derived from seamen’s experience. We employed
the cognitive structure of steady turning motion for motorboats in Figure 10 and causally
represent the FCM in a combination of methods found in [41]. In Figure 10, δ is the angle
of the rudder, which was manually recorded. ψ is the heading collected by the SDI-225R
sensor. ∆ψ is the difference in the heading. x and y, transformed from the SDI-225R
and Garmin sensors in Section 3.2, are the horizontal and vertical coordinates in the XY
coordinate plane, respectively. ∆x and ∆y are the diffierences in x and y. In terms of
semantics, we used δ and ∆ψ as examples. δ is the cause node, and ∆ψ is the effect node.
The connection edge describes the causal influence, which is practically consistent with
seafarers’ intuitions.

The interaction between the fuzzy cognitive map and the existing system of motorboats
is also demonstrated in Figure 10. The red bar represents normalization data, and the
green bar represents mapping to actual physical variables. The red arrow represents
the conversion of actual physical variables to normalized data to train the FCM model.
The green arrow represents the conversion of the normalized data to actual physical
variables performed to predict the system’s state. The time series of the samplings were
saved according to the conceptual nodes of the graph model, and the prefix n represents the
active value. The system, which determines the interaction between the physical apparatus
and the FCM model, comprises a multi-block FCMs model, sensors, and a rudder.

We employ the fuzzy cognitive map constructed by the prior knowledge of seafarers
to represent the influences among the ship motion systems, and we then approximated
this system using the iterative rules in Equation (2). This simplified network structure is a
general expression of a surface vessel.
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Figure 10. The cognitive structure of the designed FCMs model for motorboats.

3.3.3. Modeling of an FCM

As a symbolic reasoning mechanism, Equation (2) performs inverse transformation and
data iteration for an FCM, and this equation can be written in matrix form in Equation (18).

f−1


Aj(2)
Aj(3)

...
Aj(T)

 =


A1(1) A2(1) · · · AN(1)
A1(2) A2(2) · · · AN(2)

...
...

. . .
...

A1(T − 1) A2(T − 1) · · · AN(T − 1)

 ·


w1j
w2j

...
wNj

 (18)

When the structure of an FCM is determined, the model parameters can be estimated
using activations after mapping.

Since the number of samples is greater than that of conceptual nodes (T ≥ N), theoret-
ically, Equation (18) is a classical overdetermined linear system of equations without biases,
which can be directly solved using the least square method. However, considering that
the measured samplings of motorboat motion include external disturbances and are also
affected by numerous factors, such as noise, a loss of coordinate transformation, and system
nonlinearity, these activations of conceptual nodes near the origin may significantly deviate
after mapping. Therefore, it is necessary to use overdetermined linear equations with biases
to approximate these activations to reduce this effect. We introduce an offset term w0j for
each conceptual node to reconstruct the linear equations, as demonstrated in Equation (19):

f−1


Aj(2)
Aj(3)

...
Aj(T)

 =


1 A1(1) A2(1) · · · AN(1)
1 A1(2) A2(2) · · · AN(2)

1
...

...
. . .

...
1 A1(T − 1) A2(T − 1) · · · AN(T − 1)

 ·


w0j
w1j
w2j

...
wNj

 (19)

Let Yj = f−1


Aj(2)
Aj(3)

...
Aj(T)

, Z =


1 A1(1) A2(1) · · · AN(1)
1 A1(2) A2(2) · · · AN(2)
...

...
...

. . .
...

1 A1(T − 1) A2(T − 1) · · · AN(T − 1)

, and

Wj =
[
w0j, w1j, w2j, · · · , wNj

]T , then Equation (19) is simplified into Equation (20):

Yj = ZWj (20)

where Z and Yj are the independent and dependent variables of the activate values of the
historical sampling data, respectively. Therefore, the learning problem of the weights of
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an FCM is converted into a least square solution of an overdetermined linear system of
equations with biases.

We employ the least square method to solve the linear Equation (20) and obtain
Equation (21).

Wj = (ZTZ)−1ZTYj (21)

However, the ship motion system is strongly nonlinear, and the prediction error may be
significant if only this optimization is used. Furthermore, the optimization is also subject
to physical constraints such as the steering gear and the gyrocompass. To solve Wj, we
construct a new objective function in Equation (22).

argmin︸ ︷︷ ︸
Wj

‖ ZWj −Yj ‖2, δL ≤ δ ≤ δU , ψL ≤ ψ ≤ ψU

s.t. ‖ ZτWτ −Yτ ‖2≤ εd

− 35◦ ≤ δ ≤ 35◦

0◦ ≤ ψ ≤ 360◦

(22)

Optimization objective of the first term ‖ ZWj −Yj ‖2 is to minimize the error between the
actual value and the prediction under the double constraints of rudder angle and heading
angle to obtain the approximate weight W. The goal of the constraint ‖ ZτWτ −Yτ ‖2≤ εd
is to alter the approximation accuracy of Cτ to adjust the domain range of the rudder
angle and heading angle in the first term, and then optimize a reasonable weight. εd is
the designed error, and Cτ represents the designed conceptual node. It is contradictory
to employ Equation (21) to directly solve Equation (20) because of the constraints of
Equation (22). For example, if εd is too large, the weight after optimization ‖ ZWj −Yj ‖2
does not meet the standards of practical applications, and if εd is too small, there may be
no solutions.

3.3.4. Data Split and Training for the Multi-Block FCMs Model

For the constraint Equation (22), the divide-and-conquer strategy is an effective resolu-
tion. Under the given εd, we can train the approximation weight W by reasonably selecting
the range of rudder angle and heading angle in the first term. Combined with the actual
condition of the ship motion system, it is difficult to approximate with only one fuzzy
cognitive map owing to the system’s nonlinearity, and the complete system also needs
to be divided into several subblocks for investigation. Therefore, the proposed scheme
achieves consistency when solving equations using a data-driven and complex physical
system decomposition.

The splitting of samplings is demonstrated in Figure 11. We used two conceptual
nodes (δ and ψ) to separate the dataset. In our study, the univariate least squares method
was utilized to learn the parameters when dividing the dataset based on the node of
the rudder angle. When partitioning the dataset with the heading angle node, we used
the binary least squares method to learn the parameters. The dataset wis isolated into
several subblocks according to εd. A fuzzy cognitive map approximates each data block.
In Figure 11, when the rudder and heading angle are δτ and ψτ , we use the first sub-module
FCM model to represent the system. Similarly, when the rudder and heading angle are δξ

and ψξ , the n-th sub-module FCM model is selected.
Data splitting is a practical procedure to reduce system complexity during training.

Because each sample contains multiple conceptual nodes, we employed a multi-block
FCMs model to divide these samplings into several uneven subblocks. Each subblock
utilizes an FCM for representation, and several submodels symbolize the entire system.
The accuracy of this model will tremendously improve with the encryption of sampling
and refinement of the data block. For existing applications, the corresponding submodel
in different data blocks can be retrieved according to the current rudder angle and the
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heading angle. Therefore, these submodels can forecast the system states. The inverse
Mercator projection method converts these predictions into a spherical coordinate system.
The pseudocode of the fundamental process is shown in Algorithm 1.

Algorithm 1: The pseudocode of a multi-block FCMs model based on ship trials

Input: Sampled data DST =
{
(ϕij, λij)

2
j=1, ψi, δi

}
, i = 1, 2, · · · , T, j = 1, 2. Slope

parameter η, FCM structure, Mercator projection parameters,
and hyper-parameter εd.

Output: Adjacency matrix W, and number of subblocks N. Prediction of m-step
DFCM =

{
xFCM

p , yFCM
p , ψFCM

p

}
, and its transformation in ellipsoidal

coordinates DERH =
{

ϕERH
p , λERH

p , ψERH
p

}
, p = 1, 2, · · · , m.

1 Extract positions from DST , and obtain DPOS−XY = {(xij, yij)
2
j=1} in (6);

2 Transform DPOS−XY to DPOS−XY−CT = {(xCT
ij , yCT

ij )2
j=1} in (11);

3 Optimize DPOS−XY−CT by inverse variance weighting in (10), and otain
DPOS−XY−CT∗ =

{
(xCT∗

i , yCT∗
i
)
} in (16);

4 Save DXY−CT∗ =
{

xCT∗
i , yCT∗

i , ψi, δi
}

, then map DXY−CT∗ into activations
AXY−CT∗ =

{
xA

i , yA
i , ψA

i , δA
i
}

in (17);
5 N = 0;
6 The W is estimated in (21) combined with the FCM structure and AXY−CT∗;
7 while true do
8 Verify whether ‖ Zτ ·Wτ −Yτ ‖2> εd?
9 if true then

10 Delete the last sample of AXY−CT∗;
11 Re-estimate weight W by (21);
12 else
13 Reserve this learned W as mathematical model of the (N + 1)-th subblock;
14 N = N + 1;
15 Verify whether the current sample reaches the end of the training set
16 if true then
17 exit loop;
18 else
19 eelete the training data of the learned sub-blocks;
20 Identify another weights with the remaining data using (21);
21 end
22 end
23 end
24 Output W, N, DFCM, and DERH .
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4. Experiments

In this section, we investigate the engineering practicability of the scheme. All sam-
plings de frorivedm the marine environment, which contains external interference, mea-
surement noise, and actuator errors. The simulation of the multi-block FCMs model and its
parameters are presented in Sections 4.1 and 4.2, respectively.

4.1. The Steady Turning Simulation with A Rudder Deflection of 20◦/30◦

To maintain generality and make comparisons with the proposed model, we translated
the initial values to the coordinate origin, and all the time series panned together with the
initial values in Figure 12, which displays a diagram of a motorboat turning trajectories
and headings with a rudder deflection of 20◦ and 30◦.

In Figure 12a, we show the measured positions with the red line and the magenta
line, respectively. The multi-block FCMs model’s estimations are shown as blue and green
lines, respectively. We analyzed these positions with a rudder deflection of 20◦/30◦ using
three statistical indexes: the root means square errors (RMSEs), the maximum absolute
errors (MAEs) and the maximum relative errors (MREs). The i-th position is expressed
as Pi =

√
xi + yi, where i = 1, 2, · · · , T. The i-th position error is then expressed as

EPi = PReal
i − PFCMs

i . The RMSEs are 1.4506 m and 0.6154 m, the MAEs are 0.8489 m and
0.4721 m, and the MREs are 1.71% and 1.47%, respectively. The results indicate that the
proposed model is agreement with the system.

An analogous situation occurs in Figure 12b. The red and magenta lines are the gauged
headings, and the blue and green lines are the headings calculated by the proposed model.
Similarly, the RMSEs of headings with a rudder deflection of 20◦/30◦ are 5.0869◦ and
1.8384◦, respectively. The estimations are also consistent with the measurements. These
results show the engineering practicability of the proposed model.
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Figure 12. Simulations of the turning trajectories and headings with a rudder deflection of 20◦/30◦.
(a) Trajectories; (b) Headings.

4.2. Data Split and Parameters Training

The initial parameters are as follows. The slope parameter η of activations in (17)
is 0.01. εd is [1, 0.1]. The structure of an FCM is exhibited in Figure 10. The reasoning
mechanism of an FCM is the sigmoid function, and its parameter is 2. The semi-major
and semi-minor axes of the ellipsoid are 6,356,752.3142 m and 6,378,137 m, respectively.
The first and second eccentricities are 0.0818191910428 and 0.0820944381519, respectively.
The entire system is then isolated into multiple subsystems in Figure 13.
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Figure 13. The boundary of the multi-block FCMs model based on the multi-source sensors with a
rudder deflection of 20◦/30◦.

Figure 13 demonstrates the proposed scheme being employed to split the samplings
into 17 subblocks. Each data block is approximated by an FCM model. Each number
represents the serial number of each block in Figure 13. Table 3 displays the parameters of
the motorboat estimated by the multi-block FCMs.
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Table 3. Parameters of the multi-block FCMs model of a motorboat.

Structure Semantics
Blocks and Normalized Parameters

{1, [0◦, 3◦]} · · · {6, [49◦, 138◦]} · · · {17, [312◦, 358◦]}

ψ Δxψ Δx

Intensity of ψ on ∆x 0.47 · · · −1 · · · 1
δ Δxδ Δx

Intensity of δ on ∆x 0.006 · · · −0.055 · · · 0.041
Δx

Offset activation ∆x −0.06 · · · 0.359 · · · −0.77
δ Δψδ Δψ

Intensity of δ on ∆ψ 0.025 · · · 0.328 · · · 0.279
Δψ

Offset activation ∆ψ −0.01 · · · −0.136 · · · −0.116
ψ Δyψ Δy

Intensity of ψ on ∆y 1 · · · −0.318 · · · −0.941
δ Δyδ Δy

Intensity of δ on ∆y 0.003 · · · −0.022 · · · −0.051
Δy

Offset activation ∆y −0.146 · · · −0.077 · · · 0.843

In Table 3, the causal strengths between the headings and the ∆x are 0.47, −1, and 1 in
the 1st, 6th, and 17th subblocks, respectively. According to the common sense of navigation,
the headings have positive and negative effects on the ∆x, and the adjacency weights
reflect this feature. Similarly, the strengths between rudder angles and the heading changes
are 0.025, 0.328, and 0.279 in the 1st, 6th, and 17th subblocks, respectively. In practice,
the rudder angles only positively affect heading changes, so these adjacency weights are
also consistent with reality. These model parameters also indicate that the proposed scheme
differs from the traditional neural network method.

5. Discussions

Although the designed model performs well according to the simulation results
described in Section 4, it is still necessary to further explore the generalization ability and
engineering performance under other rudder angle conditions.

Due to the constraints of the sea trials, the measured data that we collected are limited.
To better verify the model proposed in this paper, we compare it with the Nomoto model in
the industry and then use the generated data to verify our proposed model’s generalization
performance. We then use the multi-block FCMs model to predict the steady motion states
of the actual motorboat at other rudder angles and analyze this in combination with existing
data resources. Finally, we analyze the engineering performance of the model proposed in
this paper.

5.1. Comparison and Validation of the Multi-Block FCMs Model

The principle of our proposed model is entirely different from that of the Nomoto
model. In Section 5.1.1, we compare these two methods from the perspective of the
impact of speed. Considering the limited data resources of the ship trial, we employ the
generated data of the Nomoto model as a supporting dataset to validate the proposed
multi-block FCMs model. The experimental verifications under various working conditions
are exhibited in Sections 5.1.2 and 5.1.3, respectively.

5.1.1. Comparison with the Nomoto Model

The Nomoto model [28] is a classical model used to depict the ship’s movement.
The differential equations are shown in Equation (23).

ψ̇ = r

ṙ = − 1
T
· r + K

T
· δ

ẋ = U · cos(ψ)

ẏ = U · sin(ψ)

(23)
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where ψ denotes the headings, r is the yaw rating, and δ represents the rudder angle. x
and y denote the positions at XY coordinates. U is the speed over the ground. K and T
represent the indices of the Nomoto model.

When we utilize the first-order part of the mathematical model in [3], the hydro-
dynamic derivatives are calculated using only seven ship parameters in the empirical
regression equation in [29]. These derivatives can then approximate the indices of K and T.

The seven parameters of the motorboat in this paper are as follows. The length, beam,
and fully loaded draft are 8 m, 2.6 m, and 1.1 m, respectively. The block coefficient is 0.75.
The rudder area is 0.285 m2. The distance from the center of gravity to the ship’s center
is 0.1 m. The speed of the ship is 5.5 knots. The indices of K and T calculated based on
the literature [29] are 0.2212 and 1.7219. Therefore, the diameters of the rudder deflection
of 20◦/30◦ for the steady turning motion solved by Equation (23) are 73 m and 46 m,
respectively. The prediction of this model agrees with the actual measurements.

However, the model does not consider the impact of reduction and external distur-
bances on the speed during turning. When the speed decreases by 20%, the steady turning
diameters of the rudder deflection of 20◦/30◦ are 58 m and 38 m, respectively. The rudder
results of 20◦ are not ideal, which indicates that this model is easily affected by the speed.

Although our model does not measure speed, we observe positional nodes (x, y).
The difference operation of the positional nodes (x, y) acquires a change in positional nodes
(∆x, ∆y). Based on this, we employ the identity x(t + 1) = x(t) + ∆x(t) to estimate the
x-position. The y-position is estimated in the same way. Here, we employ the change in
positional nodes to approximate the speed. Therefore, the speed impact is implicit in our
proposed model. We then use the FCM’s structure and the conceptual nodes’ activations
to learn the multi-block FCMs model. The results in Figure 12 illustrate the effectiveness
of the proposed model. Therefore, this model can avoid a speed impact if the position
measurement is accurate.

5.1.2. Validation the Multi-Block FCMs Model Based on the Simulation Data

Here, we employ the generated dataset of the Nomoto model to verify the multi-block
FCMs model. Table 4 reports the simulation dataset’s name, attributes, and dimensions.
The symbol ‘

√
’ represents the measured data. The training set consists of the samplings of

ship motion with a rudder deflection of 20◦ and 30◦, while the testing set consists of the
predictions of ship motion with a rudder deflection of 22◦ and 28◦. The validation results
are shown in Figure 14.

Table 4. The training dataset generated by the Nomoto model with a rudder deflection of 20◦/30◦.

Dataset
Data Attributes

Data Size
Time x-Position y-Position Rudders Headings

Training Dataset
√ √ √

20◦
√

85 × 5
√ √ √

30◦
√

58 × 5

Testing Dataset
√ √ √

22◦
√

80 × 5
√ √ √

28◦
√

70 × 5

In Figure 14a, the measured positions with a rudder deflection of 22◦ and 28◦ are
represented by red and magenta lines, respectively. Meanwhile, the multi-block FCMs
model’s predictions are represented by blue and green lines, respectively. We analyze these
positions with a rudder deflection of 22◦/28◦ using three statistical indexes: the RMSEs are
0.5413 m and 0.6978 m, the MAEs are 0.3624 m and 0.6126 m, and the MREs are 1.01% and
2.09%, respectively. The results reveal that the proposed model can reasonably simulate the
system’s dynamics.
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Figure 14. Simulations of the turning trajectories and headings with a rudder deflection of 22◦/28◦

based on dataset of the Nomoto model with two rudders. (a) Trajectories; (b) headings.

An analogous situation occurs in Figure 14b. The red and magenta lines are the
gauged headings, and the blue and green lines are the headings forecasted by the pro-
posed model. Similarly, the RMSEs of headings with a rudder deflection of 22◦/28◦ are
2.1174◦ and 2.0768◦, respectively. The estimations can also reasonably approximate the
measured values.

5.1.3. Validation the Accuracy of the Proposed Model Based on the Adjustment
of Samplings

Table 5 illustrates the scheme for validating the multi-block FCMs model when in-
creasing samples. Among them, the training set consists of the samplings at seven different
rudder angles, while the testing set also consists of the predictions with 22◦ and 28◦ rudder
angles. The validation results are shown in Figure 15.

Table 5. The training dataset generated by the Nomoto model with a rudder deflection of seven rudders.

Dataset
Data Attributes

Data Size
Time x-Position y-Position Rudders Headings

Training Dataset

√ √ √
20◦

√
85 × 5

√ √ √
21◦

√
80 × 5

√ √ √
23◦

√
75 × 5

√ √ √
25◦

√
68 × 5

√ √ √
27◦

√
64 × 5

√ √ √
29◦

√
59 × 5

√ √ √
30◦

√
58 × 5

Testing Dataset
√ √ √

22◦
√

80 × 5
√ √ √

28◦
√

70 × 5

In Figure 15a, the measured positions with a rudder deflection of 22◦ and 28◦ are rep-
resented by red and magenta lines, respectively. The multi-block FCMs model’s predictions
are represented by blue and green lines, respectively. Again, we analyze these positions
with a rudder deflection of 22◦/28◦ using three statistical indexes: the RMSEs are 0.2675 m
and 0.3366 m, the MAEs are 0.1976 m and 0.2714 m, and the MREs are 0.54% and 0.97%,
respectively. Compared with the results in Figure 14a, the model’s positional prediction
accuracy dramatically increased for the statistical indexes of the RMSEs, MAEs, and MREs.
These simulation results demonstrate that the proposed model can reflect the system’s
dynamics and improve the model’s performance with increased sampled data.
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Figure 15. Simulations of the turning trajectories and headings with a rudder deflection of 22◦/28◦

based on dataset of the Nomoto model with seven rudders. (a) Trajectories; (b) headings.

An analogous situation occurs in Figure 15b. The red and magenta lines are the
gauged headings, and the blue and green lines are the headings forecasted by the proposed
model. Similarly, the RMSEs of headings with a rudder deflection of 22◦/28◦ are 0.7518◦

and 0.6531◦, respectively. Compared with the results in Figure 14b, the model prediction
accuracy for the yaw angle rose sharply for the statistical indicator of the RMSEs. These
results mean that, with an increase in training samplings, the proposed model’s accuracy
in mimicking the headings has significantly improved. These experimental results validate
the effectiveness of the proposed model.

Figure 16 exhibits the data blocks of the trained model acquired by different training
sets. Using only the generated data with a rudder deflection of 20◦ and 30◦, we divided
the entire dataset into 11 sub-data blocks. Using the training data with a rudder deflection
of 20◦, 23◦, 25◦, 27◦, 29◦, and 30◦ to simulate the steady turning motion with a rudder
deflection of 22◦ and 28◦, we divided the dataset into 24 sub-data blocks. From the ranges
of the abscissa in Figure 16a,b, it can be observed that sub-data blocks of various intervals
can also be generated according to the rudder angle.
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Figure 16. The boundary of the multi-block FCMs model. (a) Training dataset with two rudders;
(b) Training dataset with seven rudders.

5.2. Analysis of the Generalization Ability of the Proposed Model Based on Motorboat Trials

Figure 17 shows the diagram of the turning trajectories of the motorboat with a rudder
deflection of 22◦/28◦. In Figure 17a, the red line and the magenta line are the measured
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trajectories with a rudder deflection of 20◦/30◦, while the blue line and the green line are
the predicted values by the proposed model with a rudder deflection of 22◦/28◦. Due to
the limitation of the trial conditions, we cannot directly measure the states corresponding
to the rudder deflection of 22◦/28◦. However, the trajectories with a rudder deflection of
22◦/28◦ are just between a rudder deflection of 20◦/30◦ in Figure 17a, which is in line with
navigation practice.
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Figure 17. Simulations of steady turning motion for a motorboat with a rudder deflection of 22◦/28◦.
(a) Trajectories; (b) Headings.

In Figure 17b, the red line and the magenta line are the measured headings with a
rudder deflection of 20◦ and 30◦, while the blue line and the green line are the predicted
headings with a rudder deflection of 22◦ and 28◦. Headings are also found between 20◦

and 30◦. At this time, the slope of the curve indicates that the course change rate increases
with the increment of the rudder angle, which indicates that the heading change caused by
the change in the unit rudder angle slows down. Therefore, the predicted values are also in
line with a common sense of navigation. The predicted values are mapped to the spherical
coordinate system using the inverse Mercator projection in Figure 18, which indicates the
expected engineering value.

Positions from Multi-FCMs Rudder 22

Positions from Multi-FCMs Rudder 28

Positions from Optimized Sensors 20/30

Figure 18. The diagram of the optimized positions with a rudder deflection of 20◦ and 30◦ and the
predictions of the multi-block FCMs model with a rudder deflection of 22◦ and 28◦.

5.3. Practical Performance Analysis of the Proposed Model Only Based on the Garmin Sensor

In engineering, a practical performance analysis will help promote the landing appli-
cation of the model. In practice, low-precision samplings will adversely affect modeling
and lead to method failure. This section mainly focuses on the engineering performance of
the model when using low-precision Garmin positional samplings.
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We used the learned multi-block FCMs model to simulate the trajectories of a motor-
boat shown in Figure 19. The red and the magenta lines represent the data sampled only
using the Garmin sensor with a rudder deflection of 20◦ and 30◦.
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Figure 19. Simulations of the trajectories based on the Garmin sensor. (a) Trained values; (b) Pre-
dicted values.

In Figure 19a, the blue and green lines are the trajectories predicted by the model with
a rudder deflection of 20◦ and 30◦, respectively. In Figure 19b, the blue and green lines are
the predicted trajectories of the model, with a rudder deflection of 22◦ and 28◦, respectively.
Figure 20 shows the subblocks diagram of the model that only relies on Garmin sampling
with a rudder deflection of 20◦ and 30◦. We divided the sampled data into 41 blocks,
and each subblock was then approximated by an FCM for knowledge representation.
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Figure 20. The boundary of the multi-block FCMs model based on the Garmin sensor with a rudder
deflection of 20◦/30◦.

On the premise that other conditions are the same, if Figure 13 is comapared with
Figure 20, the number of subblocks split by the sampled data increases from 17 to 41.
On the one hand, poor-quality single-source data reduce the accuracy and increase the
number of blocks, resulting in a computational burden, which indicates the effectiveness
of a multi-source fusion scheme. On the other hand, this model can still approximate the
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samplings with disturbances, which exhibits its robustness. The simulation results show
that the proposed method has a potential engineering application value.

6. Conclusions

The current results of the steady turning motion model of the ship in the shipping
industry are insufficient for direct application to motorboats. This paper proposes an
integration scheme of data-driven multi-block FCMs for steady turning motions. Sea trials,
data sampling, and data processing were performed, and a multi-block FCMs model was
established. We can draw the following conclusions from the experimental results:

• The experimental organization scheme used in this study reduces the risk of sea trials,
and the sensors are low-cost and easy to deploy. Investigators need to observe four
physical variables during their voyages.

• The samplings of the sea trials drove the multi-block FCMs model. The validity of
the proposed model was verified using a generated dataset of the classical model.
The simulation results with a 22◦/28◦ deflection for motorsboats were consistent with
common navigation practices.

• Compared with models in other studies in the shipping industry, the proposed
model reduced speed sensitivity, and thus may have potential application value
in nautical science.

However, the data quality and ship time delays were not investigated in-depth in our
study. In the future, our team will plan to increase investment in ship trials and collect
high-precision samples by updating the system.
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