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Abstract: This study introduces a hybrid control structure called Improved Interfered Fluid Dynamic
System Nonlinear Model Predictive Control (IIFDS-NMPC) for the path planning and trajectory
tracking of autonomous underwater vehicles (AUVs). The system consists of two layers; the upper
layer utilizes the Improved Interfered Fluid Dynamic System (IIFDS) for path planning, while the
lower layer employs Nonlinear Model Predictive Control (NMPC) for trajectory tracking. Extensive
simulation experiments are conducted to determine optimal parameters for both static and dynamic
obstacle scenarios. Additionally, real-world testing is performed using the BlueRov2 platform,
incorporating multiple dynamic and static obstacles. The proposed approach achieves real-time
control at a frequency of 100 Hz and exhibits impressive path tracking accuracy, with a root mean
square (RMS) of 0.02 m. This research provides a valuable framework for navigation and control in
practical applications.
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1. Introduction

Autonomous underwater vehicles (AUVs) are increasingly utilized in various appli-
cations for ocean exploration. Path planning and trajectory tracking are fundamental re-
quirements [1], and the smoothness, efficiency, and tracking deviation of the planned paths
play crucial roles in these tasks [2]. Achieving real-time planning and control in complex
environments is particularly important for efficient and safe AUV navigation [3]. Although
both path planning and trajectory tracking tasks utilize the AUV motion model [4], they are
treated as separate tasks within the general guide navigation control (GNC) framework [5].

Different path planning methods are employed for known and unknown obstacle
environments [6]. In known static obstacle environments, algorithms like A* [7], Dijk-
stra [8], and RRT [9] are utilized to generate optimal paths using predetermined obstacle
information. Dynamic obstacle environments, where obstacles move and change, present a
more complex challenge. Randomized algorithms like PRM [10] and improved RRT [11],
as well as SLAM [12] algorithms based on sensor data, are used. However, these methods
often lack real-time capabilities.

Real-time path planning and tracking are essential for adapting to dynamic obstacles.
To address real-time concerns, Jian, F.W. et al. introduced IIFDS [13], an APF-based method
suitable for unknown dynamic environments. Extensive validation has been performed on
various platforms, including unmanned boats and aerial vehicles [14,15].

AUV path tracking control has been widely researched. PID control is used in non-
critical scenarios [16]. Linear quadratic regulator (LQR) control [17], while useful, may
suffer from modeling inaccuracies. Nonlinear sliding mode control (SMC) can handle
disturbances but may cause high-frequency oscillations [18].
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Model Predictive Control (MPC) offers a trade-off between path tracking error and
control constraints. Nonlinear MPC (NMPC) leverages dynamic model characteristics,
making it suitable for path tracking control [19,20]. The computational time of the solver
algorithm is predominantly consumed by matrix operations and constraints, factors that
dictate parsing speed and variable precision. Sequential Quadratic Programming (SQP)
is employed to address quadratic linear optimization problems concurrently featuring
equality and inequality constraints, with the objective of identifying a locally optimal
solution that satisfies the imposed constraints [21]. In the Baidu Apollo autonomous
vehicle project, the SQP algorithm has been successfully applied [22].

Based on the extensive literature review presented, it becomes evident that the IIFDS
offers the advantage of rapid computational capabilities, whereas NMPC excels in main-
taining an optimal balance between tracking error and control effort. Building upon these
insights, this paper introduces a composite control strategy that harnesses the strengths of
both approaches, hereby referred to as the IIFDS-NMPC control structure (Figure 1). To
validate the real-time control requirements, smooth trajectory tracking, and optimal perfor-
mance in complex environments, we conducted a series of comprehensive simulations and
experiments using this hybrid layer structure, encompassing scenarios with both static and
dynamic obstacles.
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Figure 1. Schematic structure of the proposed hybrid layer controller.

Our contributions can be summarized as follows:

1. Real-Time Hybrid Control Structure: We propose a real-time hybrid control structure
for path planning and trajectory tracking (depicted in Figure 1). In this architecture, the
upper layer leverages the real-time IIFDS controller, while the bottom layer employs
the NMPC controller. The computation time for each step remains consistently under
0.01 s, and the RMS tracking deviation is limited to a remarkable 0.02 m.

2. Detailed Design Process: We provide a comprehensive explanation of the complete
design process. By following the steps outlined here, the proposed structure can
be readily implemented across various platform systems, extending its applicability
beyond just AUV systems.

3. Real-Time Feasibility: Extensive simulations and experiments validate the real-time
feasibility of our approach. Testing was conducted in environments featuring both
static and dynamic obstacles, with the designed path planning controller compared
against A* methods. In static obstacle simulations, our method showcased a planning
time reduction of 300 times compared to the A* algorithm. In dynamic obstacle
scenarios, planning time was reduced by a factor of three. During real platform
testing, our approach achieved a remarkable step-by-step tracking and control time of
0.0067 s, with an RMS tracking deviation as low as 0.01867 m.
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4. Physical Experimentation: To the best of our knowledge, this approach is employed
for the first time in physical experiments with AUVs. The STM32 interface board
acquires obstacle and environmental information from the ground station, while the
main control NVIDIA-X2 core is utilized for path planning and the computation of
optimal control quantities under various constraints.

The subsequent sections of this paper are organized as follows: Section 2 presents the
kinematic and dynamic models of the AUV system along with the mathematical represen-
tations of obstacles. Section 3 delves into the methodology and algorithmic framework of
our proposed hybrid layer structure. The simulation setup and experimental evaluations
are detailed in Section 4, while Section 5 offers a comprehensive discussion of the results
and performance analysis. Finally, in Section 6, we conclude the paper by summarizing the
findings and outlining potential avenues for future research.

2. AUV Systems and Obstacle Scenario Modeling

To design the hybrid controller for the AUV known as BlueRov2, which is manufac-
tured by BlueROV Robotics, located in Victoria, BC, Canada [23], as illustrated in Figure 2,
it is essential to develop a comprehensive mathematical model that encompasses both the
AUV itself and the obstacle scenarios it may encounter. This section aims to provide an
overview of the AUV model, covering its kinematic and dynamic aspects. The kinematic
model establishes the relationship between the AUV’s position, velocity, and acceleration
during its motion. Conversely, the dynamic model captures the dynamic changes that
occur during acceleration. Furthermore, the obstacle scenarios are described using model
equations to provide a clear representation of the challenges the AUV may encounter.
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Sway(v)
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Figure 2. Inertial and motion coordinate system of autonomous underwater vehicles (AUVs), the left
is the inertial-fixed coordinate system and the right is the body-fixed coordinate system.

2.1. Coordinate Systems of AUVs

The AUV system is designed to operate with six degrees of freedom (6DOF), allowing
it to achieve independent movement in three linear directions (surge, sway, and heave) and
three rotational directions (roll, pitch, and yaw). These six DOF provide the AUV with the
capability to navigate and maneuver effectively in three-dimensional space. To describe
the AUV’s motion, two frames of reference are commonly used: the inertial frame (I-frame)
and the body frame (B-frame) [24]. It is assumed that the center of gravity and the center of
buoyancy of the ROV are located at the center of the robot skeleton. This configuration is
illustrated in Figure 2.
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2.2. Kinematic System Model

The kinematic model primarily explains the geometric relationships among the motion
variables of the AUV system, without considering the forces and torques that cause system
motion and changes. Conversion can be performed between the body coordinate system
and the earth coordinate system variables. The parameters of the AUV system include the
position vector η, the velocity vector ν, and the thrust vector τ [25]. The definitions of each
variable are as follows.

η = [x, y, z, φ, θ, ψ]T

v = [u, v, w, p, q, r]T

τ = [X, Y, Z, K, M, N]T

(1)

The position vector η represents the coordinates in the Earth coordinate system,
encompassing the absolute position of the origin (x, y, z) and the Euler angles (φ, θ, ψ) that
indicate the orientation. In contrast, the body coordinate system is defined based on the
centroid of the AUV. In this system, the velocity vector ν describes the linear velocities
(u, v, w) along the three axes of the body coordinate system, as well as the angular velocities
(p, q, r) around those axes.

Furthermore, the thrust vector τ(X, Y, Z, K, M, N) denotes the external forces and
torques acting upon the AUV system, expressed as a vector within the body coordinate
system. To facilitate the transformation of variables between these two coordinate systems,
a reversible transformation matrix J(η) ∈ R6×6 is employed. This matrix enables the
conversion between the respective coordinate systems.

η̇ = J(η)v

J(η) =
[

R 0
0 T

] (2)

The Euler angles η = [φ, θ, ψ]T correspond to the roll, pitch, and yaw angles of the AUV
system. The velocity transformation matrix, denoted R(η), facilitates the conversion from
the body coordinate system to the Earth coordinate system. Similarly, the angular velocity
transformation matrix, denoted T(η), enables the conversion from the body coordinate
system to the Earth coordinate system. Conversely, when transforming from the Earth
coordinate system to the body coordinate system, an inverse matrix is utilized. The
definitions of R(η) and T(η) are as follows:

R(η) =

 cos ψ cos θ − sin ψ cos ϕ + cos ψ sin θ sin ϕ sin ψ sin ϕ + cos ψ cos ϕ sin θ
sin ψ cos θ cos ψ cos ϕ + sin ϕ sin θ sin ψ − cos ψ sin ϕ + sin θ sin ψ cos ϕ
− sin θ cos θ sin ϕ cos θ cos ϕ

 (3)

T(η) =

 1 sin ϕ tan θ cos ϕ tan θ
0 cos ϕ − sin ϕ
0 sin ϕ/ cos θ cos ϕ/ cos θ

 (4)

When θ = ±90◦, T(η) does not exist. Therefore, the angles of the AUV system have
certain limitations. The roll angle φ lies within the range of −π < φ ≤ π, while the pitch
angle θ is restricted to −π/2 < θ < π/2.

2.3. Dynamic System Model

The AUV is a 6DOF nonlinear dynamic model with disturbance. The dynamics
equation of the AUV system studies the relationship between external forces and motion,
which can be expressed using the following formula,

Mv̇ + C(v)v + D(v)v + g(η) = τ + ω (5)
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where M = MRB + MA, MRB is a rigid body inertia matrix and MA is an added mass
inertia matrix. Among them, the standard MRB is

MRB =



m 0 0 0 mzG −myG
0 m 0 −mzG 0 mxG
0 0 m myG −mxG 0
0 −mzG myG Ix −Ixy −Ixz

mzG 0 −mxG −Iyx ly −Iyz
−myG mxG 0 −Izx −Izy Iz

 (6)

If the center of mass and center of buoyancy of the AUV are concentric, the above
formula can be greatly simplified.

MRB =



m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 0
0 0 0 0 ly 0
0 0 0 0 0 Iz

 (7)

The same type of CRB is the coriolis force and added mass term centripetal force,

C(v) = CRB(v) + CA(v) (8)

where

CRB(v) =



0 0 0 0 mvz −mvy
0 0 0 −mvz 0 mvx
0 0 0 mvy −mvx 0
0 mvz −mvy 0 Izωz −Iyωy
−mvz 0 mvx −Izωz 0 Ixωx
mvy −mvx 0 Iyωy −Ixωx 0

 (9)

and

CA(v) =



0 0 0 0 −Zv̇z vz Yv̇y vy
0 0 0 Zv̇z vz 0 −Xv̇x vx
0 0 0 −Yv̇y vy Xv̇x vx 0
0 −Zv̇z vz Yv̇y vy 0 −Nω̇z ωz Mω̇y ωy

Zv̇z vz 0 −Xv̇x vx Nω̇z ωz 0 −Kω̇x ωx
−Yv̇y vy Xv̇x vx 0 −Mω̇y ωy Kω̇x ωx 0


(10)

According to the literature [26], we divide D(|v|) for the surface resistance of the
linear damping D and wave nonlinear quadratic damping Dn(|v|) into two parts. The
literature [24] states that the assumption of the AUV system has good symmetry, therefore,

D(|v|) = −diag
{

Xu, Yv, Zw, Kp, Mq, Nr
}
− diag

{
Xu|u||u|, Yv|v||v|, Zw|w||w|, Kp|p||p|, Mq|q||q|, Nr|r||r|

}
(11)

The AUV system is subject to vertical downward gravity W acting on the center of
gravity and vertical upward buoyancy B acting on the center of buoyancy on the vertical
plane. The surface vehicle equilibrium condition is W = B, and it acts on the same plumb
line. AUV systems are usually designed to be critical with near-zero buoyancy, i.e., gravity
W is slightly less than buoyancy B. Restoring force determines the initial stability of the
system; that is, when the AUV system is out of equilibrium due to external forces, the
combined action of gravity and buoyancy can restore the system to equilibrium. The
center of buoyancy is higher than the center of gravity, which can generate the torque of
restoring equilibrium:
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g(η) =



(W − B) sin(θ)
−(W − B) cos(θ) sin(φ)
−(W − B) cos(θ) cos(φ)
−
(
ygW − ybB

)
cos(θ) cos(φ) +

(
zgW − zbB

)
cos(θ) sin(φ)(

zgW − zbB
)

sin(θ) +
(
xgW − xbB

)
cos(θ) cos(φ)

−
(
xgW − xbB

)
cos(θ) sin(φ)−

(
ygW − ybB

)
sin(θ)

 (12)

All the symbols used in the above equations are defined as follows: m is the mass of
the AUV and Xu|u|, Yv|v|, Zw|w|, Kp|p|, Mq|q|, and Nr|r| are hydrodynamic coefficients.

2.4. Obstacle Model

Static underwater obstacles mainly include rocks, shipwrecks, and artificial obstacle
lights. These obstacles can be simplified into spheres, cylinders, cuboids, and semi-spheres
or their combinations. Moving obstacles such as large fish and underwater moving hulls
can be regarded as spheres, and various typical obstacles can be regarded as a variety of
standard convex objects. The shape of q can use a unified mathematical expression [27]:

Γ(P) = (
x− x0

a
)2p + (

y− y0

b
)2q + (

z− z0

c
)2r (13)

In the given context, (x0, y0, z0) represents the center of the obstacle, and (x, y, z)
denotes the current position of the AUV. The coefficients a, b, and c, respectively, indicate
the sizes of the obstacle’s axis lengths, while the coefficients p, q, and r determine the shape
of the obstacle. The specific shapes and coefficient values for various convex obstacles are
as follows: Sphere: p = q = r = 1, a = b = c; Cylinder: p = q = 1, r > 1, a = b; Cone:
p = q = 1, 0 < r < 1, a = b; Cuboid: p > 1, q > 1, r > 1. Figure 3 illustrates typical convex
obstacle shapes created by different coefficient combinations. Here, Γ(P) < 1, Γ(P) > 1,
and Γ(P) = 1 represent the interior region, exterior region, and surface of the obstacle,
respectively. The simulation plots for various obstacles are shown below. In real scenarios,
the obstacle environment can be created by combining different obstacles as depicted in
Figure 3.

 
  

 

  

 

  
  

 

 

     

 

     

 

 

  

Figure 3. convex obstacles in an ocean environment.
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3. Hybrid Layer Controller Design
3.1. Proposed Hybrid Structure of Controller

The proposed hybrid layer controller, as in Figure 4, comprises an IIFDS path planner
and an NMPC tracking controller. The IIFDS is responsible for path planning by considering
the agent’s current position, obstacles, and destination. It can iteratively update the overall
path based on the initial agent position and surrounding environment information, or
dynamically update the next reference position based on its own position and environment
information, making it suitable for real-time path planning in dynamic environments.
During the path planning process, drive and legality constraints are considered to ensure a
feasible path. The NMPC controller effectively tracks the trajectory and rejects dynamic
disturbances. Combining the two controllers enables real-time path planning and tracking
from the start point to the destination, forming a double loop of navigation and control.

Nonlinear 

MPC

u Motor level

Controller

Dynamic

Controller

τIIFDS 

Controller

Pr

Measured 

Environment

η υη

ωd2
ωd1

Measured 

Disturbance

Unmeasured 

Disturbance

ωd1

Figure 4. Hybrid structure of controller.

3.2. Upper Layer of IIFDS Navigation Controller Design

The algorithm is based on a variational approach, where the perturbation effect of
obstacles on the flow field is represented using a modified quantization matrix M, resulting
in a perturbed flow field [13]. The introduction of tangential velocity in [14] expands
the physical characteristics of the fluid, making the perturbed streamlines more suitable
for AUV operation. Prior to planning the path, all obstacles are defined according to the
formula in Equation (13). The position of the destination point is set as Pd = (xd, yd, zd)
and the number of obstacles is denoted as K. If there are no obstacles in the current path,
the original streamlines go directly from the initial position to the target point with a
velocity magnitude of V just as Figure 5 shown. Hence, the initial flow field velocity u(P)
can be represented by Equation (14), where u represents the flow velocity. Subsequently,
the perturbation effect of obstacles on the flow field is quantified using the modification
matrix M. Finally, the initial flow field is corrected to obtain the perturbed flow field. This
perturbed flow field remains stable, meaning that the flow streamlines can avoid obstacles
and eventually reach the target point.

The design process of the proposed method can be summarized as follows:

Step 1. Calculate the initial fluid field u(P) by considering the current position and the
destination.

u(P) = −[V(x− xd)

d(P, Pd)
,

V(y− yd)

d(P, Pd)
,

V(z− zd)

d(P, Pd)
]T (14)

In the algorithm, u(P) represents the initial flow field at each computed sampling
point during the operation of the AUV. This initial flow field evolves continuously as the
position changes. Here, V denotes the confluence velocity and d(P, Pd) represents the
distance between the AUV position P and the target position Pd.
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Figure 5. Initial flow field. Start position is (0, 0, 0), destination position is (10, 10, 10), and the
direction is from AUV position to the destination.

d(P, Pd) =
√
(x− xd)2 + (y− yd)2 + (z− zd)2 (15)

Step 2. Calculate the disturbance modification matrix M based on the presence of static or
moving obstacles.

If there are K obstacles present in the environment, then the perturbed flow field
velocity is obtained by modifying the initial flow field velocity u(P) using the modification
matrix M for each obstacle.

M =
K

∑
k=1

ωk Mk (16)

where wk represents the weight factor of the kth obstacle.

ωk =

{
1, K = 1
∏K

i=1,i 6=k
Γi−1

(Γi−1)+(Γk−1) , K 6= 1 (17)

where Γi and Γk represent the expressions for the ith and kth obstacles, respectively, calcu-
lated according to Equation (13). Due to the condition ωsum = ∑K

k=1 ωk ≤ 1, it is necessary
to normalize the weight of each obstacle at each position. The normalized weight of the kth
obstacle is given by

ωk,nor =
ωk

ωsum
(18)

With this normalization, Equation (16) can be written as follows,

M =
K

∑
k=1

ωk,nor Mk (19)
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Building upon the original IFDS [13], the introduction of the tangential matrix incor-
porates the perturbation matrix. Therefore, Mk represents the modification matrix for the
kth obstacle.

Mk = I −
nknT

k

Γ
1

ρk
k nT

k nk

+
tknT

k

Γ
1

σk
k | tk || nk |

(20)

where ρk is the repulsion coefficient, σk is the saturation coefficient, and θk is the tangential
coefficient. These three factors collectively determine the avoidance time and sensitivity in
obstacle avoidance.

ρk = ρ0
k .e

(1− 1
d(P,Pd)d(P,Ok)

)
(21)

σk = σ0
k .e

(1− 1
d(P,Pd)d(P,Ok)

)
(22)

where ρ0
k > 0 is the repulsion factor of the kth obstacle, σ0

k > 0 is the tangential factor of the
kth obstacle, d(P, Pd) is the distance between the AUV object and the target point, d(P, Ok)
is the distance between the AUV and the surface of the kth obstacle, I represents the identity
matrix of order three, and nk(P) is the outward normal vector to the surface of the kth
obstacle perpendicular to it.

nk = (
∂Γk
∂x

,
∂Γk
∂y

,
∂Γk
∂z

)T (23)

As for the other variables, − nknT
k

Γ
1

ρk
k nT

k nk

is the repulsive matrix, tknT
k

Γ
1

σk
k |tk ||nk |

is a tangential

matrix, and tk is the horizontal tangent vector, which can be obtained using the following
expression. The tangent coordinate system o′ − x′y′z′ is defined by setting tk,1, tk,2, and nk
as the x′, y′, and z′ axes, respectively. The calculation process of tk is as follows:

Define two mutually orthogonal vectors, tk,1 and tk,2, which are also orthogonal to nk, x′ = tk,1 = [
∂Γk
∂y

,− ∂Γk
∂x

, 0]T

y′ = tk,2 = [
∂Γk
∂x

∂Γk
∂z

,
∂Γk
∂y

∂Γk
∂z

,−( ∂Γk
∂x

)2 − (
∂Γk
∂y

)2]T
(24)

By using nk, tk,1, and tk,2 as the basis vectors for a new coordinate system, any unit
vector in the plane perpendicular to nk can be expressed in the form

t′k = [cosθk, sinθk, 0]T (25)

where θ
′
k ⊂ [−π, π] is the tangential direction factor. This angle represents the angle

between any tangent vector and the x′ axis. It determines the angle of avoidance direction.
The z′ axis is obtained through rotation. Therefore, in the inertial coordinate system, t

′
k is

transformed to the xoy standard coordinate system by using the tangent coordinate axis
transformation matrix,

tk = ΩI
Tt′k (26)

where ΩI
T is the transformation matrix from the tangent coordinate system to the inertial

coordinate system,

ΩI
T =


ry
r2

rxrz
r2r3

rx
r3

rx
r2

ryrz
r2r3

ry
r3

0 − r2
r3

rz
r3

 (27)

and rx =
∂Γk
∂x

, ry =
∂Γk
∂y

, rz =
∂Γk
∂z

, r2 =
√

r2
x + r2

y, r3 =
√

r2
x + r2

y + r2
z .
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Step 3. Compute the final perturbed fluid field using the results obtained from the previous
two steps.

After modifying the initial flow field velocity u(P), the perturbed flow field velocity
becomes

u = Mu(P) (28)

During the actual operation of the AUV, it encounters not only static obstacles but also
dynamic obstacles. In such cases, the velocity of dynamic obstacles needs to be considered
in the flow field [15]. To incorporate the dynamic obstacle velocity, the process involves
calculating the relative positions based on the static flow field, adding perturbation flow
field effects, and finally incorporating the dynamic obstacle velocity.

The total velocity v(P) of a dynamic obstacle is a combination of the obstacle’s velocity
and its weight factor. If there is only one obstacle, the weight factor ω can be calculated
according to Equation (17) as mentioned earlier. Assuming the velocity of the kth obstacle
is vk,obs, its reference motion velocity is given by

vk,obs = e
−( (Γk(P)−1)

λk
)
vk,obs (29)

Step 4. Calculate the velocity of the dynamic obstacle under the action of the flow field.

The total vector velocity of the obstacle can be calculated using the following formula,

v(P) =
K

∑
k=1

ωk,nor(P)vk,obs (30)

Here, vk,obs represents the actual velocity of the kth obstacle at position P at a specific
time point. λk is the corresponding weight, where a higher value indicates a shorter time
frame for the AUV to avoid the obstacle.

Step 5. Finally, determine the next position at the subsequent time step by considering the
sample time and the current position.

Velocity and position of the final perturbed flow field are

u(P) =
{

M(P)(u(P)− v(P)) + v(P), for the dynamic obstacle
M(p)u(P), for the static obstacle

(31)

Pnext = P + u(P)∆t (32)

Among them, ∆t is the sampling control period. A smaller value of ∆t leads to more
accurate results, but it also increases computational complexity. The parameters ρk, σk, and
θk shape the streamlines. Adjusting σk and θk avoids stagnation points and traps.

In IIFDS, the tangential matrix enables fluid flow in multiple directions around obsta-
cles. θk determines the path plane; when it is close to 0 or π, the path is horizontal (Path 1,
Path 5), favoring side avoidance. When it is close to π/2, the path is vertical (Path 3),
favoring top avoidance, as in Figure 6.

For the parameters σ and ρ, which represent the tangential reaction coefficient and
repulsion coefficient, respectively, the larger their values, the earlier the planned path
avoids obstacles, and the AUV stays farther away from obstacles, making the planned path
safer, as in Figures 7 and 8.



J. Mar. Sci. Eng. 2023, 11, 2014 11 of 32

Path3,

θ=π/2 Path1,

θ=0

Path2,

θ=π/4

Path4,

θ=3π/4

Path5,
θ=π

Figure 6. Different direction angle θ for path planning.

Figure 7. Different reaction coefficients ρ for path planning.
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Figure 8. Different repulsive reaction coefficients σ for path planning.

In the case of a moving obstacle environment, as shown in Figure 9, the parameter λ
is a positive value. A larger value indicates that the AUV avoids obstacles earlier, reacts
faster, and achieves better avoidance effects. However, when the AUV is farther away
from the obstacles, the relative reference velocity increases. This increases the possibility
of collision between the AUV and the obstacles. In other words, the higher the difficulty
level of avoiding obstacles for the AUV, the greater the associated risk. This is because the
moving obstacles appear relatively stationary in the frame of reference of the navigation
vector field.

In general, randomly selected parameters affect the length of the path and the distance
from obstacles, potentially rendering the path planning infeasible. Therefore, parameter
optimization is crucial for the performance of the system. By selecting appropriate pa-
rameters, the IIFDS method can always strike a balance between safety and smoothness,
effectively avoiding obstacles.

3.3. Bottom Layer of NMPC-Based Trajectory Tracking Controller Design

The reference path is planned using the outer-loop path planning layer, and the
reference path can be described in the following form,

Pr(t) = (xd(t), yd(t), zd(t)) (33)

The path tracking error is

Pe(t) = P(t)− Pr(t) (34)

and the control object is to guarantee the deviation of the position to converge to zero,
i.e., limPe(t)→ 0. The reference path dynamically changes based on the movement of the
plant and the distance between obstacles. If there are any dynamic obstacles present, the
corresponding fluid velocity is adjusted accordingly. The inner-loop NMPC controller then
follows the receding path. This process can be described in the following steps:
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Figure 9. Dynamic reaction coefficient λ affects the distance.

Step 1. Express the model in the nonlinear state space equation.

The nonlinear state model can be described as follows:

x = [η, ν]T (35)

and the first deviating equation consists of state, control input, and disturbance,

ẋ = [η̇, ν̇]T = f (x, u, ω, t) (36)

The Nonlinear MPC model’s function is{
ẋ(t) = f (x(t), u(t), ω(t))
y(t) = h(x(t))

(37)

Step 2. Prediction process.

Regarding the state space of the nonlinear model, the next state can be determined
using the Runge–Kutta (RK) method. In the prediction process, both the fourth-order and
sixth-order RK methods can be employed. However, it is crucial to strike a balance between
computational cost and accuracy. Considering this trade-off, utilizing the RK4 method is
deemed sufficient [28].

xt+1 = fd(xt, ut, ωd, t) = xt + ∆t · f (xt, ut, ωdt, t)
= xt +

1
6 (k1 + 2k2 + 2k3 + k4)

(38)
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k1 = ∆t · f (xt, ut, wdt)

k2 = ∆t · f (xt +
k1
2 , ut, wdt)

k3 = ∆t · f (xt +
k2
2 , ut, wdt)

k4 = ∆t · f (xt + k3, ut, wdt)

(39)

The characteristics of nonlinear AUV dynamics are captured during each time step
of model prediction. Furthermore, the prediction is based on the actual state and control
variables xt, ut, rather than operating points x0, u0. This grants Nonlinear Model Predictive
Control (NMPC) a natural advantage over other control strategies that rely on linear
approximations. Additionally, the controller prediction model incorporates the propeller
characteristics and disturbances from the ROV dynamics Ordinary Differential Equations
(ODEs). Therefore, the discrete model fd possesses the capability to predict nonlinear ROV
dynamics in the presence of 6DOFdisturbances. This implies that NMPC can better adapt
to the actual dynamic characteristics and disturbances of the ROV system, rather than being
limited to a specific operating point and linear approximation. Such features make NMPC
particularly effective in complex, real-time control environments.

Step 3. Control object and the cost function.

According to the NMPC frame, the path tracking problem can be seen as a constraint
optimization problem, as it is for the cost function, and N is the predictive time domain [29],

J =
N

∑
i=1

(
ω1

∥∥∥xp(k + i | k)− xpre f

∥∥∥+ ω2

∥∥∥xv(k + i | k)− xvre f

∥∥∥+ ω3‖u(k + i | k)− ure f ‖
)

(40)

s.t x0 = xinit, 0 ≤ xt ≤ xmax (41)

Just as in Equation (40), ω1, ω2 are the corresponding weight matrices to position
deviation xp and the velocity deviation xv, ω3 is the weight matrix on control ∆u, and
ω1 ∈ R6∗1, ω2 ∈ R6∗1, and ω3 ∈ R8∗1. These three control objectives the nonlinear MPC
would like to achieve at the same time. Firstly, the objective of the cost function is to mini-
mize the tracking error, ensuring that the AUV approaches and stably maintains as close
as possible to the reference position. The cost function adopts a formulation represented
by ω1

∥∥∥xp(k + i | k)− xpre f

∥∥∥, which penalizes the disparity between the current state and
the positional reference. Secondly, during underwater operations, angular velocity and
linear velocity need to be maintained at zero after reaching the target point. Consequently,
xvref is likewise set to 06∗1. Last but equally significant, the optimal controller is subject to
three constraints. The first two constraints, respectively, ensure stable path-keeping and
remaining stationary. The design of the optimal controller aims at minimizing the overall
control effort. The intermediate cost J constitutes the sum of all control variables, governed
by the optimal control strategy u∗ to minimize the control effort of the AUV. The reference
control variables uref are set to 08∗1.

During the path tracking process of an AUV, both the operational state and control
variables of the AUV are subject to certain constraints. These constraints consist of both
hard and soft limits. It is imperative to adhere to these constraints, with particular emphasis
on the hard constraints, as they must be strictly followed for safety reasons. The system
state xt and the control variables ut are constrained as follows:

xmin ≤ xt ≤ xmax
umin ≤ ut ≤ umax

(42)

where xmin, umin are the lower bound of the state vector and the control input, and xmax, umax
are the upper bound of the state vector and the control value. In the control process, the
bound domain can be rewritten as

umin ≤ u(k) ≤ umax
xmin ≤ f (xt, ut, wd) ≤ xmax

(43)
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The aforementioned NMPC equations undergo optimization at each time step, with
only the first optimized control signal u∗ being applied to the AUV. The system’s new
control trajectory is optimized in a receding horizon manner. In other words, after the AUV
sends the first control signal, the prediction horizon transitions from [0, T] to [t, t + T].

In summary, the objective of this controller is to enable the AUV to track the reference
position, ultimately stabilizing at a stationary state while achieving optimal control.

3.4. Algorithm and Pseudocode

The algorithm for path planning and trajectory tracking is outlined in Algorithm 1,
while the NMPC algorithm is encapsulated in Algorithm 2.

Algorithm 1 : Hybrid Layer of Navigation and Tracking Controller of the AUV.

1: Initialize the initial state x0, the destination position pd, the velocity of AUV v, the
predictive horizon N , the weight matrix ω1, ω2, ω3, control value bound umax, umin,
state bound xmin, xmax;

2: Compute the distance from current position P to destination position Pd, using
Equation (15).

3: while AUV has not reached the destination do
4: Calculate the initial fluid field u(P), using Equation (14),
5: Obtain obstacle information from the environment, including the position O(x, y, z)

and velocity v(x, y, z), through the perception layer. Based on the current position,
as well as the positions and velocities of obstacles (if they are dynamic), calculate the
disturbance flow field matrix M, using Equations (16)–(27).

6: Calculate the overall vector velocity of dynamic obstacles in the flow field vk,obs, if
applicable, using Equations (29) and (30).

7: Calculate the next potential position for the next path Pnext, using
Equations (31) and (32).

8: Compute the optimal control quantity based on the reference path and
Equations (33)–(43).

9: Calculate the control quantity using Equation (40) and Algorithm 2 based on the
current position P and the next position Pnext, which is the path to be tracked.

10: Measure all the states of the scenario, compute the distance from current position P
to destination position Pd, using Equation (15).

11: end while

Algorithm 2 : The Process of Computing the Control Value u in NMPC.

1: Initialize all initial state variables x0, initialize all control variables u, set up the weight
matrices ω1, ω2, ω3, and define the range of control constraints umin, umax, set the
predictive horizon N, obtain the reference state xre f from the planned path.

2: while Not meeting the specified prediction horizon cycles N, do
3: Calculate the next state variable based on Equation (38),
4: Restrict the state variables within the constraints xmin, xmax defined by Equation.
5: Compute the cost based on the reference path and weight matrix, according to

Equation (40).
6: end while
7: Sum up the cost values obtained in the aforementioned N instances to calculate the

total cost, yielding the value of J based on Equation (40).
8: Compute the control input u based on the cost J and constraints umax, umin, in this

process, the optimal solver is SQP, and the computed control variables need to adhere
to the constraints specified by Equation (43).

9: Apply the first dimension control input u[1 :] to control the system.
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4. Computer Simulation Experiment

To validate the proposed method for path planning and AUV trajectory tracking, we
utilize the AUV model described in Section 2 and employ the hybrid layer controller
outlined in Section 3. The simulation experiments are conducted within the Matlab
2018 Rb environment, with all AUV parameters defined in Table 1. The experimental
system is equipped with an 11th Gen Intel(R) Core(TM) i9-11900H @ 2.50 GHz processor,
32.0 GB RAM, and Windows 10 operating system.

Table 1. Parameters of the AUV.

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value

m 11.5 kg Iy 0.16 kg.m2 K ṗ −0.12 kg.m2/rad LDZw −5.18 Ns/m QDYv −21.66 Ns2/m2

L 0.4571 m Iz 0.16 kg.m2 Mq̇ −0.12 kg.m2/rad LDKp −0.07 Ns/rad QDZw −36.99 Ns2/m2

W 0.4361m Xu̇ −5.5 kg Nṙ −0.12 kg.m2/rad LDMq −0.07 Ns/rad QDKp −1.55 Ns2/rad2

H 0.2539 m Yv̇ −12.7 kg LDXu −4.03 Ns/m LDNr −0.07 Ns/rad QDMq −1.55 Ns2/rad2

Ix 0.16 kg.m2 Zẇ −14.57kg LDYv −6.22 Ns/m QDXu −18.18 Ns2/m2 QDNr −1.55 Ns2/rad2

The test environment encompasses both static obstacle and dynamic obstacle scenarios.
The crucial metrics for evaluation include path planning time and tracking control deviation,
path planning length, smoothness, and the range of control values during tracking that
should also be considered.

In Table 1, m is the mass of the AUV; L,W, and H, respectively, represent the length,
width, and height of the AUV; Ix, Iy, and Iz are the moments of inertia about the xb, yb, and
zb axes; Xu̇, Yv̇, and Zẇ represent the hydrodynamic forces for linear motion; and K ṗ, Mq̇,
and Nṙ represent the hydrodynamic forces for rotational motion. LDXu, LDYv, and LDZw
are the damping coefficients in the translational directions, while LDKp, LDMq, and LDNr
are the damping coefficients in the rotational directions. QDXu, QDYv, and QDZw are the
acceleration damping coefficients in the translational directions, and QDKp, QDMq, and
QDNr are the acceleration damping coefficients in the rotational directions.

4.1. Static Obstacle Avoidance and Path Planning

For the evaluation, we set the initial point as a fixed value (0, 0, 0) and consider
four destination points: (10, 10, 10), (10, 10, 9), (10, 9, 10), and (9, 10, 10). In our test sce-
nario, we introduce random spheres as obstacles, each with a unique position and size.
Specifically, the obstacle positions are (2, 5, 3), (2, 2, 2), (8, 8, 8), (6, 6, 6), (1, 7, 4), and (3, 7, 7),
accompanied by corresponding radii of 0.5, 1, 1, 0.6, 0.6, and 0.5, respectively.

The IIFDS parameters ρ = 1.5, σ = 0.5, and θ = 0.5 were selected. It has been noted in
the literature [7] that the A* method is frequently employed for path planning. To evaluate
their performance in the aforementioned environment, both the A* and IIFDS algorithms
were tested.

From Table 2, it is evident that for the same starting and target points, the A* algorithm
exhibits longer path planning times and generates longer paths. This observation highlights
the advantages of the IIFDS algorithm over the A* algorithm in terms of faster response
times and shorter planned paths. Particularly, when there are direct obstacles along the
path, the execution time for the A* algorithm in path planning can increase significantly. For
instance, when considering target points such as (10, 10, 9), both algorithms yield similar
path lengths of approximately 17.854283 m and 19.102506 m, respectively. However, the
time taken differs significantly, A* requiring 346.934560 s while IIFDS only needs 0.573924 s.
This indicates a substantial difference of approximately 605×. When considering the four
destination points, the length of the planned paths does not differ significantly. However,
there is a significant difference in the time consumption.
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Table 2. Performance comparison of different algorithms in static obstacle scenarios, and all bolded
data represents extreme values.

Destination
Time (s) Length (m) Mean Direction Angle (deg) Max Direction Angle (deg)

IIFDS A* IIFDS A* IIFDS A* IIFDS A*

(10,10,10) 1.014391 131.837413 18.565024 19.127552 0.543250 8.4375 1.867074 49.867805
(10,10,9) 0.573924 346.934560 17.854283 19.102506 0.562810 15.309670 1.781431 49.867805
(10,9,10) 0.672776 36.556171 17.743238 18.147479 0.489524 9.000000 1.845807 49.867805
(9,10,10) 0.568327 45.466717 18.192898 18.214942 0.702289 12.649041 2.781137 67.500000

From Figure 10 and Table 2, it is evident that for all anticipated planned paths, the A*
algorithm exhibits larger turning angles and more pronounced changes in direction. These
large turning angles can lead to severe control oscillations, thereby significantly impacting
the stability of the control system. Furthermore, such abrupt fluctuations can also cause
damage to the actuation mechanism. On the other hand, the IIFDS path planning algorithm
generates smoother and more seamless paths, which are characterized by fewer abrupt
changes in direction.
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Figure 10. Comparison of path planning of A* and IIFDS methods. All solid lines in the figure
represent paths planned by the Astar method, while dashed lines represent paths planned by the
IIFDS method. The colors indicate different endpoints: red represents the endpoint (10,10,10), green
represents the endpoint (10,10,9), blue represents the endpoint (10,9,10), and cyan represents the
endpoint (9,10,10).

Based on the observations from Figure 10 and Table 2, the following conclusions can
be drawn. The IIFDS path planning algorithm exhibits better real-time performance, as
it generates shorter paths with higher smoothness. These characteristics make it more
suitable for real-time control applications.

4.2. Dynamic Obstacle Avoidance and Path Planning

The IIFDS algorithm is designed to address dynamic obstacles by enabling the real-
time monitoring of their positions and velocities. Based on its own position, the algorithm
plans reference waypoints for the next control cycle. Different IIFDS parameters yield
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varying results in terms of path length and obstacle avoidance effectiveness. Therefore,
in this scenario with the same start/end points and dynamic obstacles, different IIFDS
parameters are set to assess their impact on path planning. This analysis aims to identify
the most suitable parameters for practical obstacle avoidance environments. The start and
end coordinates remain as (0, 0, 0) and (10, 10, 10), respectively.

The dynamic obstacle environment consists of three spherical obstacles located initially
at (5, 5, 7.5), (3, 2, 6), and (8, 8.5, 8.5), with radii of (0.5, 0.4, 0.5), respectively. These obstacles
move at a linear velocity of 2 m/s along the x-axis with cosine direction variation and 1 m/s
along the y-axis with sine direction variation, while maintaining a fixed position along the
z-axis. The IIFDS path planning controller is configured with five different parameter sets,
as in Table 3. Each of the aforementioned parameter sets produces a distinct planned path
(path1, path2, path3, path4, path5).

Table 3. Different IIFDS parameters for dynamic obstacles scenario of path planning.

Parameters Dynamic Coefficient λ Reaction Coefficient ρ Reaction Coefficient σ Tangential Reaction Coefficient θ

Path1 5 1.5 0.5 0.1
Path2 15 1.5 0.5 0.1
Path3 5 0.5 0.5 0.1
Path4 5 1.5 1.5 0.1
Path5 5 1.5 0.5 0.5

Based on Figure 11 and Table 4, it is evident that among the five parameter sets, path3
stands out with the shortest path length of 17.334920 m. With the exception of path4,
which experiences a substantial increase in length, the path lengths of the remaining four
sets are approximately equal. Thus, it can be inferred that the parameter σ significantly
affects the path length, whereas the other parameters have a relatively minor influence on
it. Regarding planning time, path3 has the shortest duration, 24.268841 s, suggesting that
the parameter ρ has a significant effect on the planning time. Furthermore, as the parameter
value decreases, the planning time decreases accordingly. The path labeled “path3” exhibits
both the lowest average angle, 0.1617 deg, and the smallest maximum angle, 1.200126 deg,
of direction. Referring to Figure 11, it is evident that a significant alteration occurs in
the path when the reaction coefficient shifts from 0.5 to 1.5. The change in this particular
parameter is much more pronounced compared to the three other parameters, which also
underwent a threefold change. Hence, it becomes apparent that a more gradual adjustment
is necessary for this parameter.

Table 4. Performance comparison of different algorithms in dynamic obstacle scenarios, and all
bolded data represents extreme values.

Parameters Length (m) Time (s) Mean Direction Angle (deg) Max Direction Angle (deg)

(Path1)λ = 5, ρ = 1.5, σ = 0.5, θ = 0.1 17.488965 31.574731 0.736420 9.629480
(Path2)λ = 15, ρ = 1.5, σ = 0.5, θ = 0.1 17.512065 31.236525 0.867715 9.679838
(Path3)λ = 5, ρ = 0.5, σ = 0.5, θ = 0.1 17.334920 24.268841 0.161700 1.200126
(Path4)λ = 5, ρ = 1.5, σ = 1.5, θ = 0.1 19.144417 31.804764 0.965932 6.882223
(Path5)λ = 5, ρ = 1.5, σ = 0.5, θ = 0.5 17.480835 30.959117 0.753329 9.309696

4.3. Parameter Selection and Trajectory Tracking

From the paths planned in the above scenarios, a typical path is selected correspond-
ingly to use the NMPC controller for tracking control, to test the influence of various
variable parameters on the tracking effect. The NMPC is utilized for tracking planned paths
in environments with both dynamic and static obstacles. The cost function is designed to
incorporate various objectives, including position deviation, velocity deviation, and control
input magnitude. Different weight parameters are set to compare the tracking performance.
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Figure 11. Different parameters of IIFDS for path planning, the paths of different colors correspond
to different planning parameters as indicated in Table 4.

Moreover, the prediction horizon directly influences the performance of the control
system and computational burden. The open-loop sampling time is generally required to
cover the transient response of the open-loop system. According to Figure 9 in the refer-
enced literature [30], the open-loop response time of the BlueRov2 system is approximately
5 steps.

According to the MATLAB interpretation [31], providing a prediction horizon of
1–2 times the open-loop response time is deemed appropriate. Simulation results indicate
that the computational time for 10 prediction horizons increases by nearly 2 times, but the
performance remains essentially unchanged; it is suitable to set the horizon to N = 5 for
all scenarios.

The initial state x0 = 012∗1, the initial control input is u = 08∗5, in which 5 represents
the prediction horizon, the upper and lower bounds for the control input are set to 40 and
−40 respectively, and the state variable is constrained within the range of 0 to 10. According
to reference [20] and the Equation (40), it is evident that a higher weight imposes a stronger
constraint on the corresponding variable, resulting in a smaller range of variation. Therefore,
by setting different numerical values, the impact of various weights on the simulation
results is compared, and an appropriate weight is chosen as an experimental parameter.

Case 1. Different weight parameters for velocity and drive force.

Different weight coefficients ω2, ω3 are selected to compare the variations in velocity
and control inputs during the path tracking process. The evaluation metrics include
maximum values and stability.

Here, the planning path IIFDS path3 is chosen as the reference path. The velocity
weight matrix ω2 is set to 906∗1, 306∗1, and 106∗1, while the control input weight matrix
is set to 0.26∗1, 16∗1 and 56∗1, respectively. These weight ranges are selected based on
reference [20] and empirical knowledge.

Figure 12 illustrates the impact of different weights on velocity. It is evident that
when ω2 = 906∗1, the velocities u and r are minimized, but other velocity components,
particularly v, exhibit significant fluctuations. In contrast, with a weight coefficient of
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ω2 = 106∗1, the constraints on velocity are relatively lax, often resulting in abrupt transitions
from one extreme to another. Therefore, among the three parameters mentioned, ω2 = 306∗1
demonstrates the most stable behavior.
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Figure 12. The impact of variable weights on velocity.

Figure 13 depicts the influence of weights on driving force. For ω3 = 0.26∗1, the
driving forces experience minimal constraints, leading to both substantial fluctuations and
frequent reaching of limit values. In the case of ω3 = 56∗1, the driving forces are subject to
maximum constraints, yet it is noteworthy that both the minimum and maximum driving
forces occur under this parameter scenario among the three weights. It is observed that at
ω3 = 16∗1, all driving forces exhibit relatively smooth control processes.

Case 2. Different weight parameters for tracking the path planned using A*.

Among them, the static path is selected to track the path towards the target point
(10, 10, 10) using A*. As shown in Table 5 and Figure 14, it can be observed that for different
control parameters, the average path deviation is minimized when ω1 is set to 2000, with
a value of 0.01384 m. The maximum path tracking deviation is 0.068 m. As the ω1 value
decreases, the tracking performance deteriorates. Among the paths, path4 exhibits the
worst tracking performance, with a path tracking deviation of 0.4282 m when ω1 is set
to 50. The maximum path tracking deviation for this case is 1.429 m. Furthermore, from
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the four tracked paths, it is evident that NMPC has the ability to anticipate paths with
larger turning angles and generate smoother angular trajectories. From Figure 15, it can
be observed that the position and orientation stabilize around the 13th s. Similarly, from
Figure 16, the velocity and angular velocity also stabilize around the 13th s. Furthermore,
as shown in Figure 17, the propulsive forces reach stability around the 13th s. All three
variables exhibit mutual consistency. Additionally, the eight driving force variables remain
stable between −40 and 20 throughout the execution process, consistently within the range
of positive and negative 40.
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Figure 13. The influence of different weights on driving force.
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Table 5. Different NMPC parameters for trajectory tracking.

Path Parameters Mean Variance (m) A*/IIFDS Max Variance (m) A*/IIFDS

path1
ω1 = 20006∗1

0.01384/0.01386 0.068/0.058ω2 = 306∗1
ω3 = 18∗1

path2
ω1 = 10006∗1

0.04752/0.01586 0.3867/0.072ω2 = 306∗1
ω3 = 18∗1

path3
ω1 = 4006∗1

0.18369/0.01628 0.9737/0.082ω2 = 306∗1
ω3 = 18∗1

path4
ω1 = 506∗1

0.4282/0.01725 1.429/0.087ω2 = 306∗1
ω3 = 18∗1

 

     

  

 

 

  

 
  

 
  

 

     

 

  

     

  

 
 

       

  

     

           

         

     

     

     

     

Figure 14. Comparison of different weight parameters for A* planned path tracking, the paths of
different colors correspond to different weight coefficients in Table 5.

Case 3. Different weight parameters for tracking the path planned by IIFDS.

The path for tracking the dynamic obstacle was selected from Table 3, specifically
path3. Different ω1, ω2, ω3 parameters were chosen from Table 5 to track the path. The
tracking results can be seen in Figure 18 and Table 5. It is evident that the parameter ω1 has
a negligible impact on the tracking performance.
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Figure 15. Position of the trajectory tracking for A* Path, the red, green, and blue on the left represent
position N, E, D respectively, and on the right, the red, green, and blue represent attitude angle φ, θ,
ψ respectively.
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Figure 16. Velocity of the trajectory tracking for A* Path, the red, green, and blue on the left represent
linear velocities u, v, w respectively, and on the right, the red, green, and blue represent angular
velocities p, q, r respectively.



J. Mar. Sci. Eng. 2023, 11, 2014 24 of 32

                 
   

   

 

  

  

 
  
  
  
  

 

          

          

          

          

          

          

          

          

                 

        

    

   

 

  

   

   

   

 
 
  
 
  
  

 

     

    

     

    

     

   

Figure 17. Thruster of the trajectory tracking for A* path.

 

     

  
  

 

 
  

 
 

     

 

     

  

 
       

  

     

           

     

     

     

     

     

Figure 18. Comparison of different weight parameters for IIFDS planned path tracking, the paths of
different colors correspond to different weight coefficients in Table 5.
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We selected the best-performing set of tracking results from all the aforementioned
paths and observed the various state variables and control quantities during the tracking
process. From Figures 15 and 19, it can be observed that the position exhibits a nearly linear
variation during the tracking process. The attitude quickly adjusts to the desired angle at
the beginning of the tracking process and remains relatively stable throughout. Similarly, as
seen in Figures 16 and 20, the velocity and angular velocity rapidly adjust to their operating
values and maintain constant values. Upon approaching the vicinity of the target point,
they quickly return to zero. As seen in Figures 17 and 21, the thrust force, constrained by a
maximum value, initially undergoes several adjustments to reach the maximum value of
40 N and then swiftly returns to a constant value [32]. After reaching the target point, a
reverse force may appear to adjust the attitude, which aligns with the control logic.

Considering the overall situation, a larger weight coefficient imposes greater con-
straints on the corresponding quantity. However, a balance needs to be struck between the
magnitude and stability of the corresponding quantity. Based on the above description,
the parameter ω1 = 2000 exhibits excellent performance in path tracking. The weight
coefficients ω1 = 20006∗1, ω2 = 306∗1, and ω3 = 16∗1 represent a relatively well-performing
set of weights.
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Figure 19. Position of the AUV in the tracking process, the red, green, and blue on the left represent
linear velocities N, E, D respectively, and on the right, the red, green, and blue represent angular
velocities φ, θ, ψ respectively.
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Figure 20. Velocity of the AUV in the tracking process, the red, green, and blue on the left represent
linear velocities u, v, w respectively, and on the right, the red, green, and blue represent angular
velocities p, q, r respectively.

                 
   

   

 

  

  

 
  
  
  
  

 

          

          

          

          

          

          

          

          

                 

        

   

 

  

   

   

 
 
  
  
  
 
 

     

    

     

    

     

   

Figure 21. Thruster of the AUV in the tracking process.
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5. Experimental Results

To validate the effectiveness of the designed IIFDS-NMPC control framework in
practical applications, we conducted the following test scenario. In a water tank measuring
10 m long, 3 m wide, and 1.2 m deep, six obstacles were randomly placed. Among them,
four were static obstacles, while the other two were dynamic obstacles moving in a straight
line at a velocity of vobs = 1 m/s. All obstacles are considered to be spheres with a radius
of 0.25 m. The positioning of the AUV and obstacles was carried out using the approach
described in [33], which combines image- and radar-based localization systems. The
positioning system and the AUV system were independent systems that communicated
with each other through a wireless serial port connection.

The AUV’s main structure followed that of BlueRov2-heavy, with the main control
unit replaced by a self-designed control board based on STM32F407 and NVIDIA NX2.

The central processor in NX2 is a 6-core NVIDIA CarmelArmV 64-bit CPU. An STM32
unit is responsible for gathering all external environmental information and transmitting it
to the CPU. The CPU, based on this information, executes the hybrid layer control structure
designed in this paper, namely the IIFDS-NMPC control flow. The Apollo platform incor-
porates three solvers (SQP, Interior Point OPTimizer (IPOT), Operator Splitting Quadratic
Programming (OSQP)), with OSQP as the default choice. This preference is driven by its
faster solution-finding capabilities, as it does not account for curvature constraints. How-
ever, a significant drawback is its inability to guarantee curvature continuity for smoothed
points. As a result, the AUV system seeks a compromise between computation time and
accuracy, choosing the SQP solver. Utilizing the built-in optimal solver SQP in Python +
Pyomo to solve the optimal control with constraints, it generates control commands and
sends the first set of control commands to the STM32 interface board. Subsequently, the
interface board forwards the control commands downstream to the drive unit. In this
process, the STM32 serves as the interface board, interacting with all peripherals and trans-
mitting data to the processor. Meanwhile, the role of the NVIDIA NX2 is to perform path
planning and calculate the optimal control quantities for NMPC. The hardware architecture
diagram is shown in Figure 22, and the optimization algorithm for NMPC used to obtain
control signals and the IIFDS were implemented as in Figure 23. The AUV was powered by
batteries during the tests, and the control operated at a frequency of 100 Hz.
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Transceiver Model

Power Converter
DC 24V/12V/5V
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Control Board

NVIDIA NX2 CPU

Motor Drive 

Module

Depthometer

Gyroscope
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DC 5V
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Data
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Figure 22. Hardware control system block diagram for AUV.
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Figure 23. Path planning and tracking control flow chart.

As the center of the AUV is located at a depth of 0.5 m, the obstacles are set at a
fixed depth of 0.5 m, and the obstacle avoidance parameter θ for IIFDS was set to 0. The
other parameters were set according to the optimal simulation parameters for path3 in
Table 3, with λ = 5, ρ = 0.5, and σ = 0.5. The weight parameters for NMPC were set
according to path1 in Table 5, with ω1 = 20006∗1, ω2 = 306∗1, and ω3 = 18∗1. The choice
in prediction horizon (N = 5) has a crucial impact on the actual control cycle in practical
applications. Therefore, through comparative measurements, a prediction horizon of N = 5
was determined.

The starting point was (0, 0, 0), and the target point relative to the starting point had
coordinates of (8, 2, 0). The initial speed of the AUV was 1 m/s. The actual path planning
and tracking results are shown in Table 6 and Figure 24, respectively.

Figure 25 illustrates the position and orientation measurements, which reach the target
position around the 9th s. According to the collected data, the RMS of the path tracking
is calculated to be 0.01867 m. Additionally, based on feedback from the microcontroller
unit (MCU), the actual average computation period is determined to be 0.0063 s, which
significantly satisfies the control frequency requirement of 100 Hz. Moreover, as the number
of obstacles increases, the theoretical computation period is expected to further increase,
providing additional redundancy for obstacle calculations. From Figures 26 and 27, it
can be observed that the velocity and propulsive force also reach stable values around
the 9th s. The orientation measurements, velocity measurements, and propulsive forces
are synchronized in time. Furthermore, the propulsive forces remain within the range of
positive and negative 40 N, while the torque stays within the range of positive and negative
160 N, complying with the actual constraints of the driver. The actual experimental video
can be obtained through the following link: https://youtu.be/TyMuQIc91a8 accessed on 7
October 2023.

Table 6. Real navigation and control result.

Path Tracking Deviation RMS (m) Average Computation Period (s)

0.01867 0.0063

https://youtu.be/TyMuQIc91a8
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Figure 24. Real path planning and tracking in water pool.
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Figure 25. Position of the AUV during tracking process in water pool, the red, green, and blue on the
left represent linear velocities N, E, D respectively, and on the right, the red, green, and blue represent
angular velocities φ, θ, ψ respectively.
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Figure 26. Velocity of the AUV during tracking process in water pool, the red, green, and blue on the
left represent linear velocities u, v, w respectively, and on the right, the red, green, and blue represent
angular velocities p, q, r respectively.
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6. Conclusions

In this study, we proposed a dual-layer control strategy, IIFDS-NMPC, for path plan-
ning and tracking control in complex obstacle environments. The upper layer utilized
IIFDS for path planning, while the lower layer employed NMPC for trajectory tracking.
By simulating dynamic and static obstacle environments, we selected the planning pa-
rameters for IIFDS to generate paths that are as short as possible while minimizing the
time taken, and the planned path was the smoothest. NMPC weights have a direct impact
on the tracking deviation and control command during the tracking process. Through
comparative experiments, the selected parameters are ω1 = 2000, ω2 = 30, and ω3 = 1,
ensuring the path tracking followed the planned trajectory as closely as possible, while
keeping the control and state variables within their respective limits. Through real platform
testing experiments using the BlueRov2, the designed dual-layer control strategy fulfilled
the maximum control requirement of 100 Hz, and the path tracking accuracy was within a
range of 0.02 m. This control strategy meets the requirements for practical applications.

Although the path planning strategy, IIFDS, attempted several fixed measurements
that proved suitable for the application, the parameters of this planner remained unchanged
throughout the entire planning process and did not consider dynamic adjustments based
on the AUV’s position and the changing external obstacle environment. These parame-
ters are not optimal. Therefore, future research will focus on dynamically adjusting the
optimal parameters.
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