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Abstract: The application of internal wave recognition to the buoy system is of great significance to
enhance the understanding of the ocean internal wave phenomenon and provide more accurate data
and information support. This article proposes an automatic internal wave recognition algorithm
based on convolutional neural networks (CNN), which is used in the tight-profile intelligent buoy
system. The sea profile temperature data were collected using the Bailong buoy system in the
Andaman Sea in 2018. The CNN network structure is applied to feature compression of ocean
temperature profile data, reducing the input feature amount of the feature recognition network,
thereby reducing the overall algorithm parameters and computational complexity. By adjusting the
number of convolution kernels and the length of convolution steps, the original data features in the
time domain and the space domain are compressed, respectively. The experimental results show
that the identification accuracy and robustness of this method are clearly superior to those of other
methods. Additionally, the parameter number and calculation amount of this algorithm are very tiny,
which greatly improves the possibility of its deployment in the buoy system.

Keywords: internal wave recognition; buoy system; convolutional neural networks; model
optimization; feature extraction

1. Introduction

Internal waves are an ocean phenomenon with short periods and large amplitudes
that can usually reach tens to hundreds of meters [1]. Internal waves have been observed
in many sea areas [2–8]. Internal waves usually occur in the deep ocean and can change the
thermohaline structure of seawater by affecting the vertical mixing of seawater, which is
an important link in the transfer of large-scale and mesoscale motion energy [9,10]. The
impact of internal waves on marine ecosystems is also important. One important impact
is that on the supply of nutrients in the upper ocean [11], which is of great significance
for ocean productivity and the construction of food chains. In addition, internal waves
can also affect the suspension and reaccumulation of seabed sediments, as well as the
distribution and transformation of biological and chemical substances in the seabed [12].
Internal waves also affect the species composition, community structure, and productivity
of some marine ecosystems. Internal waves are also closely related to ocean utilization and
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maritime activities. Internal waves can affect the navigation of underwater vehicles and the
operation of offshore drilling platforms [13], and they may also affect the dynamic response
of offshore platforms. Therefore, understanding the characteristics and distribution of
internal waves and studying their impact on the ocean and the environment are of great
significance for understanding the ocean, protecting the environment, and improving
disaster prevention and reduction.

Tides are considered the most common driving force for the generation of internal
waves in the ocean. However, there are also several other mechanisms that can promote
the generation of internal waves. Among them, the mechanism by which internal waves
are generated through the interaction of strong currents with underwater sandbars is well
known for producing lee waves [14]. Furthermore, atmospheric disturbances, including
wind fields and pressure fields, are important factors contributing to the generation of
internal waves in the ocean. Previous studies have found that even a slow-moving pressure
field can generate internal waves resembling a moving container, but on a much larger
scale [15]. There are also studies on the internal waves induced by wind forces. Through
these studies, it has been demonstrated that wind speed divergence and convergence, as
well as spatiotemporal variations in wind fields, can trigger baroclinic instability [15–17].
Internal waves can be directly produced by eddies or indirectly through various phenomena
associated with eddies, including drained energy, eddy–topography interaction, breaking
of eddies, etc. [14]. Fu and Holt were the first to report the coexistence of internal waves and
mesoscale vortices observed in SAR (Synthetic Aperture Radar) imagery, but the authors
did not directly link the internal waves with the vortices [18]. Subsequently, this type of
wave was observed in SAR imagery and pointed out by other researchers [19,20]. The
Andaman Sea is located in the northeastern part of the Indian Ocean, between the Andaman
Islands, the Malay Peninsula, the Nicobar Islands, and the island of Sumatra [21]. Tides are
predominantly dominated by semi-diurnal tides [22]. The topography and water column
structure of the Andaman Sea provide the basic conditions for the generation of internal
solitary waves [23,24], making it a natural experimental field for studying internal solitary
waves. In addition, the prevailing monsoon and frequent eddies in the Andaman Sea are
also important factors contributing to the generation of internal waves.

At present, internal wave recognition methods based on satellite remote sensing
images [25–29] and ocean profile data are commonly used [30–32]. The satellite remote
sensing image method can be used to recognize internal waves by observing irregular light
and dark fringes in images. With the rapid development of artificial intelligence, some
scholars have carried out research on automatic internal wave recognition algorithms based
on satellite remote sensing images. Celona S. et al. [27] used X-band radar to collect remote
sensing images and a machine learning algorithm of a support vector machine (SVM) model
to classify whether the images contained internal solitary waves or tidal internal waves,
realizing the automatic detection and classification of internal waves. Bao S. et al. [28] used
the target detection method to realize the internal wave automatic recognition method
based on SAR remote sensing images. However, the observation range of satellite remote
sensing images is usually large, and the satellite orbit is constantly changing, so it is
impossible to observe specific areas for a long time. In addition, the observation of satellite
remote sensing images is affected by natural factors such as weather and clouds [29], which
will also affect the identification and observation of internal waves. and the characteristics
of internal waves are easily confused with other features in remote sensing images (vortex,
ship wake, wind, waves, etc.) [28].

In recent years, some scholars have performed related research on internal wave recog-
nition based on ocean profile data. Zhang B. et al. [30], using the physical process of internal
waves driving water particles to fluctuate up and down, proposed a method for calculating
the amplitude of internal waves. The feasibility of this method was verified using data
collected via a temperature chain installed on a moored buoy. However, this algorithm
cannot automatically locate the position of internal waves and cannot be directly applied to
automatically identify internal waves in the moored buoy system. Suanda S. H. et al. [31]
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used a buoy equipped with a thermistor to collect offshore ocean temperature profile data
for a month, and the collected temperature data were filtered via differential filtering. Then,
the filtered data were compared with threshold values, and values greater than the standard
threshold value were judged to be internal waves. Liu B. et al. [32] proposed a method
of measuring internal waves based on a mobile temperature chain real-time monitoring
system that was independently designed to perform the mobile real-time monitoring of
internal waves, and the method was tested on a monitoring ship. However, through experi-
mental verification, this study found that the recognition effect of the threshold method
was not excellent: the recall was 83.33%, the precision was 89.74%, and the delay was
5.2444 min. Deploying the internal wave recognition algorithm to the ocean data buoy
system can allow researchers to improve the efficiency of data processing and analysis,
reduce the cost of data transmission and processing, improve the real-time performance of
observation data, and flexibly respond to different observation situations. However, none
of the above methods [30–32] can meet the needs of accurate and automatic identification
of internal waves in ocean data buoy systems.

In recent years, the application of CNN in the field of ocean engineering has gained
widespread use. Their application has revolutionized the way we tackle various challenges
and tasks. With their ability to analyze large amounts of data and extract meaningful
features [33,34], CNNs have been extensively applied in ocean engineering, including
ocean data analysis, ocean environmental monitoring, marine robotics, and autonomous
systems [35–42]. Him et al. [35] show that a statistical forecast model employing a CNN
approach produces skilled ENSO forecasts for lead times of up to one and a half years.
Jörges et al. [36] developed a novel two-dimensional mixed-data deep CNN for spatial
SWH prediction in the nearshore area of Norderney, Germany. Chen Y. et al. [37] propose
a meta-self-attention multi-scale convolution neural network (MSAMS–CNN) for the ac-
tuator fault diagnosis of AUVs. Jing Y. et al. [38] apply a CNN to construct the mapping
relationship between wind data and wave data, which takes an hourglass configuration.
Zhou Z. et al. [39] proposed a framework for ship speed extraction based on deep learning,
taking into consideration the application of ship detection and tracking technology in hazy
environments. Lu et al. [40] use the CNN-LSTM approach and utilize spatiotemporal
information from the CYGNSS observations to establish an innovative model for ocean
wind speed inversion.

In this paper, an automatic internal wave recognition algorithm based on CNN is
proposed. This algorithm can be deployed directly on the buoy systems. By processing and
analyzing the ocean profile temperature data collected using the buoy, the internal wave
sign is extracted, and internal wave recognition is carried out by combining the neural
network. The algorithm has the characteristics of real-time performance, high reliability,
and automation and can meet the needs of internal wave recognition in intelligent buoys.
In addition, considering the high energy consumption requirement of the buoy system, the
algorithm can improve the feature extraction efficiency, reduce the number of parameters
and calculation amount of the algorithm, and reduce the energy consumption of the buoy
system by selecting a suitable number of convolution kernels and convolution interval.

2. Materials and Methods
2.1. Methods

In this paper, an internal wave recognition algorithm suitable for tight buoys is de-
signed based on a neural network. The neural network algorithm used in the algorithm
consists of two modules: a feature extraction module and a feature classification module.
The algorithm first uses 1D-CNN [43,44] to extract features from input data and then uses
a fully connected neural network to classify features.

2.1.1. Feature Extraction Module

CNNs can be divided into 1D-CNNs, 2D-CNNs, and 3D-CNNs according to input
data types, and CNNs can extract more effective information from much more data [45].
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The network structure is shown in Figure 1. The original data are a temperature sequence
with 14 layers of lengths of 30, which contains 420 feature quantities. After the feature
extraction network consisting of 1D-CNN, the data are transformed into a feature sequence
with 5 layers of lengths of 8, which contains 40 feature quantities. Feature extraction can be
achieved by enlarging the sampling step of the convolution operation and reducing the
number of convolution kernels.
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The correlation between adjacent moments of the ocean temperature profile data is
strong, so appropriately increasing the sampling stride of the convolution operation will
not affect the algorithm. The convolution kernel calculation formula for the ij-th element is
shown in Formula (1).

ConvOutputij(n) = ∑
length(wij)

m=1 wij(m)× aj(m + n× l) n = 0, 1, 2 . . .
length

(
aj
)

l
(1)

where “a” refers to the original data, “ConvOutput” represents the convolution output, “w”
is used to represent the convolution kernel, “n” is used to indicate the number of bits that
are utilized in the convolution output, “l” refers to the sampling step that is used during
the convolution operation, and “length” represents the length calculation.

From Formula (1), the relationship between the input feature number “k”, the output
feature number “n”, and the sampling step “l” of the convolution operation can be obtained
as follows (As shown in Formula 2 and Figure 2.):

n =
k
l

(2)

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 19 
 

 

2.1.1. Feature Extraction Module 
CNNs can be divided into 1D-CNNs, 2D-CNNs, and 3D-CNNs according to input 

data types, and CNNs can extract more effective information from much more data [45]. 
The network structure is shown in Figure 1. The original data are a temperature sequence 
with 14 layers of lengths of 30, which contains 420 feature quantities. After the feature 
extraction network consisting of 1D-CNN, the data are transformed into a feature se-
quence with 5 layers of lengths of 8, which contains 40 feature quantities. Feature extrac-
tion can be achieved by enlarging the sampling step of the convolution operation and 
reducing the number of convolution kernels. 

 
Figure 1. Internal wave recognition network structure diagram. 

The correlation between adjacent moments of the ocean temperature profile data is 
strong, so appropriately increasing the sampling stride of the convolution operation will 
not affect the algorithm. The convolution kernel calculation formula for the ij-th element 
is shown in Formula (1). 𝐶𝑜𝑛𝑣𝑂𝑢𝑡𝑝𝑢𝑡௜௝(𝑛) = ∑ 𝑤௜௝(𝑚) ൈ 𝑎௝(𝑚 ൅ 𝑛 ൈ 𝑙)௟௘௡௚௧௛൫௪೔ೕ൯௠ୀଵ         𝑛 = 0,1,2 … ௟௘௡௚௧௛(௔ೕ)௟   (1) 

where “𝑎” refers to the original data, “𝐶𝑜𝑛𝑣𝑂𝑢𝑡𝑝𝑢𝑡” represents the convolution output, 
“𝑤” is used to represent the convolution kernel, “𝑛” is used to indicate the number of bits 
that are utilized in the convolution output, “𝑙” refers to the sampling step that is used 
during the convolution operation, and “𝑙𝑒𝑛𝑔𝑡ℎ” represents the length calculation. 

From Formula (1), the relationship between the input feature number “𝑘”, the output 
feature number “𝑛”, and the sampling step “𝑙” of the convolution operation can be ob-
tained as follows (As shown in Formula 2 and Figure 2.): 𝑛 = ௞௟   (2)

 
Figure 2. Convolution schematic. Figure 2. Convolution schematic.



J. Mar. Sci. Eng. 2023, 11, 2110 5 of 19

This algorithm identifies internal waves through the temperature data of ocean profiles
with multiple depth layers, and the temperature variation trend of adjacent depth layers
is similar when internal waves arrive. To solve this problem, this method improves the
efficiency of spatial features by designing a suitable number of convolution kernels. The
corresponding relationship between ConvOutput and the original data “a” can be obtained
from Formula (1), while the output of the feature extraction network is used to calculate
the mean value of the convolutional output, as shown in Formula (3).

outputFE =



1
N ∑N

i=1 ConvOutputi1
1
N ∑N

i=1 ConvOutputi2
1
N ∑N

i=1 ConvOutputi3
...

1
N ∑N

i=1 ConvOutputiM

 (3)

where “outputFE” denotes the output of the feature extraction network, “N” refers to the
number of layers in the raw data, and “M” represents the number of groups of convolutional
kernels.

Formula (3) shows that the spatial dimension of the feature extraction output is
related to the number of convolution kernel groups and has nothing to do with the spatial
dimension of the original data. Therefore, this method improves the effectiveness of spatial
features by testing different numbers of convolution kernel groups.

2.1.2. Feature Classification Module

The feature recognition network of this algorithm is composed of two layers of a fully
connected neural network, which does not have the feature extraction capability itself but
only performs a nonlinear combination of features [46]. After the output layer, a softmax
layer is added to calculate the probability of a category belonging. The softmax expression
used in this algorithm is shown in Formula (4).

output =

[
ex1

ex1+ex2
ex2

ex1+ex2

]
(4)

In the formula, output represents the output of the neural network, and x1 and x2
represent the two nodes of the output layer. The output of the classification network is a
1 × 2 matrix, where output(0) and output(1) are the probabilities of identifying no and yes
internal waves, respectively.

Finally, the recognition results are shown in Formula (5).

ypre =

{
1 output(1) ≥ P
0 else

(5)

In the formula, ypre represents the prediction result, and P represents the judgment
probability.

2.2. Materials
2.2.1. Collect Data

The Bailong buoy [47,48] was independently integrated and developed by the First
Institute of Oceanography of the Ministry of Natural Resources. The buoy device consists of
a buoy body, an anchor system, a power supply unit, a meteorological sensor, a hydrological
sensor, and data acquisition control and communication units, as shown in Figure 3A.
Through comparison and testing with the ATLAS and TFLEX buoys of the United States,
the results show that all the data for the Bailong buoy have excellent performance [49].
The temperature profile data of the Bailong buoy, placed at 9.6◦ N and 95.6◦ E in the
Andaman Sea in the Indian Ocean on 14 December 2018, were used in this experiment. It
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was continuously observed for 11 months and 17 days and recovered on 10 November 2019
(as shown in Figure 3B,C).
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Figure 3. (A) Bailong buoy structure diagram; (B) the Bailong buoy located at 9.6o N and 95.6o E
longitude in the Andaman Sea, Indian Ocean (indicated by the star in the image); and (C) the
observation map of the Bailong buoy from 24 December 2018 to 10 November 2019.

A total of 18 layers of self-contained RBR sensors are installed on the buoy anchorage
(the layout location is shown in Table 1). The sensor types include T, CT, and CTD. The
sensor sampling frequency is set to 1 min, and the layout depth is 0−600 m, among which
0−200 m sensors are dense and 200–600 m sensors are sparse.

Table 1. RBR sensor layout position.

ID Depth/m Sensor Type

1 5 T
2 15 CTD
3 20 T
4 25 T
5 30 T
6 40 T
7 50 CTD
8 60 T
9 80 T
10 100 T
11 120 T
12 140 T
13 160 T
14 180 T
15 200 T
16 250 T
17 400 CTD
18 600 CTD

2.2.2. Data Annotation

The work on data standards is divided into two parts. First, the start time (Ts), extreme
time (Te), and end time (Tf ) of internal waves should be annotated based on the vertical
sea temperature profile diagram (as shown in Figure 4). Additionally, the amplitude (H,
Formula (6)) of internal waves is determined via the variation in thermocline depth (D). In
this study, the 14-degree isotherm is used as the thermocline depth. The vertical velocity
component (Vp, Formula (7)) is calculated based on the amplitude and duration of the
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internal waves. An internal wave is classified when the amplitude is greater than 15 m
and the vertical velocity component exceeds 1 m/s [50]. In total, 1641 internal waves have
been labeled.

H = max
(
|D(Te − Ts)|,

∣∣∣D(Te − Tf

)∣∣∣) (6)

Vp = max

 |D(Te − Ts)|
Te − Ts

,

∣∣∣D(Te − Tf

)∣∣∣
Tf − Te

 (7)
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2.2.3. Feature Selection

According to the collected data, the ocean temperature profile is drawn. As shown in
Figure 5, when the water depth is less than 200 m, the temperature changes significantly
with increasing water depth, while when the water depth is greater than 200 m, the
temperature does not change significantly with increasing water depth. This paper reflects
the existence of internal waves through the change in the vertical distribution of water
temperature. Therefore, the temperature data from 14 layers of sensors is selected as the
input feature for the neural network. The sensors are positioned at depths of 15 m, 20 m,
30 m, 40 m, 50 m, 60 m, 70 m, 80 m, 100 m, 120 m, 140 m, 160 m, 180 m, 200 m, and 250 m.
The selected sensor locations are mainly concentrated in the depth range of 40 m to 200 m,
with the sensor coverage depth appropriately expanded.

2.2.4. Data Annotation and Splitting

The labeled dataset is divided into three parts: a training dataset, a validation dataset,
and a testing dataset. The training dataset and validation dataset are used to train the
neural network, and the testing dataset evaluates the performance of the final network
model. The buoy collection data from 14 December 2018 to 24 January 2019 is taken as the
testing dataset, and the buoy collection data from 24 January 2019 to 9 November 2019
is used as the training dataset and validation dataset. The division ratio of the training
dataset and validation dataset is 8:2. The data in the dataset is added in a loop, with a new
dataset being added every other minute. The specific partition of the dataset is shown in
Table 2.
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Table 2. Dataset partitioning results.

Train Date Number Val Date Number

Existential internal wave 279,782 1 69,945
No internal wave 37,721 1 9430

1 It should be noted that the buoy cannot observe internal waves for most of the year, so there are far more data
without internal waves than those with internal waves. However, in order to prevent the CNN network model
from overfitting during the training process, an equal amount of data with and without internal waves is used in
each round of model training.
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2.3. Model Training

Firstly, the parameters of the feature extraction network model and feature classifica-
tion network model are initialized. Secondly, for training models with a training set, the
overall loss of the model is calculated through the forward propagation process, and the
model parameters are updated through the back propagation process according to the loss.
Finally, the validating dataset is used to evaluate the model and determine whether the
model converges or not. If the model convergence proves that the training completes the
derivation of the model parameters, otherwise it is proved that the model does not reach
the optimal value, and it is necessary to continue to adjust the parameters until the model
converges. The training process is shown in Figure 6. In the proposed model, the cross-
entropy loss function [51,52] is applied, the calculation formula is shown in Formula (8),
the optimizer used is Adam, and the learning rate is set to 0.001.

loss = −1
2

[
y0logoutput(0)

2 + y1logoutput(1)
2

]
(8)

In the formula, y0 and y1 indicate that the real label is no internal wave and there is an
internal wave, respectively, and output(0) and output(1) are the probabilities of identifying
no and yes internal waves, respectively.
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3. Experimental Preparations
3.1. Experimental Evaluation

In this paper, accuracy (Formula (9)) recall (Formula (10)), precision (Formula (11)),
F1 score (Formula (12)) [53], and delay (Formula (13)) are used as metrics of the internal
wave recognition algorithm. Accuracy is used to measure how well the model correctly
identifies internal waves. Recall is used to measure the model’s ability to identify internal
waves. Precision is used to measure the accuracy of model recognition of internal waves.
Generally, recall and precision are expected to both be high, but in some cases, the two
indicators are contradictory. Therefore, the F1 score is used to reconcile recall and precision.
In addition, the difference between the time when internal waves are recognized and the
start time when internal waves are marked is defined as the delay. As shown in Table 3,
the presence of internal waves is defined as a positive object, while the absence of internal
waves is defined as a negative object.

Accuracy =
TP + TN

TP + FP + FN + TN
(9)

Recall =
TP

TP + FN
(10)

Precision =
TP

TP + FP
(11)

F1 Score = 2 ∗ Recall ∗ Precision
Recall + Precision

(12)

Delay = IP− SP (13)

Table 3. Confusion matrix with or without binary classification of internal waves.

Predict Label/True Label Existential Internal Wave No Internal Wave

Existential internal wave TP FP
No internal wave FN TN

In the formula, TP indicates the number of samples that are correctly classified as
having internal waves, TN indicates the number of samples that are correctly classified
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as having no internal waves, and FP indicates the number of samples that are incorrectly
classified as having internal waves. FN represents the number of samples incorrectly
classified as nonexistent internal waves. IP represents the internal wave-identified position,
and SP represents the internal wave-start position marked in the dataset.

In addition, to explore the effectiveness of the feature extraction network, in addition
to the above evaluation indicators of the algorithm, this paper also compares the data
correlation and the number of features (N) before and after feature extraction. Finally,
to study the practicability of the algorithm, we calculate the storage cost and computing
cost using different model structures, in which the storage cost is measured using the
model parameter number (parameters) index and the computing cost is measured using
the floating-point number (FLOPs) index.

3.2. Experimental Environment

In this study, all the experimental code source code is Python, using the PyTorch
neural network architecture; the software installation version is Python 3.8.10, torch 1.11.1,
and cuda11.3. The computing unit uses an RTX2080Ti graphics card with 11 GB of video
memory and 40 GB of RAM.

4. Results
4.1. Algorithm Recognition Effect

To validate the good performance of the algorithm in internal wave recognition and
ensure its convergence, the training and testing dataset accuracy curves for internal wave
recognition were plotted in this study (Figure 7). From the graph, it can be observed that
the overall recognition performance of the algorithm is quite satisfactory. The validation
dataset accuracy reaches 96.84% after 100 training iterations, and the accuracy steadily
converges after around 50 iterations, as seen from the overall accuracy curve.
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4.2. Reliability Verification

To compare the artificial intelligence method with the threshold method [19,20], the
threshold method used in this study uses the same test set as the artificial intelligence
method to identify internal waves. The threshold method determines the range of temper-
ature changes within 30 min by setting a threshold (θ) to determine whether there is an
internal wave. The effects of different thresholds on the experiment are shown in Table 4.
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Table 4. Experimental results of the threshold method.

θ/°C Recall/% Precision/% F1 Score/% Delay/Minutes

2.5 100 45.49 62.53 3.1240
3 96.83 64.89 77.71 4.2696

3.5 91.27 77.18 83.64 4.8218
4 83.33 89.74 86.42 5.2444

4.5 75.40 94.06 83.70 6
5 65.87 97.65 78.67 7.0145

When the threshold recognition internal wave method is set at 2.5 °C, the recall rate is
close to 100%, but the precision is close to 45.49%. As θ increases, recall decreases sharply,
precision increases sharply, and delay becomes longer. When θ = 5 °C, the precision is
97.65%, but the corresponding recall is only 65.87%, the delay reaches 8.2759 min. Therefore,
the threshold method cannot balance the relationship between recall and precision, and the
reliability of the algorithm cannot be guaranteed in practical applications.

Compared with the threshold method, the recognition effect of the artificial intelligence
method has been significantly improved, as shown in Figure 8. The feature extraction
network can extract and strengthen the internal wave signs and delete irrelevant features.
The feature recognition network is trained to fit the internal wave sign through historical
data, which takes more internal wave sign elements into consideration and has a better
recognition effect than the threshold method neural network. From the experimental
results, the recall rate reached 95.31%, precision was 97.53%, and the delay was reduced to
5.0862 min. Therefore, despite improving precision, the recall rate has remained at a high
level, greatly enhancing the algorithm’s reliability in practical applications.
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threshold method has the best performance of the F1 score when θ = 3, so the experimental results of
θ = 3 are selected for comparison).

To further verify the reliability of the artificial intelligence algorithm used in this paper,
the artificial intelligence algorithm and threshold method are compared with the actual
internal wave temperature vertical structure observation data, in which it is specified that
the period when internal waves are recognized is a low state and the period when internal
waves are not recognized is a high state. The comparison results are shown in Figure 9.
Compared with the threshold method, the artificial intelligence method can identify more
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internal waves, as shown in Figure 9A,B. Due to the slow rate of temperature change, the
threshold method cannot identify these internal waves. In addition, the artificial intelligence
method has fewer misidentification phenomena, as shown in Figure 9C,D. The threshold
method has misidentification phenomena, which are caused by the fact that although the
temperature in the misidentification period tends to rise or fall, it is not enough to define
this period as an internal wave period. Artificial intelligence algorithms can improve the
accuracy and reliability of internal wave recognition by extracting and identifying internal
wave signs.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 19 
 

 

To further verify the reliability of the artificial intelligence algorithm used in this pa-
per, the artificial intelligence algorithm and threshold method are compared with the ac-
tual internal wave temperature vertical structure observation data, in which it is specified 
that the period when internal waves are recognized is a low state and the period when 
internal waves are not recognized is a high state. The comparison results are shown in 
Figure 9. Compared with the threshold method, the artificial intelligence method can 
identify more internal waves, as shown in Figure 9A,B. Due to the slow rate of tempera-
ture change, the threshold method cannot identify these internal waves. In addition, the 
artificial intelligence method has fewer misidentification phenomena, as shown in Figure 
9C,D. The threshold method has misidentification phenomena, which are caused by the 
fact that although the temperature in the misidentification period tends to rise or fall, it is 
not enough to define this period as an internal wave period. Artificial intelligence algo-
rithms can improve the accuracy and reliability of internal wave recognition by extracting 
and identifying internal wave signs. 

 
Figure 9. Threshold method and artificial intelligence method observation comparison graph. (A) 
Data collection was from 20:59 on 7 January 2019 to 00:59 on 8 January 2019. (B) Data collection was 
carried out from 18:39 to 22:39 on 22 December 2018. (C) Data collection was from 16:19 to 20:19 on 
20 December 2018. (D) Data collection was conducted from 18:19 to 22:19 on 27 December 2018. 

4.3. Validity Verification of the Feature Extraction Network 
In this paper, by adjusting the convolution stride and the number of convolution ker-

nels of the feature extraction network, the effectiveness of features is improved in the time 
dimension and space dimension, respectively. The internal wave recognition effect is best 
when the convolution stride is 4 and the number of convolution kernels is 5. The feature 
extraction network has 420 input features and 40 output features, and the efficiency of 
feature extraction can reach 90.48%. The correlation matrix between the input and output 
data of the feature extraction network is shown in Figure 10. The correlations between the 
original data can be reduced through the feature extraction network. 

Figure 9. Threshold method and artificial intelligence method observation comparison graph.
(A) Data collection was from 20:59 on 7 January 2019 to 00:59 on 8 January 2019. (B) Data col-
lection was carried out from 18:39 to 22:39 on 22 December 2018. (C) Data collection was from
16:19 to 20:19 on 20 December 2018. (D) Data collection was conducted from 18:19 to 22:19 on
27 December 2018.

4.3. Validity Verification of the Feature Extraction Network

In this paper, by adjusting the convolution stride and the number of convolution
kernels of the feature extraction network, the effectiveness of features is improved in the
time dimension and space dimension, respectively. The internal wave recognition effect
is best when the convolution stride is 4 and the number of convolution kernels is 5. The
feature extraction network has 420 input features and 40 output features, and the efficiency
of feature extraction can reach 90.48%. The correlation matrix between the input and output
data of the feature extraction network is shown in Figure 10. The correlations between the
original data can be reduced through the feature extraction network.

4.3.1. Sampling Step Selection of Convolution Operation

To compare the effects of sampling steps of different convolution operations on the
experiment, this study compares the effects of convolution steps from 1 to 7 on the results
of internal wave recognition. Figure 11 shows that when the convolution step amplitude
changes from 1 to 4, the changes in recall, precision, F1 score, and delay are not obvious,
but when the stride continues to increase, F1 score will have a significant downward trend,
and delay will have an obvious prolongation trend because the collected underwater tem-
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perature profile series is a continuously collected time series, and increasing the sampling
interval by properly increasing the convolution step has little effect on the final internal
wave recognition results. However, when the convolution step is raised to 5, the internal
wave recognition has an obvious downward trend, so this method selects a convolution
step of 4 to sample the sequence, and when the number of convolution cores is 8, the output
feature number is 64, as shown in Table 5.
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4.3.2. Selection of the Number of Convolution Kernels

To reduce the spatial information redundancy of the input data, this paper selects the
appropriate number of convolution kernels to obtain more effective spatial features for
internal wave recognition. The number of convolution kernels selected in the experiment is
1–9. When the number of convolution kernels is 1, it is found that the algorithm does not
converge, and when the convolution kernel is 2–9, the experimental results are shown in
Figure 12. When the number of convolution kernels increases from 2 to 3, the recognition
effect of the algorithm is not obvious. When the number of convolution kernels is increased
from 3 to 5, the recognition effect of the algorithm is significantly improved. When the
number of convolution kernels is raised from 5 to 9, it is found that the internal wave
recognition effect is not improved, so the final number of convolution kernels selected with
this algorithm is 5, and the number of output features is 40 when the convolution step is 4,
as shown in Table 6.
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Table 6. The corresponding relationship between the number of convolution kernels and the output
features of the feature extraction network.

Convolutional Step 1 2 3 4 5 6 7

N 240 120 80 64 48 40 32

4.4. Practical Verification

By comparing the recognition results of different network structures, the one-layer
convolutional neural network plus the fully connected internal wave recognition network
used in this paper has the best result. Figure 13 shows the precision–recall curve of various
methods, in which the precision–recall curve of this method is significantly higher than that
of other network structures. As shown in Table 7, the effect of internal wave recognition
is significantly improved after adding the feature extraction network, and the effect of
the feature extraction network using one-dimensional convolution is also better than that
of other feature extraction networks. This method has an F1 score that is 3.4% higher
than the F1 score without the feature extraction network structure. The delay has been
reduced by 1.22 min. Compared with the two-layer CNN and three-layer CNN feature
extraction network structures, the F1 score has improved by 2.46% and 2.14%, respectively.
Additionally, the delay is reduced by 0.53 min and 1.09 min, respectively. Compared with
LSTM, the delay is shorter by 0.5 min, and the F1 score is increased by 2.12%.
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Table 7. Influence of different network structures on internal wave recognition results.

Recall (%) Precision (%) F1 score (%) T (min)

DNN 0.8845 0.9829 0.9311 6.3084
CNN (layer = 1) 0.9531 0.9753 0.9641 5.0862
CNN (layer = 2) 0.9479 0.9313 0.9395 5.6154
CNN (layer = 3) 0.9627 0.9236 0.9427 5.2137

LSTM 0.9410 0.9449 0.9429 5.5893

In terms of the calculation of the number of network parameters, because this method
reduces the input features of the feature recognition network by selecting the appropriate
convolution steps and the number of convolution kernels, the number of parameters and
computation of the algorithm are greatly reduced. As shown in Table 8, the number of
parameters and the amount of calculation for this method are 1593 and 3024, respectively.
Compared with the direct feature recognition method, the number of parameters is reduced
by 88.2%, and the amount of calculation is reduced by 77.66%.

Table 8. Comparison of the number of parameters and computation of different networks.

Parameters FLOPs

DNN 13,504 13,538
CNN (layer = 1) 1593 3024
CNN (layer = 2) 9250 29,344
CNN (layer = 3) 10,034 40,864

LSTM 80,704 17,506

According to the analysis of the recognition effect of the algorithm, the number of
parameters, and the amount of calculation, the algorithm has a good recognition effect,
fewer parameters, and less calculation. The parameters and FLOPs of the algorithm are 1593
and 3024, respectively, so it requires very low storage capacity and computing power from
the equipment. The algorithm can be directly deployed in the controller of the intelligent
buoy to meet the need for automatic recognition of internal waves at the buoy end.
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5. Discussion and Future Work

Internal wave detection poses several challenges and technical issues. One significant
challenge is the variability and complexity of internal wave patterns, which makes their
identification difficult. Additionally, the presence of noise in in situ observations further
complicates the detection process. Another challenge is the lack of standardized methods
for internal wave detection, leading to inconsistencies in data analysis and comparison
across different studies.

Currently, some researchers have utilized deep learning methods in conjunction with
satellite remote sensing images to recognize internal waves [28,54]. The basic principle
involves identifying internal waves by observing the bright and dark patterns on the
remote sensing images. However, due to specific conditions and time constraints, it is
difficult to make continuous observations in specific areas, which limits the continuity and
comprehensiveness of internal wave data. In addition, weather conditions, such as cloud
cover and atmospheric interference, can also degrade image quality and affect the accuracy
of internal wave identification.

In this paper, we propose several innovative methods to address the challenges of
internal wave detection. On the one hand, we utilize a CNN algorithm, which takes
advantage of its ability to learn complex patterns and features from field measurements.
We employ advanced preprocessing techniques to improve the quality of input data and
minimize noise interference. Our algorithm combines adaptive threshold and feature
extraction techniques to improve the accuracy of internal wave identification.

On the other hand, we carefully select the parameters of the convolutional neural
network to reduce the algorithm’s parameters and computational complexity without
compromising the detection performance. This allows us to deploy the algorithm in buoy
systems in the future, which will help buoy systems efficiently process the redundant raw
temperature profile data in any weather condition. By compressing some of the data, we
can significantly reduce the computational and storage requirements without significantly
affecting the detection results.

It should be noted that when applying the algorithm, certain considerations need to
be considered. Fine-tuning of key parameters may be necessary to optimize the algorithm’s
performance for different datasets and observational conditions. It is essential to use a
diverse range of training data types, including observed and modeled data and high- and
low-resolution data, to ensure the algorithm’s robustness and generalizability.

The potential applications of this technology extend beyond the study area to other
marine regions where internal wave phenomena occur. Furthermore, the proposed method
can be applied to the observation and analysis of other mesoscale atmospheric and phys-
ical oceanic phenomena, such as typhoons, eddies, and marine ecological studies. By
expanding its application, this technology contributes to a better understanding of the
ocean environment and its various dynamics.

In summary, this paper addresses the challenges in internal wave detection by in-
troducing an innovative deep learning-based approach. The proposed method has the
potential to be widely applied in various marine regions and opens the door to further
development in the field of physical and biological oceanography.

6. Conclusions

This study presents an automated algorithm for recognizing internal waves in oceano-
graphic buoy data based on convolutional neural networks (CNN). By exploiting the local
connectivity of CNN, the algorithm effectively compresses the raw data, thereby signif-
icantly reducing the input dimension of the feature extraction network. To assess the
reliability, practicality, and effectiveness of this feature extraction network, we conducted
experiments using training, validation, and testing sets of Bailong buoy data. The results
demonstrate the CNN-based approach’s remarkable enhancement in both recall and preci-
sion of internal wave recognition, achieving a high level of performance. Moreover, we
introduce an efficient feature extraction network that effectively reduces computational
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complexity and the number of algorithm parameters. This research forms the groundwork
for automating the dependable recognition of internal waves in intelligent buoy systems. In
future work, we aim to further refine and optimize the algorithm while exploring its appli-
cation in broader contexts to contribute to the advancement of oceanographic observation
and early warning systems.
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