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Abstract: Mid-ocean ridge basalts (MORBs), produced at mid-ocean ridge where the continents
and subduction zones are distant, are the product of partial melting of the upper mantle and their
chemical composition can provide information about the mantle itself. The geochemical characteristics
of MORBs enable us to be more informed about the geological processes of the upper mantle
below the mid-ocean ridge, and assist us in understanding mantle heterogeneity and geodynamic
processes. In this paper, new data of major elements, trace elements, and Nd-Hf isotopes of south
mid-Atlantic ridge (SMAR) 18–21◦S MORBs are presented. TAS diagram shows that the samples
belong to subalkaline basalt compositional field. Trace elements (e.g., (La/Sm)N = 0.49–0.79) show
that the samples are N-MORBs. However, the primitive mantle-normalized trace element patterns
showed that the studied samples were clearly enriched in Rb, U, Pb, and other fluid-mobile elements.
Meanwhile, the trace element ratios, such as Nb/U and Ce/Pb, are also significantly different
from the typical N-MORB. Combined with the Nd-Hf isotopic composition, we propose that these
anomalies are not related to continental crust material, delaminated subcontinental lithospheric
mantle (SCLM), recycled sediments, direct supply of mantle plume, nor are they the result of
subduction directly affecting the mantle source, but are caused by the incorporation of mantle
material modified by subduction.

Keywords: south mid-Atlantic ridge (SMAR); mid-ocean ridge basalt (MORB); subduction; mantle
heterogeneity

1. Introduction

Mantle is heterogeneous. Isotopically, the mantle can be divided into depleted MORB
mantle (DMM), enriched mantle 1 and 2 (EM1 and EM2), high ‘µ’ = 238U/204Pb (HIMU), and
other mantle end-members [1,2]. Different plumes have different characteristics of enriched
mantle end-members. For example, St. Helena plume is the representative of HIMU mantle
end-members, and Tristan-Gough plume represents the EM1 mantle end-members [3,4].
OIB is the product of the mantle plume, and its geochemical composition can indicate the
origin of the mantle end-member. For example, HIMU mantle end-members are usually
hypothesized to be associated with the recycled oceanic crust [3]. MORBs are derived from
the DMM, and are produced at the mid-ocean ridge [5] which is distant from continents
and subduction zones. Therefore, the composition of MORBs is less contaminated by the
continental material and subduction associated process, and is generally considered to
be relatively uniform. However, increasing evidence [6–12] is showing that the mantle
source of MORB is not as uniform as initially hypothesized and it is even heterogeneous at
different scales. Dupre and Allegre [6] found that the Pb and Sr isotopic compositions of
MORBs from the Indian Ocean are more radioactive than MORBs from the other ocean.
Mougel et al. [12] sampled the East Pacific Rise (EPR) segment at a high density within the
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length of only 15 km, and found that the MORB source region was highly heterogeneous
even at this small scale. Subduction of oceanic plate, detachment of SCLM, and mantle
plume are the reasons of upper mantle heterogeneity [4,12–22]. Studying which process
could cause upper mantle heterogeneity can assist us in understanding the dynamics of
the Earth.

The more incompatible the elements are, the more inclined they are to enter the melt
phase during melting and crystallization. Elements with similar compatibility (such as Ce
and Pb, Nb and U, etc.) have little relative change in their contents in rocks due to their
similar geochemical behavior in magmatic processes. Therefore, the ratio of these element
pairs in rocks is basically unchanged compared with their mantle source, and can be used
to reflect the chemical composition characteristics of the source area [13]. Nb/U and Ce/Pb
ratios of MORBs are relatively uniform [13,23,24], and significantly higher than those of the
continental material and island arc volcanics [13]. Therefore, the anomalies in the ratios of
Nb/U and Ce/Pb in MORB can be used as indicators of contamination caused by recycled
sediments, delaminated subcontinental lithospheric mantle, continental crust material, and
subduction of oceanic plate.

Yang et al. [21] proposed a back-arc basin basalt (BABB) filter based on Nb/U, Ce/Pb,
Rb/Nb, and Ba/Nb ratios. Using this filter, it was found that BABB-like MORBs are
widespread in the Atlantic, Indian, and Arctic oceans, but rare in the Pacific. This composi-
tional distribution is explained by the subduction shield model around the Pacific Ocean.
Circum-Pacific subducted slabs are mostly continuous for at least the last 180 million years
and at least to transition zone depth, and would strictly limit the contribution of the slab
flux to sub-Pacific mantle [21]. In this model, the mid-Atlantic (from ~33◦N to ~34◦S) is
hardly affected by subduction due to the presence of a slab window (the subduction of the
Chile ridge). However, the slab window does not exist since the Pacific subduction began.
Was the mid-Atlantic mantle really not affected by subduction?

In this study, we present new whole-rock major element, trace element, and Nd-Hf
isotope data of SMAR 18–21◦S MORBs, combined with published geochemical data, to
investigate whether the area was affected by subduction.

2. Geological Background and Samples

The South Atlantic is located between Africa and South America (Figure 1), with
Olavtoppen Island at the southernmost end and Romanche Trench at the northernmost
end, which gradually opened from south to north during the breakup of west Gondwana
from ~134 Ma [25,26]. There are several hotspots in the South Atlantic including Ascension,
Circe, St. Helena, Tristan, Discovery, and Shona (yellow circles in Figure 1), among which
St. Helena is closest to the study area. The St. Helena hotspot is linked by the St. Helena
seamount chain to West Africa, but there is no corresponding continent flood basalt [27]
(Figure 1). Geochemically, St. Helena is a mantle plume with typical HIMU mantle
end-member characteristics. Mantle plumes in the South Atlantic have extensive effects
on different ridge segments of SMAR [28–30], and are associated with the breakup of
Gondwana [31].

During the China Ocean Survey (COS) Expeditions No. 22 and 26 cruises of the R/V
DAYANGYIHAO, 16 MORBs from 14 stations in this study were collected by TV-grab
(TVG) at depths of 2075–3386 m from the axis of the SMAR 18–21◦S, which is located
at the extension line of St. Helena seamount chain and 750 km from St. Helena Island.
The main rock types of this area include N-MORB and E-MORB, but the radioisotope
compositions, especially the 206Pb/204Pb ratio, are more radioactive than those of typical
MORBs, indicating that these basalts are clearly affected by enriched components [26,32,33].
At present, the St. Helena plume is still affecting the upper mantle beneath the study area
through fluid channels [26].
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Figure 1. Geological background and the locations of study samples. Red circles represent new 
MORBs samples in this study and gray circles represent MORBs samples in previous studies. Off-
axis islands and seamounts are shown by yellow circles. The cited island/seamount basalts data are 
downloaded from PetDB (http://www.earthchem.org/petdb; accessed on 31 May, 2021). 

3. Analytical Methods 
3.1. Preparation 

Prior to the geochemical analysis, samples were crushed into small chips less than 2 
mm in size, where altered samples were removed under a binocular microscope. Then, 
the remaining rock fragments were placed in ultrapure water for ultrasonic cleaning with 
the water being changed every 15 min until it was clear after cleaning. The dried samples 
were placed in absolute ethanol for ultrasonic cleaning to remove the organic matter on 
the surface. After a second round of drying, the clean samples were handpicked again 
under a binocular microscope to avoid alteration. Finally, the clean rock fragments were 
ground to 200 mesh with an agate mortar for subsequent geochemical analysis. 

3.2. Whole-Rock Major Element and Trace Element Analyses 
Major element data for whole-rock samples were obtained by X-ray fluorescence 

(XRF) spectrometry on fused glass discs using a PANalytical AXIOS Minerals instrument 
at the Rock-Mineral Preparation and Analysis Lab, the Institute of Geology and Geophys-
ics (IGG; Beijing, China), Chinese Academy of Sciences (CAS), following the procedures 
described similarly in [34]. Loss on ignition (LOI) was measured as the weight loss of the 
samples, which was obtained independently by igniting 0.5 g of dry sample aliquot in a 
porcelain crucible for 1.5 h at 1000 °C in a muffle furnace. Analysis results for the reference 
standard (GSR-3) for major elements are consistent with the recommended values within 
the analytical error, and detailed data are presented in Table S1. 

Whole-rock trace element contents were analyzed using a PlasmaQuant-MS Elite 
ICP–MS instrument at the State Key Laboratory of Ore Deposit Geochemistry (SKLODG), 
Institute of Geochemistry, Chinese Academy of Sciences (IGCAS), China. The powdered 
samples (50 mg) were dissolved with a 1 mL HF + 1 mL HNO3 mixture in high-pressure 

Figure 1. Geological background and the locations of study samples. Red circles represent new
MORBs samples in this study and gray circles represent MORBs samples in previous studies. Off-axis
islands and seamounts are shown by yellow circles. The cited island/seamount basalts data are
downloaded from PetDB (http://www.earthchem.org/petdb; accessed on 31 May 2021).

3. Analytical Methods
3.1. Preparation

Prior to the geochemical analysis, samples were crushed into small chips less than
2 mm in size, where altered samples were removed under a binocular microscope. Then,
the remaining rock fragments were placed in ultrapure water for ultrasonic cleaning with
the water being changed every 15 min until it was clear after cleaning. The dried samples
were placed in absolute ethanol for ultrasonic cleaning to remove the organic matter on the
surface. After a second round of drying, the clean samples were handpicked again under a
binocular microscope to avoid alteration. Finally, the clean rock fragments were ground to
200 mesh with an agate mortar for subsequent geochemical analysis.

3.2. Whole-Rock Major Element and Trace Element Analyses

Major element data for whole-rock samples were obtained by X-ray fluorescence (XRF)
spectrometry on fused glass discs using a PANalytical AXIOS Minerals instrument at the
Rock-Mineral Preparation and Analysis Lab, the Institute of Geology and Geophysics
(IGG; Beijing, China), Chinese Academy of Sciences (CAS), following the procedures
described similarly in [34]. Loss on ignition (LOI) was measured as the weight loss of the
samples, which was obtained independently by igniting 0.5 g of dry sample aliquot in a
porcelain crucible for 1.5 h at 1000 ◦C in a muffle furnace. Analysis results for the reference
standard (GSR-3) for major elements are consistent with the recommended values within
the analytical error, and detailed data are presented in Table S1.

Whole-rock trace element contents were analyzed using a PlasmaQuant-MS Elite
ICP–MS instrument at the State Key Laboratory of Ore Deposit Geochemistry (SKLODG),
Institute of Geochemistry, Chinese Academy of Sciences (IGCAS), China. The powdered
samples (50 mg) were dissolved with a 1 mL HF + 1 mL HNO3 mixture in high-pressure
Teflon bombs at ~185 ◦C for 35 h. Rh was used as an internal standard to monitor signal
drift during counting. The analytical precision was generally better than 10%. Analysis
results for three international reference standards (OU-6, AGV-2, and GBPG-1) for trace
elements are consistent with the recommended values within the analytical error, and
detailed data are presented in Table S1.

http://www.earthchem.org/petdb
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3.3. Nd-Hf Isotope Analyses

Nd isotope analysis was performed at the University of Science and Technology of
China (USTC), Hefei, China, following the procedures described similarly in [35,36]. Whole-
rock powders of approximately 100 mg were weighed and placed in 15 mL of Teflon stuffy
tanks and dissolved in a mixture of 2–3 mL of purified HF solution and 8–10 drops of
purified HClO4 solution. Decomposition of refractory phases was ensured by heating
the samples in a Teflon tank at 120 ◦C for approximately 7 days. After the samples were
completely dissolved, the sample solutions were dried on a hot plate at 120 ◦C, and then
heated to 150 ◦C to completely remove the HF and HClO4. Next, 3 mL of purified 6 N HCl
solution was added to the sample tanks two times to clear the inside of the tanks and then
dried again. The sample residues were redissolved with 1 mL of purified 3 N HCl solution
to prepare for chemical separation and purification. Light rare earth elements were isolated
on quartz columns by conventional ion exchange chromatography with a 5-mL resin bed of
Bio-Rad AG50W–X12, 200–400 mesh. Nd was separated from other rare earth elements on
quartz columns using 1.7 mL of Teflon powder coated with HDEHP and di(2-ethylhexyl)
orthophosphoric acid, as the cation exchange medium. All isotopic measurements were
performed on a Finnigan MAT 262 mass spectrometer. Nd was loaded as phosphate on
preconditioned Re filaments, and measurements were performed in a Re double filament
configuration. The 143Nd/144Nd ratios were normalized to 146Nd/144Nd = 0.7219.

The measurement accuracies of the 143Nd/144Nd ratios for the samples were better
than 0.003%. Procedural blanks were <100 pg for Nd. The precision for all the mea-
sured isotopic ratios is given in 2σ uncertainty. Details of the analytical uncertainties are
presented in Table S2. During the period of data collection, repeated measurements on
the Jndi standard solutions gave average 143Nd/144Nd ratios of 0.512115 ±0.000006 (2σ,
n = 7). The results of Nd isotopic analyses on the standard materials BCR-2 and AGV-2
(basalt powder) gave average 143Nd/144Nd ratios of 0.512635 ± 0.000009 (2σ, n = 2) and
0.512789 ± 0.000009 (2σ, n = 2).

Whole-rock Hf isotopic analysis was performed at Guizhou Tongwei Analytical Tech-
nology Co., Ltd., China. About 50–100 mg of rock powder samples were dissolved with
a mixture of concentrate nitric acid and hydrofluoric acid in Teflon bombs at 185 ◦C in
the oven for 3 days, and dried on a hot plate at 80 ◦C. Hf was initially washed from the
column using a mixture of 0.2 N HBr + 0.5 N HNO3 (collected) and was separated using a
Bio-Rad AG50W–X8 cation exchange column (Bio-Rad Laboratories, Hercules, CA, USA).
Hf was first washed using 1.5 N HCl (collected), then was collected on a column using
HDEHP(di(2-ethylhexyl)-coated Teflon powder. The previously collected HFSE Hf was
heated until dry and then redissolved in 3.0 N HCl. Finally, Hf was extracted from the
column using 2.0 N HF and collected in a 10 mL PFA (preconditioned perfluoroalkoxy)
beaker. The Hf-bearing elution was gently evaporated until dry and subsequently redis-
solved in 1.0 mL of 2 wt% HNO3. These diluted solutions were introduced into a Nu
Plasma HR MC-ICP-MS with a DSN-100 dissolution nebulizing system to determine the
whole-rock Hf isotopic composition. Instrument bios and mass fractionation were corrected
by normalization raw ratios to 179Hf/177Hf = 0.7325. Seven measurements of W-2a and
BHVO-2 yielded average ratios of 176Hf/177Hf = 0.282741 ± 7 (2σ, n = 7) and 0.283103 ± 6
(2σ, n = 7).

Analysis results for these international reference standards for Nd-Hf isotopes are
consistent with the recommended values, which can be found in GeoReM (georem.mpch-
mainz.gwdg.de), within the analytical error.

4. Results
4.1. Major and Trace Elements

All 16 samples were analyzed for whole-rock major and trace elements and yielded
low LOI values (<0.5 wt%; Table S1), suggesting that the samples were fresh. The major
oxide contents described below were recalculated on an LOI-free bias. The content of MgO
is 7.37–9.56 wt%, and the average MgO content is 8.4 wt%, suggesting that the samples
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were less affected by low-pressure crystallization. All samples are plotted in the basalt
area in a total alkali vs. silica (TAS) plot, and are classified as low-K subalkaline basalts
(Figure 2).
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N-MORB data are from [40].

The (La/Sm)N (“N” denotes normalization to chondrite) ratio of the samples ranges
from 0.49 to 0.79, and the Zr/Nb ratio ranges from 17.1 to 79.1, which indicate that the
samples belong to the typical N-MORB. Figure 3a shows the primitive mantle-normalized
trace element patterns of the study samples. In addition to the highly incompatible el-
ements expected to be heavily depleted overall, the most remarkable feature is that all
samples have clear positive anomalies of U and Pb (U/U* = 1.05–3.52, Pb/Pb*= 1.01–2.62;
U* = (ThN + NbN)/2, Pb*= (CeN + PrN)/2; “N” denotes normalization to the primitive
mantle), negative anomalies of Nb, and Rb enrichment in some samples. The chondrite-
normalized REE patterns diagram (Figure 3b) shows that most samples are depleted
in LREE, and some samples have a relatively flat REE pattern or even a slight deple-
tion of HREE. Meanwhile, most samples have negative Eu anomalies, with the lowest
Eu/Eu*(Eu* = (SmN + GdN)/2; “N” denotes normalization to the primitive mantle) be-
ing 0.86.
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4.2. Nd-Hf Isotopic Compositions

All sixteen samples were analyzed for whole-rock Nd isotopic composition and eight
samples were analyzed for whole-rock Hf isotopic composition. The isotope data are shown
in Table S2. 143Nd/144Nd ratio ranges from 0.513030 to 0.513176, and 176Hf/177Hf ratio
ranges from 0.282960 to 0.283188, which are in the range of previous studies [26,33], and
confirm their geochemically depleted character. εNd-εHf plot (Figure 4) shows that all
samples are plotted below the mantle array and were positively correlated.
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tively. Figure 5 shows that regardless of the degree of depletion, Ce/Pb and Nb/U ratios 
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Figure 4. Plots of εNd vs. εHf. Red dots represent new MORBs in this study and gray dots represent
SMAR 18–21◦S MORBs in [26,32,39]. Black cross represents global subducting sediment (GLOSS), the
composition of which is from [41,42]. The purple area represents the basalts of St. Helena seamount
chain, and represents HIMU end-member. The blue area represents the basalts of Walvis ridge,
and represents EM1 component. The green area represents the low-temperature garnet-peridotite
xenoliths from Cretaceous South African kimberlites, and represents SCLM. The basalts from the
St. Helena and the Tristan-Gough plumes are from PetDB (http://www.earthchem.org/petdb), the
xenoliths from Cretaceous South African kimberlites are from [43]. Nd-Hf mantle array is from [44].

5. Discussion
5.1. Abnormal Trace Element Ratios

Ce/Pb and Nb/U ratios are relatively uniform in MORBs worldwide [13,24] at 25 ± 5
and 47 ± 10 (black dashed lines in Figure 5; [45]), respectively. However, Ce/Pb and
Nb/U ratios in our samples vary widely (Figure 5), with an average value of 18 and 29,
respectively. Figure 5 shows that regardless of the degree of depletion, Ce/Pb and Nb/U
ratios of our samples are lower than the corresponding values (25 for Ce/Pb, 47 for Nb/U),
with the lowest values of 9 and 13, respectively, which corresponds to the clear enrichment
of U and Pb in the samples. In general, Ce/Pb ratio is positively correlated with Nb/U
ratio (correlation coefficient is 0.63).

http://www.earthchem.org/petdb
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represent SMAR 18–21◦S MORBs in [26,32,39]. Black cross represents global subducting sediment
(GLOSS), the composition of which is from [41]. Two dashed lines intersect at Nb/U = 47 and
Ce/Pb = 25, which are from [13]. The blue line is the mixing line between GLOSS and SMAR-61. The
details of end-members and mixing results are shown in Table S3.

The ratio of fluid-mobile element to fluid-immobile element, such as Ba/Nb (3.4–4.8),
Ba/Th (59.7–94.6), Rb/La (0.22–0.71), Rb/Nb (0.35–1.04) ratios, was higher than the typical
N-MORB (2.7 for Ba/Nb, 52.5 for Ba/Th, 0.22 for Rb/La, 0.24 for Rb/Nb; [40]). The plot
of Rb/Nb vs. Ba/Nb (Figure 6a) shows that the Rb/Nb ratio is positively correlated with
the Ba/Nb ratio (correlation coefficient is 0.62), except for the Rb-enriched MORBs. In the
plot of Rb/La vs. Ba/Th (Figure 6b), Rb/La ratio of our samples is significantly positively
correlated with Ba/Th ratio (correlation coefficient is 0.80).
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typical N-MORB, the composition of which is from [40]. Black cross represents global subducting
sediment (GLOSS), the composition of which is from [41].
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Combined with the concentration of fluid-mobile elements, such as U and Pb, in
the samples, subduction-related fluid process is a potential explanation for the abnormal
trace elements ratios. In addition, continental crust material [46], recycled sediments [41],
subduction modified mantle [47–50] have high Ba/Nb, Ba/Th, Rb/La, and Rb/Nb ratios,
and higher U and Pb contents. Their injection into the mantle can also be the cause of this
compositional anomaly. In addition to the above reasons, Le Roux et al. [51] proposed that
the direct supply of mantle plume material was one of the reasons for the changes in some
trace element ratios in MORBs.

5.2. The origin of Trace Element Anomalies
5.2.1. Continental Crust and SCLM

The continental crust materials have similar trace element characteristics as the sam-
ples in this study, such as low Ce/Pb and Nb/U ratios, high U and Pb contents and Ba/Nb,
Ba/Th, Rb/La, and Rb/Nb ratios [46]. Furthermore, delaminated lower continental crust
(LCC) has been found in the mantle beneath East Pacific Rise (EPR), Southeast Indian ridge
(SEIR), and mid-Atlantic ridge (MAR) [10,12,15,16,52]. Therefore, the continental crust
material is a possible origin of the trace element anomalies. In addition, the Atlantic Ocean
was formed by the breakup of the west Gondwana [25]; therefore, the addition of SCLM
should also be considered.

The addition of continental crust can significantly reduce the Nb/U ratio in the
upper mantle, thus obtaining the trace element compositions consistent with the observed
phenomenon. However, the εNd value of LCC is significantly lower than the MORB
source [17]. Therefore, the addition of continental crust also changes the Nd isotopic
composition of the MORB source, and thus MORB presents a mixed curve in the Ce/Pb-
εNd plot. Figure 7 shows that the Nb/U ratio of MORBs in this study changes dramatically
(from 45.7 to 13.3) within a limited range of εNd values. This indicates that there is no
identifiable continental crust material in the upper mantle beneath SMAR 18–21◦S.
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Hanan et al. [16] proposed that the occurrence of LCC material in a MORB source
would decouple the Nd-Hf isotopes of MORBs, and make MORB plots point to the position
above the Nd-Hf mantle array in the εNd-εHf plot. As shown in Figure 4, the samples
have good correlation and all fall under the Nd-Hf mantle array. This is consistent with our
conclusion that there is no identifiable continental crust material in the upper mantle of the
study area.

For the reason of up to 3 Ga of radiogenic ingrowth following multiple episodes of
mantle metasomatism, underplating, and melt extraction events, subcontinental lithosphere
is isotopically heterogeneous [51]. However, SCLM beneath south Africa shows a strong
subduction zone geochemical signature [53–55], with a relative depletion in Nb. Therefore,
SCLM seems to be another possible origin of the trace element anomalies. Garnet and
clinopyroxene are the main major host minerals for Nd and Hf in the mantle with concentra-
tions mostly in the range of 0.01–15 (up to ~50) ppm Nd and 0.001–2 (up to ~8) ppm Hf in
clinopyroxene, and 0.01–5 (up to ~20) ppm Nd and 0.02–1.5 (up to ~2.5) ppm Hf in garnet.
Hf isotopic compositions of garnet and clinopyroxene are generally more radiogenic for
their enrichment in Lu [43]. Therefore, the injection of SCLM will lead to a higher εHf
value at a given εNd value. Whole-rock Nd-Hf isotope data for low-temperature garnet-
peridotite xenoliths from Cretaceous South African kimberlites were plotted in Figure 4.
The result shows that SCLM was distant from the trend formed by the SMAR 18–21◦S
MORB samples; therefore, there was no clear influence of subcontinental lithospheric
mantle in the mantle beneath SMAR 18–21◦S. In addition, Hanan et al. [16] ruled out the
influence of SCLM since the amount of SCLM required to cause a clear abnormal ratio of
trace elements was significantly large.

5.2.2. Direct Supply of Mantle Plume Material

Ridge-plume interaction is an important cause of mantle heterogeneity. If the mantle
plume exists near the mid-ocean ridge, the mantle plume material will affect the mantle
beneath the mid-ocean ridge, increasing the degree of isotopic heterogeneity in the MORBs
source that was relatively uniform [11,56,57]. The study area is located in the southwest
extension direction of the St. Helena seamount chain, only about 750 km away from
the seamount chain. Previous studies [26,28–30,32,33] proved that the mantle source
was affected by the St. Helena plume through Sr-Nd-Pb isotope data and geophysical
evidence. The purple area in Figure 4 represents the isotopic composition region of the
basalt produced by the St. Helena plume. Figure 4 shows that the Nd and Hf isotopes of
the MORB samples are well correlated, and point to the St. Helena plume area, which is
consistent with previous conclusions.

Le Roux et al. [51] proposed that some anomalies of trace elements in MORBs were
caused by the direct supply of adjacent plume materials. If the anomalies of trace elements
in this study are caused by the direct supply of plume materials, the basalts produced by the
mantle plume should generally have low Ce/Pb and Nb/U ratios. However, Figure 7 shows
that only few St. Helena basalts have a low Nb/U ratio, while most have a constant Nb/U
ratio typical of oceanic basalts, with an average Nb/U ratio of 44, which is consistent with
previous studies [13,23,24]. The injection of plume materials cannot reduce the Nb/U ratio
of source mantle. Moreover, suppose that the direct supply of plume materials really is the
origin of the trace element anomalies, the abnormal trace element ratios should be related to
the isotopes. Namely, the more radioactive the isotopic composition of MORB is, the more
clear the abnormal ratio of the trace elements will be. However, the correlation between the
ratio of trace elements and isotopic composition is not clear (Figure 8). Therefore, the direct
supply of St. Helena material does not result in the abnormal trace element ratios.
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5.2.3. Recycled Sediments

Sediments can be subducted into the mantle and thus affect the geochemical char-
acteristics of the mantle [58,59]. The composition of subducted sediments is highly vari-
able [41,60], but in general, recycled sediments have identifiable trace element and isotope
characteristics. Therefore, recycled sediments are commonly used to explain the isotope
and trace element system in MORB [42,51,52,61,62].

The plot of the GLOSS in Figures 4, 5 and 6b is located in the extension direction of
the MORB sample array, and seems to indicate that it contributes to the source. However,
after quantitative modeling (Figure 5), it was found that at least 10–20% of the sediment in
the source was required to produce the observed trace element ratio anomalies. Even in
BABB, such as the Manus Basin, the proportion of sediment is only <5% [63]. Clearly, the
presence of this large proportion of sediments in the mantle beneath the mid-ocean ridge,
which is distant from the subduction zone, is unreasonable. Moreover, due to the high
ratio of 87Sr/86Sr in the sediments [41], this proportion of the sediments would cause the Sr
isotopic composition of the samples to deviate significantly from the MORB range. Previous
data [26,32,33] showed that the Sr isotopic composition (0.702398–0.702996, except for SA4A
in [33]) in SMAR 18–21◦S MORBs was not significantly higher than the normal MORB
range. Therefore, we ruled out the sediment as an option. In addition, the Sr/Nd ratio
of the sample (10.6–27.7, average 17.6) did not support the presence of recycled sediment
(~12, [41]) in the source.

5.2.4. Subduction

The subduction signals of MORB or OIB are often interpreted as the result of the
processes through which subduction directly affects the source mantle [21] or the existence
of subduction modified mantle [17,61,64] in the source, and the Ba/Nb ratio is one of the
most common indicators of subduction signals [65]. In our study, although the Ba/Nb
ratio of our samples did not reach the standard (Ba/Nb > 6) of the BABB filter proposed by
Yang et al. [21], it is still significantly higher than the typical N-MORB (Ba/Nb ~2.7; [40]).
Considering that the study area is affected by the St. Helena plume, the addition of plume
material will weaken the subduction signal in the study area. Therefore, we cannot rule
out the possibility that the mantle in the study area is affected by subduction only by the
fact that the Ba/Nb ratio is not sufficiently enough. In addition, Nb negative anomalies
are important indicators of subduction, which are commonly seen in rocks produced in
back-arc basins, island arcs, and other subduction-associated tectonic environments [47,63].

Furthermore, Ba/Th and Th/Nb ratios can be used to indicate the influence of sub-
duction fluid and melt, respectively [48,51,65]. Ba/Nb vs. Ba/Th, Ba/Nb vs. Th/Nb plots
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(Figure 9) show that the variation of Ba/Nb ratio in the samples was mainly controlled by
the variation of Ba/Th ratio. Moreover, Ba/Th vs. Th/Nb plot (Figure 10) shows that if the
study area is indeed affected by subduction, it should be mainly affected by the subduction
fluid. Most of the subduction fluids are released shallowly in the subduction zone [66];
therefore, we can rule out the direct effects of the subduction zone. The spatially and
temporally closest subduction zone which subducts/subducted toward the present SMAR
18–21◦S is the eastern Pacific subduction zone, but the subduction zone and SMAR 18–21◦S
were separated by the South American continent, even before the south Atlantic opened.
As the Atlantic opens, the distance becomes increasingly larger. For shallow subduction
fluids to be directly affected in this distance, it would require an unreasonably small sub-
ducted angle and an extremely long subducted distance. Therefore, the hypothesis that
the subduction of the eastern Pacific directly affects the source mantle is ruled out. The
ancient subduction zone associated with the Rheic Ocean was located on the northern
side of Africa and South America [67,68]. Similar to the eastern Pacific subduction zone,
subduction fluids are difficult to be affected in the study area due to the distance. Therefore,
only the process of subduction modified mantle transmitted to the study area through the
mantle convection can make sense.
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6. Conclusions

In this study, 16 basalt samples from 14 sites on the axis of SMAR 18–21◦S were
collected and analyzed for the composition of major element, trace element, and Nd-Hf
isotope. The results are shown as follows:

1. These samples belong to the low-K subalkaline basalt, which is classified into N-
MORB according to the (La/Sm)N ratio, and Nd-Hf isotope composition shows the
characteristics of depletion. However, compared with typical N-MORB samples, the
fluid-mobile elements, such as U, Pb, and Rb are enriched. Meanwhile, Ce/Pb and
Nb/U ratios are higher than the constant value, while Ba/Nb, Ba/Th, Rb/La, Rb/Nb,
and other trace element ratios are significantly higher than the typical N-MORB. In
addition, our samples all have negative anomalies of Nb.

2. Plot of εNd-εHf shows that the mantle beneath SMAR 18–21◦S is affected by the St.
Helena plume. However, the anomalies of trace element in the samples are not caused
by the direct supply of plume material. In addition, we exclude the possibility of
continental crust material, subcontinental lithospheric mantle, and recycled sediments.
Furthermore, we propose that the anomalies of trace element are related to subduction.

The influence of subduction on the samples is mainly caused by the subduction fluid.
Based on the geographical location, it seems unreasonable that the subduction directly
affects the mantle beneath SMAR 18–21◦S. It is more likely that the mantle modified
by the subduction fluid is transmitted to the mantle beneath SMAR 18–21◦S through
mantle convection.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jmse11020441/s1, Table S1: Whole rock major and trace elements
compositions; Table S12: Whole Rock Nd-Hf isotopic compositions; Table S3: The mixing calculations of
ratios of trace element between GLOSS and SMAR-61.
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