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Abstract: An analytical model of a current load’s interaction with a moored floating flexible struc-
ture based on the Timoshenko–Mindlin beam theory is developed under the assumption of small-
amplitude wave theory and the structural response. Theoretical solutions on the displacement of the
structure, reflection, and transmission coefficients are obtained by applying the matching technique
along with the orthogonal model coupling relation. The results of the transmission coefficient and
displacement amplitude are compared with the other calculations and experimental datasets avail-
able in the literature. The structural deflection and transmission coefficients are investigated via the
hydroelastic response for wave–current loads along with design parameters. The comparison results
showed that the present model result is supported by the numerical model’s results. This present
analysis can provide further information for marine engineers to design floating flexible platforms in
the marine environment.

Keywords: Timoshenko–Mindlin; hydroelastic; analytical solution; current speed; structural
displacement; transmission coefficient

1. Introduction

Offshore floating structures are subjected to varied environmental loading including
wind, waves, and currents. In the offshore region, waves never exist without an associated
current. The modelling of wave–current loads seems to be explicitly critical, with little
work available in the literature. Thomas and Klopman [1] addressed a full description of
the flow field that considers the interaction between the waves and the current is never
undertaken in the design of either coastal or offshore structures.

A numerical simulation method for calculating the dynamic properties of a floating
bridge under wave, current, and moving loads was addressed in [2]. Huang et al. [3] inves-
tigated the hydrodynamic properties of three-dimensional bodies of arbitrary geometry
subjected to the action of waves and weak currents in a channel based on the higher-order
boundary element method. Latheef et al. [4] studied the typical design problem of calculat-
ing the ultimate base shear and overturning moments for slender fixed structures with the
inclusion of the interaction between the currents and the wave field. An experimental study
of a submerged plate in the presence of a current used as a breakwater for coastal area
protection was performed in [5]. Chen and Basu [6] also proposed a model considering the
wave–current interactions in dynamic analyses of floating offshore wind turbines (FOWTs)
and investigated the interaction effects on the FOWT responses. The Reynolds-averaged
Navier–Stokes equations were adopted to simulate the hydrodynamic coefficients induced
by waves and currents for a stationary submerged circular cylinder in a two- dimensional
numerical wave-current tank [7].

A comparison between the numerical and experimental response for a generic floating
pontoon bridge structure for wave- and current-induced responses was performed in [8]. Lu
and Yeung [9] considered unsteady hydroelastic waves caused by the interaction between

J. Mar. Sci. Eng. 2023, 11, 437. https://doi.org/10.3390/jmse11020437 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11020437
https://doi.org/10.3390/jmse11020437
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0003-2028-9414
https://orcid.org/0000-0003-2357-1765
https://orcid.org/0000-0002-8570-4263
https://doi.org/10.3390/jmse11020437
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11020437?type=check_update&version=2


J. Mar. Sci. Eng. 2023, 11, 437 2 of 17

fixed concentrated-line loads and the underlying current and found that the flexural
gravity wave motion depended on the ratio of the current speed to phase or group speeds.
Qua et al. [10] simulated and analyzed the dynamic responses of a Spar-type FOWT under
the scenarios with a freak wave superimposed with a uniform current. Hydrodynamic
and aerodynamic forces are calculated using the medium/small-scaled flow field nesting
technology, which is brought into the structural dynamic equation for two-way iterative
decoupling solving. Finally, hydroelastic responses of the floating bodies under typhoon–
wave–current coupling effect and influencing mechanism are analyzed by a case study
in [11].

The effects of underlying uniform current on the nonlinear hydroelastic waves gen-
erated due to an infinite floating plate are studied analytically in [12]. Bhattacharjee and
Sahoo [13] used the dispersion relation to analyze detailed characteristics of the flexural
gravity waves due to a floating elastic plate in the presence of a following current or an
opposing current. Bispo et al. [14] studied a numerical and analytical model associated
with wave interactions with a moored, articulated, very large floating structure composed
of a set of hinged plates. A review of different models of very large floating structures
(VLFS) comparing their advantages and disadvantages according to the depth in which
their work was performed [15].

Floating structures have a considerable thickness, which generates rotary inertia and
shear deformation [16]. Mohapatra and Guedes Soares [17] developed a three-dimensional
general mathematical hydroelastic model dealing with the problem of wave interaction
with a floating and submerged flexible structure based on small-amplitude wave theory
and the linear structural response. Mohapatra and Guedes Soares [18] studied an analytical
method associated with surface gravity wave interaction with a horizontal flexible floating
and a submerged porous plate. A boundary integral equation method (BIEM) model for
the problem of surface wave interaction with a moored, finite, floating flexible plate was
performed in [19]. Mohapatra and Guedes Soares [20] also developed a hydroelastic model
for the problem of linear wave interaction with a submerged horizontal flexible porous
structure in finite water depth in three dimensions.

A 3D hydroelastic model subjected to linear wave interactions with horizontal flexible
floating and submerged porous structures was developed based on Green’s function
approach in water of finite and infinite depths [21]. Papathanasiou and Belibassakis [22]
studied three approaches for the interaction of water waves with large floating elastic
structures. The first model is based on the Euler–Bernoulli beam theory, the second is
based on the Rayleigh beam equation, and the third approach utilizes the Timoshenko
approximation. An analytical and numerical study of the hydroelastic behavior of the
plate considering the diffraction of incident surface water waves by a very large floating
structure of finite thickness and draft was performed [23]. Zilman and Miloh [24] considered
a circular buoyant elastic plate of homogeneous stiffness floating in shallow water while
the edge of the plate was free of shear forces and bending moments and the plate deflection
was excited by a monochromatic ambient surface wave.

A literature review of the research on the hydroelastic analysis of pontoon-type very
large floating structures (VLFS) and a brief introduction to VLFS was provided with the
basic assumptions, equations, and boundary conditions for hydroelastic analysis of VLFS
and the commonly used approaches for solving the problem in [25]. The effect of the
oblique wave angle on the performance of anti-motion and hydroelastic behavior of VLFS
was investigated numerically in the context of the direct time domain modal expansion
theory [26]. Yoon et al. [27] addressed the maximum bending moment and deflection in
plate structures and proposed a numerical procedure to analyze floating plate structures
with multiple hinge connections in regular waves. The numerical method was applied to
the hydrodynamic analysis of a two-dimensional very large floating platform and a plane
incident wave for three different cases: Infinite, finite, and shallow water depths using
BEM and the direct method [28].
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Karperaki and Belibassakis [29] developed a two-dimensional frequency domain
numerical method for VLFS hydroelasticity of inhomogeneous, elastic plates of varying
thicknesses and negligible draft. A numerical approach employing a combination of the
boundary element method and moving element method, which is named the BEM–MEM,
was proposed by [30] to analyze the hydroelastic responses of floating composite plates
subjected to moving loads. A numerical study on the motion and elastic response of a
floating structure to the hydrodynamic loads using FEM was performed [31]. A review of
fixed and floating offshore structures with sustainable design and management approaches
was conducted [32]. Shumin et al. [33] investigated the dynamic properties of the wave
and structure to determine the similitude parameters using a frequency response function
approach.

A numerical study on the effects of connector and module stiffness on the hydroelastic
response of a structure composed of flexible, interconnected modules was performed
in [34]. A beam model and a 3D solid model of the support structure were developed to
assess if the floating support platform structural elasticity has a substantial impact on the
dynamic response of the platform, and the inertial forces, hydrodynamic added mass forces,
hydrostatic, and mooring restoring forces were considered in the hydroelastic analysis
by [35]. Kang and Kim [36] developed a numerical tool for a barge-type floating elastic
body with various bending stiffnesses in the frequency domain.

The deformation of a moored floating flexible bar for different design parameters is
based on the Timoshenko–Mindlin beam theory in two dimensions using an analytical
approach studied in [37]. Some of the prominent works on the hydroelastic analysis of
floating structures based on Mindlin’s thick plate theory can be found in [38,39]. The
implementation of 3D experiments and assessment of the structural response of a floating
breakwater along with its wave attenuation effectiveness under the action of perpendicular
and oblique regular and irregular waves were investigated in [40]. An experimental
investigation was carried out to measure combined wave and current loads on horizontally
submerged square and rectangular cylinders [41]. A comparison of experimental data and
a numerical study of the dynamic response of a floating bridge under the combined action
of waves and currents was addressed in [42].

From the above studies, it is confirmed that, to date, there has been no mathematical
model associated with wave–current interaction with floating flexible structures based on
Timoshenko–Mindlin plate theory under the analytical approach and its analysis in the
literature.

Therefore, here, a mathematical model of a floating horizontal flexible structure con-
nected via mooring lines of finite dimensions in the presence of current speed based on the
Timoshenko–Mindlin beam theory is developed to analyze the effect of current speed and
mooring lines on the hydroelastic response of a floating flexible structure in the practical
problem for engineering interest.

The new contributions of the present hydroelastic model compared with [37] are
the mathematical formulation and analytical solutions in the presence of current speed,
the comparisons of the present analysis with the existing published numerical results,
other calculation results, and experimental datasets, and the free with the moored floating
structure for different current speeds. Furthermore, the effect of current speed along with
different design parameters on the moored floating flexible structure for the hydroelastic
response is investigated by analyzing structural displacements and transmission coefficients
in different cases.

2. Model Definition

The formulation of the hydroelastic model is based on the assumption of the small-
amplitude linearized water wave theory and structural response in two dimensions in
water of a finite depth. The floating beam is modelled as the Timoshenko–Mindlin beam
theory of finite length 2l with thickness d and occupies the region −l < x < l on the mean
free surface z = 0 over an impermeable sea bed z = h. It is considered that the floating
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beam is connected via mooring lines with stiffness k j for j = 1,2 at the edges of the structure
at x = l,−l (see Figure 1). Furthermore, it is also assumed that there is a uniform current
flowing with constant speed c = c· cos θ along the direction of wave propagation in the
positive direction of the x-axis with an angle of θ referred to as the following current.
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Figure 1. Moored floating flexible beam with constant current speed c.

Hence, the whole fluid domain is divided into three subregions designated as
x ∈ (−∞,−l), z ∈ (0, h) by R1, x ∈ (−l, l), z ∈ (0, h) by R2, and x ∈ (l, ∞), z ∈ (0, h) by R3.
It is assumed that the fluid is inviscid and incompressible, and the motion is irrotational.
Therefore, therefore the total velocity potential Ψj(x, z; t) for j = 1, 2, 3 associated with the
current speed c and the direction of wave propagation (along the positive direction of the
x-axis) can be expressed (as in [43]) as:

Ψj(x, z; t) = cx + Φj(x, z; t) for j = 1, 2, 3, (1)

where Φj(x, z; t) = Re
{

φj(x, z)e−iωt} with φj(x, z) is the partial velocity potential and Re
is the real part of the complex velocity potential. Furthermore, the displacement of the
floating flexible beam is assumed to be of the form η(x; t) = Re

{
η(x)e−iωt}. Hence, the

velocity potentials Φj(x, z; t) satisfy the 2D Laplace equation as

∇2
xzΦj = 0, in the fluid domain. (2)

The linear form of the free surface boundary condition in R1 and R3 in the presence of
the following current c at z = 0 is given by (as in [43])

g
∂Φj

∂z
=

(
∂

∂t
+ c

∂

∂x

)2
Φj, j = 1, 3, x ∈ (−∞,−l) ∪ (l, ∞), (3)

where g is the gravitational constant. It may be mentioned that if we set the current speed
to c = 0 in Equation (3), then the reduced free-surface condition is the same as in [37]
and [19] in the case of a floating elastic plate.

As the bottom is rigid, the bottom boundary condition yields

∂Φj

∂z
= 0 for j = 1, 3 on z = h. (4)
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The linearized kinematic boundary condition in the presence of the following current
c on the beam-covered surface is given by

∂η

∂t
+ c

∂η

∂x
=

∂Φj

∂z
for j = 2, on z = 0. (5)

The hydrodynamic pressure PH exerted on the floating beam at z = 0 under the
following current c is given by

PH(x, t) = −ρ

(
∂

∂t
+ c

∂

∂x

)
Φj + ρgη. (6)

Using Equations (5) and (6) in the governing equation of Timoshenko–Mindlin beam
theory under the effect of rotary and shear deformation, the beam-covered boundary
condition under the influence of the following current c is obtained as{

EI ∂4

∂x4 −
(

EIρb
µG + ρbd3

12

)
∂2

∂t2
∂2

∂x2 +
ρ2

bd3

12µG
∂4

∂t4 + ρbd ∂2

∂t2

}(
∂η
∂t + c ∂η

∂x

)
= −

(
1− EI

µGd
∂2

∂x2 +
ρbd2

12µG
∂2

∂t2

){
ρ
(

∂
∂t + c ∂

∂x

)2
Φ2 − ρg

(
∂η
∂t + c ∂η

∂x

)}
.

(7)

The beam-covered boundary condition (7) in R2 can be expressed in terms of Φ2 (refers
to the velocity potential in R2) by using Equation (5) as{

EI ∂4

∂x4 −
(

EIρb
µG + ρbd3

12

)
∂2

∂t2
∂2

∂x2 +
ρ2

bd3

12µG
∂4

∂t4 + ρbd ∂2

∂t2

+ρg
(

1− EI
µGd

∂2

∂x2 +
ρbd2

12µG
∂2

∂t2

)}
∂Φ2
∂z

= −
(

1− EI
µGd

∂2

∂x2 +
ρbd2

12µG
∂2

∂t2

){
ρ
(

∂
∂t + c ∂

∂x

)2
Φ2

}
,

(8)

where χ = (ρg − msω2) with ρb, µ, G = E/2(1 + µ), d, EI, and ρbd = ms are the den-
sity, transverse deformation, shear modulus, thickness, rigidity, and mass of the beam,
respectively.

As the floating flexible beam is connected with mooring lines to the bottom with
stiffness k j, j = 1, 2 and x = ±l yield

∂3φ2(x, z)
∂z3 = 0, x = ±l, z = 0, (9)

∂4φ2(x, z)
∂z3∂x

−
{

msω2(Ir + Sd)

EI

}
∂φ2(x, z)

∂x
= k j

∂φ2(x, z)
∂z

, x = ±l, z = 0. (10)

where Ir and Sd are the rotary inertia and shear deformation of the floating flexible beam.
The continuity of pressure and velocity at the vertical interface x = l,−l on 0 < z < h

is given by
φj = φj+1 at x = −l for j = 1 and x = l for j = 2, (11)

∂φj

∂x
=

∂φj+1

∂x
at x = −l for j = 1 and x = l for j = 2. (12)

Finally, the far-field condition at infinity is assumed to take the form

φ(x, z) =
{ (

I0eiµ0x + R0e−iµ0x) f0(z) as x → −∞,
T0eiµ0x f0(z) as x → ∞,

(13)

where I0 = incident wave amplitude, and R0 and T0 are the amplitudes of the waves associ-
ated with the reflected and transmitted waves, respectively. Furthermore,
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f0(z) = {cosh µ0(h− z)/cosh µ0h} with µ0 satisfies the gravity wave dispersion relation
(ω− cµn)

2 = gµ0tanhµ0h.

3. Method of Solution

The formulation of the hydroelastic model is based on the assumption of the small-
amplitude linearized theory. Using the Fourier expansion formulae and the method of the
separation of variables, the velocity potentials φ1, φ2, and φ3 satisfying Equation (2) and
boundary conditions (3, 4, 8) are expanded as:

φ1(x, z) =
−igIo

2(ω− cµ0)
f0(z)eiµ0(x+l) − ig

2(ω− cµn)

∞

∑
n=0,1

Rn fn(z)e−iµn(x+l), (14)

φ2(x, z) =
−ig

2(ω− cλn)

{
I I

∑
n=0,I

(Ane−iλnx + Bneiλnx)vn(z) +
∞

∑
n=1

(Aneλnx + Bne−λnx)vn(z)

}
, (15)

φ3(x, z) =
−ig

2(ω− cµn)

∞

∑
n=0,1

Tneiµn(x−l) fn(z), (16)

where

fn(z) =
cos µn(h− z)

cos µnh
, vn(z) =

cosh λn(h− z)
cosh λnh.

(17)

Furthermore, f0(z) and µ0 are the same as defined in Equation (13) with µn = iµn
satisfied with the following dispersion relations (as in [6,43])

(ω− cµn)
2 =

{
gµ0tanh(µ0h) for n = 0,
−gµn tan(µnh) for n = 1, 2, . . .

(18)

and fn(z) in R1 and R3 are orthogonally defined by:

〈 fm, fn〉 =


0 for m± n,

Cn =

{
(2µ0h + sinh2µ0h)/4µ0 cosh2 µ0h, n = 0
(2µnh + sin 2µnh)/4µn cos2 µnh, n = 1, 2, . . . ,

for m = n,
(19)

and λn satisfies the dispersion relation for n = 0 and n = 1, 2, . . . with λn = iλn as:

(αλ4
n − βλ2

n + γ)λntanhλnh− (κ1 + κ2λ2
n)(ω− cλn)

2 = 0, (20)

and vn(z) in R2 is orthogonally defined by

vORT = 〈vm, vn〉 =
{

0 for m± n,
Qn for m = n,

(21)

where

Qn =
[
{2λnh + sinh(2λnh)}Λ(λn)Υ(λn) + 4λ3

nΥ(λn)(2λ2
nγ− β)sinh2(λnh)

+4κ2λnΛ(λn) cosh2(λnh)
]/
{4λnΥ(λn)Λ(λn) cosh2(λnh)

}
〈vm, vn〉 =

h∫
0

vm(z) vn(z)dz + γ
Λ(λn)

{
v′′′m (z)v′n(z) + v′m(z)v

′′′
n (z)

}∣∣
z=0

− β
Λ(λn)

v′m(z)v′n(z)|z=0 +
κ2

Υ(λn)
vm(z)vn(z)|z=0

(22)

with α = EI, β =
{

msω2(Ir + Sd)− Sdρg
}

, γ =
{
−msω2 IrSdχ /EI

}
+ χ, κ1 = ρSd,

κ2 = ρ
{

1−
(
msw2 IrSd

)
/EI

}
, Υ(λn) = (αλ4

n− βλ2
n + γ), and Λ(λn) = (κ1 +κ2λ2

n)(ω− cλn)
2.
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It is worth mentioning that if we set the constant current speed c = 0 in Equation (18)
and in Equation (20), the reduced dispersion relation will be the same as in the case without
a current in [19] for water dispersion relation and in [37] for the beam-covered dispersion
relation without a current, respectively.

The procedure for the determination of unknown coefficients Rn, Tn, An, Bn associated
with Equations (14)–(16) is presented in Appendix A.

Once the unknown constants R0 and T0 are determined, the full solution is obtained in
terms of the potential functions with the reflection coefficient Cr and transmission coefficient
Ct obtained by using the formulae Cr = |R0| and Ct = |T0|, respectively.

Determination of Displacement and Shear Force

The vertical displacement of the floating flexible structure in the presence of the current
speed c can be obtained from the following condition:(

∂

∂t
+ c

∂

∂x

)
η(x, t) =

∂Φ2

∂z.
(23)

The shear force acting on the horizontal flexible floating structure can be computed by
the formula:

S f =
∣∣∣[∂xzzz − [{msω2(Ir + Sd)}/EI]φ2x(x, z)

]
− kφ2z(x, z)

∣∣∣ at x = ±l, z = 0 (24)

To understand the effect of the current speed along with different design parameters
associated with the model developed, several numerical results on the displacements and
transmission coefficients and the comparison with/without the current speed are analyzed.

4. Numerical Results and Discussion

In the numerical computations, all simulations are executed by considering the values
as mentioned in Table 1, unless stated otherwise. MATLAB R2016b, 64-bit (win64) is used
to perform calculations in a desktop machine with Intel® core i7-4790 CPU with a 3.60 GHz
processor and 8 GB of RAM, 3601 MHz, 4 Core(s), and 8 Logical Processor(s) based on the
analytical solution. Each case took approximately 10–15 min to finish.

Table 1. Model properties.

Model Parameters Ranges of Values Units

Non-dimensional water depth (h/l) 0.5 [-]
Non-dimensional wavenumber (µ0h) 0–14 [-]

Non-dimensional thickness (d/l) 0.03 [-]
Current speed (c) 0.02–1.3 [m/s]

Mooring stiffness (k) 0.25 [N/m]
Water density (ρ) 1025 [kgm−3]

Gravitational constant (g) 9.8 [m/s]
Elastic modulus (E) 10–50 [GPa]

It may be noted that to avoid repetition, the convergence analysis of the displacements
with increasing values of N is deferred here (see [37]). However, the number of terms in the
series solution to present the numerical results are taken as N ≥ 43 for the computational
accuracy of the numerical simulations. In the context of the present numerical results, the
new contribution is the presentation of the numerical analysis with the effect of the current
speed and comparison between them in terms of with and without the current speed, a
moored and freely floating structure with current speed, and finally, an individual analysis
for different design parameters.
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4.1. Comparison Results

In Figure 2, the comparison between the present results of the transmission coefficient
Ct and the numerical BIEM results (see [28]) versus the non-dimensional wavelength
λ/l with elastic modulus E = 62 GPa and water depth h = 50 m with current speed
c = 0.02 m/s are presented. A high value of elastic modulus and a very small value of
current speed are chosen for a similar trend between the results from the model [28] and
the present.
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The comparison indicates that the present model solution is supported by the numeri-
cal BIEM model simulation. However, the differences can be explained by the formulation
under the assumption of Timoshenko–Mindlin beam theory of the present model with cur-
rent speed c and thin plate theory in [28]. Furthermore, the effect of the elastic modulus in
the present model leads to higher rigidity that results in lower transmission. Furthermore,
in Figure 2, the transmission coefficient from the BIEM model is 1 m, while the present
model is 0.97 m, which is 3% larger.

Figure 3 shows the comparison between the present results against other calculation
results [44] and experimental datasets [45] available in the literature versus the positive di-
rection of l(m) for the elastic modulus E = 14 GPa and mooring stiffness k = 100.02 N/m.
A certain value of elastic modulus and a very small value of mooring stiffness, with the
range of current speed mentioned in Table 1, are chosen for a similar trend between the
results from the model [44] and experimental datasets [45] with the present results. It is
observed that the present result of the displacement amplitude is supported by the other
calculations and experimental datasets available in the literature.

However, in Figure 3, the discrepancies between the present results and models
from [44,45] may be clarified by the values of the mooring stiffness of the present results
and the free-floating structure in the model [44] with the values of the elastic modulus
in MPa (unit). The effect of mooring stiffness in the case of the present model leads to
lower displacement than that of the previous model [44]. Therefore, it is suspected that
the model presented in [44] produces higher displacement that the present model cannot
reproduce. In addition, in Figure 3, the displacement amplitude from the previous [44]
model is approximately 0.24 m, while the present model is 0.18 m, which is 6% larger.
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Figure 3. Comparison between the present and other calculations [44] and experimental datasets [45]
of structural displacement amplitude.

Figure 4 shows the comparison of displacement between cases without and with
current versus structural length l(m) with k = 109 N/m. It is seen that displacement
without the current speed becomes lower than that of displacements with the current
speed. This is due to the current providing hydrodynamic forces, which results in a higher
displacement with a certain value of mooring stiffness and elastic modulus of the structure.
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Figure 5 compares the displacements of the moored (with k = 109 N/m) and freely
floating structure versus the structural length l(m) for different current speeds as is men-
tioned in the legend. From Figure 4, for different values of current speed c, it can be easily
seen that the displacements of the freely floating structure are higher than that of the
moored one. This is the result of the mooring lines connected to the floating structure that
lead the structure in place with lower deflection.
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4.2. Hydroelastic Response Analysis via Displacements of Floating Structure

Figure 6 presents the displacements of floating flexible structures for different current
speeds c versus a non-dimensional structural length l(m) with the same parametric values as
mentioned in Table 1. It is observed that the displacement of the flexible structure becomes
higher as the current speed increases. A larger current provided larger hydrodynamic
forces, which results in a higher displacement with a certain value of mooring stiffness and
elastic modulus of the structure.
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Figure 7 shows the structural displacements for different values of the elastic mod-
ulus E versus the structural length l(m) with other parametric values being the same as
mentioned in Table 1. With the increase in the elastic modulus, the displacement decreases,
which indicates that increasing the elastic modulus can effectively prevent the deformation
of the floating structure as the structural rigidity becomes higher.
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Figure 7. Displacements for different elastic moduli E with current speed c = 1.0 m/s.

Figure 8 simulates the effect of displacements for different mooring stiffness values k
versus structural length l(m) with the current speed c = 1.0 m/s and elastic modulus
E = 15 GPa. It can be easily seen that by increasing the mooring stiffness, the deforma-
tion of the floating structure decreases, which suggests that higher stiffness prevents the
deformation that leads to more stability in the structure.
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In the next subsection, only the transmission coefficient Ct is discussed in the presence
of the current speed along with different physical parameters associated with the referred
model because the reflection coefficient Cr is of the opposite trend to that of Ct. Therefore,
the numerical computation Cr is deferred.

4.3. Effect of Current Speed on Transmission Coefficient

In Figure 9, the effect of different current speeds c on the transmission coefficients
Ct versus the non-dimensional wavenumber with the same parameter values mentioned
in Table 1 is plotted. It is observed that as the current speed c increases, the transmission
coefficients increase for particular values of the mooring stiffness and elastic modulus of
the structure. This is because, as the current speed becomes higher, the deflection increases,
which leads to more wave energy passing below the floating structure.
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Figure 9. Effect of different current speeds c on the transmission coefficients.

Figure 10 presents the variations of Ct for different non-dimensional water depths h/l
versus non-dimensional wavenumbers µ0h with a current speed c = 1.0 m/s and mooring
stiffness k = 109 N/m. As can be seen, the values of Ct increase with an increase in the
values of h/l because more wave energy passing below the floating structure leads to more
transmission and less reflection in the upstream region. It is also observed that the number
of resonating patterns decreases for deeper water.

Figure 11 presents the variations of Ct for different mooring stiffnesses k versus non-
dimensional wavenumbers µ0h with a current speed c = 1.0 m/s. It can be easily seen that
with an increase in the values of k, the values of Ct decrease slightly for lower values of µ0h,
which suggests that higher stiffness prevents the wave transmission that leads to lower
transmission coefficients.
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Figure 11. Transmission coefficients Ct for different k with current speed c = 1.0 m/s.

In Figure 12, the transmission coefficients Ct for different elastic moduli E versus µ0h
with a certain value of mooring stiffness k = 109 N/m are plotted. In this case, the variation
in Ct is observed for smaller values of the non-dimensional wavenumber primarily due to
an increase in rigidity of the floating structure with mooring stiffness and current speed
c = 1.0 m/s that leads to higher reflection in the upstream region.
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It may be mentioned that, in general, as seen in Figures 9–12, the resonating patterns
in Ct occurred because of a change in phase due to the interaction of incident and reflected
waves at the structural edges under the current speed with mooring lines. However, the
number of resonating patterns was reduced as the non-dimensional wavenumber increased.

5. Conclusions

In this paper, a new contribution complementing previous research [37] addresses
the influence of current speed on the hydroelastic response of floating flexible structures
based on the Timoshenko–Mindlin beam theory in water of a finite depth. The obtained
analytical result is compared with the existing published numerical results from BIEM, and
the comparison between free and moored floating structures for different current speeds is
also performed using the present solution. Further, the effect of the current speed along
with the mooring lines’ stiffness and different design parameters is analyzed via structural
displacements and transmission coefficients. From the study, it has been observed that:

1. The present result is supported by the existing numerical results published, other
calculation results, and experimental datasets available in the literature, and the com-
parison between the moored and free-edge floating shows that the moored structure
provides greater stability than that of the freely floating structure as it deflects more
than that of the free one.

2. The structural displacements increase for higher values of current speeds, which is
due to the higher hydrodynamic loads on the structure in the upstream region.

3. As the current speed increases, the transmission coefficients increase because the larger
current provides larger hydrodynamic forces, which results in higher displacements
that lead to more wave energy passing below the structure. Furthermore, the number
of resonating patterns decreases as the wavenumber increases, which is expected as
the wave reflection decreases in the upstream region.

4. The analysis of the structural displacements and transmission coefficients for different
current speeds suggested that the floating flexible structure became more stable for
lower values of current speed and higher mooring stiffness.

5. Therefore, the present study indicated that the mathematical model will be helpful to
develop a three-dimensional analytical model by considering the opposite current to
analyse the hydroelastic response and sensitivity analysis of floating flexible structures
based on the Timoshenko–Mindlin beam theory.
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Abbreviations

BIEM Boundary Integral Equation Method
CFD Computational Fluid Dynamics
FAST Fourier Amplitude Sensitivity Test
FEM-BEM Finite Element Method-Boundary Element Method
FOWT Floating Offshore Wind Turbine
HDMR High-Dimensional Model Representation
MEFEM Matched Eigenfunction Expansion Method
VLFS Very Large Floating Structure
Ct Transmission Coefficient
Cr Reflection Coefficient
2D Two-Dimensions
3D Three-Dimensions

Appendix A. Equation System for Determining the Unknowns

To determine the unknown coefficients Rn, Tn, An, Bn associated with the velocity
potentials in Equations (14)–(16), the matching technique along with the mode-coupling
relation (22) is applied to the velocity potentials φj(x, z).

Using the continuity of pressure (11) and velocity (12) along with the moored edge
conditions (9–10) at x = −l and relation (22) with the velocity potentials (14–15), one can
obtain:

R0 I1 + Rn Imn

+
N
∑

n=0,I,I I,1
(Ane−iλn l + Bneiλn l)×

{(
γλ2

m − β
) Θmn

Λ(λn)
+ κ2

Υ(λn)
− δmnvORT

}
= −I0 I1

(A1)

R0iµ0 I1 + Rnµn Imn +
N
∑

n=0,I,I I,1
iλn(−Ane−iλn l + Bneiλn l)

×
[(

−γ
Λ(λn)

){(
k jλntanhλnh +

{msω2(Ir+Sd)}
EI

)
λntanhλnh + λ2

mΘmn

}
− βΘmn

Λ(λn)
+ κ2

Υ(λn)
− δmnvORT

]
= iµ0 I0 I1

(A2)

Again, using the continuity of pressure (11) and velocity (12) along with the moored
edge conditions (9–10) at x = l and the relation (22) with the velocity potentials (15–16),
one can obtain:
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Tn I4 +
N

∑
n=0,I,I I,1

(Aneiλn l + Bne−iλn l)×
{(

λ2
mγ− β

) Θmn

Λ(λn)
+

κ2

Υ(λn)
− δmnvORT

}
= −T0 I3, (A3)

−iµ0T0 I3 + µnTn I′mn =
N
∑

n=0,I,I I,1
iλn(−Ane−iλn l + Bneiλn l)

×
[
−
(

γ
Λ(λn)

){(
k jλntanhλnh +

{msω2(Ir+Sd)}
EI

)
λntanhλnh + λ2

mΘmn

}
+ βΘmn

Λ(λn)
+ κ2

Υ(λn)
+ δmnvORT

] (A4)

where Θmn = (λnλm)(tanhλnhtanhλmh), and I1 and Imn are the integral values of
(cosh µ0h cosh λmh) and (cos µmh cos λnh) over the depth 0 to h, respectively. I′mn is ob-
tained by substituting the sine hyperbolic function with the sine trigonometric function.
Furthermore, I3 I4 are also the integral values of eigenfunction (multiplication of water
region and structure covered) over the depth 0 to h. In addition, δmn is the Kronecker delta.

The infinite series in Equations (A1)–(A4) is truncated up to a finite number of N-terms
to obtain the unknowns in the velocity potential (14–16) to solve the system of equations
numerically.
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