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Abstract: Due to the complex hydrogeological conditions in coastal regions, the use of internal
bracing systems is necessary for supporting coastal foundation pits. This paper introduces a novel
prefabricated foundation pit bracing system based on Hollow Concrete-Filled Steel Tube (H-CFST)
structures that can be reused, offering significant economic and societal benefits. However, there is a
severe lack of research on the application of H-CFST bracing systems. Through model tests and finite
element simulations, the load-displacement characteristics and failure modes of prefabricated H-CFST
bracing under transverse bending were investigated. The study revealed that when a wall thickness
of 1.5 d was chosen, the self-designed hoop effectively mitigated strength and stiffness reduction at
the bracing connection point. When the load reached 150 kN, the outer steel tube of the H-CFST
components experienced localized yielding, and when the load was increased to 300 kN, the end
supports exhibited cracking. Finite element analysis provided a more accurate prediction of bracing
failure at 147.18 kN, and it offered valuable insights for optimizing the bracing design. Based on the
above research, theoretical methods for calculating the bearing capacity of each bracing component
under transverse bending conditions have been proposed and validated against experimental results.

Keywords: coastal foundation pit; hollow concrete-filled steel tube; interior bracing; transverse
bending performance; model test; finite element analysis; load-displacement characteristics

1. Introduction

As a transitional zone between the continental interiors and the open ocean, coastal
regions represent the most economically dynamic and project-intensive areas in China [1].
Due to the complex hydrogeological conditions in coastal regions, the use of internal
bracing systems for supporting coastal foundation pits is essential [2–4]. Taking the ex-
ample of metro construction in the coastal city of Qingdao in northern China, a large
number of coastal metro foundation pits, as shown in Figure 1, have been formed in urban
development in recent years to meet the requirements of economic development and trans-
portation [5]. These foundation pits face numerous engineering challenges, such as the
fluctuation of groundwater levels [6]. The phenomenon of coastal tides leads to continuous
changes in the groundwater levels around the foundation pits, as depicted in Figure 2,
significantly impacting the safety of the support structures [7–10]. Since rivers in coastal
areas are usually connected to the sea, tidal-induced changes in the river’s water level can
even affect foundation pits that are relatively far from the sea. Consequently, the majority of
coastal metro foundation pits in the Qingdao region are supported using internal concrete
bracing systems [5,6,11].
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fering considerable innovation and practical significance. Additionally, eccentric com-

pression fracture and bending fracture are common modes of failure in the bracing of 
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bracing system under transverse bending conditions will establish an important theoreti-

cal foundation for its widespread adoption. 
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Figure 2. Groundwater level of a coastal foundation pit on Qingdao Metro Line 8.

However, traditional concrete internal bracing systems have issues related to fac-
tors such as weight and reusability [12,13]. Due to the presence of an outer steel section,
concrete-filled steel tube (CFST) structures improve the bending and shear strength of
core concrete [14,15], with advantages including high stiffness, corrosion resistance, and
reusability [16]. The steel tube with hollow concrete infill, abbreviated as H-CFST, de-
veloped on this basis can significantly reduce the weight of the member and retain the
advantages referred to in [17,18]. When used as interior bracing in the foundation pit in
coastal areas, the H-CFST can avoid many problems caused by traditional concrete interior
bracing, offering considerable innovation and practical significance. Additionally, eccentric
compression fracture and bending fracture are common modes of failure in the bracing of
foundation pits. Therefore, studying the mechanical response of the aforementioned new
bracing system under transverse bending conditions will establish an important theoretical
foundation for its widespread adoption.

Several in-depth studies have been conducted on the load-bearing performance and
failure modes of solid/hollow CFST structures, forming a relatively complete theoretical
system. The relevant research findings are shown in Table 1.
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Table 1. Previous studies on the subject.

Researchers Component
Form Stress State Researchers Component

Form Stress State

Kuranovas and
Kvedaras [18]

H-CFST
columns Axial load Zhong and Xu [16] H-CFST

columns Axial load

Han et al. [19] H-CFST
columns Axial load Ritchie et al. [20] H-CFST

columns Blast loading

Wang et al. [21] H-CFST
columns Lateral impact Yu et al. [22] (H)CFST

columns Axial

Ouyang et al. [23] CFST
columns Axial load Ekmekyapar et al. [24] CFST

columns Axial load

Han et al. [25] CFST
columns Pure torsion Uenaka and

Mizukoshi [14]
CFST
beams Bending-shear

Zhang et al. [26] CFST
beams Axial load Guo et al. [27] CFST

beams Axial load

Mizan et al. [28] CFDST
columns Axial load Wang et al. [29] CFDST

columns Pure torsion

Kuranovas and Kvedaras [18] analyzed the performance of H-CFST compression short-
column components at different stress states. The results indicated that in the members with
a single-layer steel tube and concrete core, the triaxial stress state occurs only at the contact
surface between the concrete core and the steel tube. Zhong and Xu [16] and Han et al. [19]
also studied the axial compression behavior of H-CFST columns. They both concluded
that the performance of H-CFST columns varied systematically and continuously with
changes in confinement ratios and hollow ratios. Yu et al. [22] proposed a unified formula
for calculating the compressive capacity of composite circular CFST columns with hollow
or solid concrete cores. The formula was further modified by introducing correlation
coefficients that were verified through experiments. Ouyang et al. [23] established a new
finite element model based on a confining stress field. This model introduced the lateral
expansion of concrete and the plastic behavior of steel pipes. Through the simulation of
92 square CFST specimens, it was found that increasing the fillet radius could improve
the post-peak performance of square CFST columns. Based on linear elasticity theory.
Ekmekyapar et al. [24] conducted experiments on short, middle-length, and long columns
having circular CFST components. The results showed that the bearing capacity of the
columns was directly affected by the aspect ratio and the relative slenderness ratio, making
these important design parameters for the CFST columns. Han et al. [25] conducted a
pure torsion analysis on CFST columns using ABAQUS 2022. The model calculations were
consistent with the experimental results, demonstrating the necessity of using theoretical
models to determine the ultimate torsional strength of the composite components. Mizan
et al. [28] argued that existing fiber element models and design specifications do not
consider the local buckling of the outer steel tube of concrete-filled double-skin steel tube
(CFDST) columns, which might result in an overestimation of the ultimate axial capacity of
the column. The concept of effective width was introduced into the calculation model to
study the axial compressive straining response in short columns consisting of concrete-filled
rectangular steel tubes under various design variables, and an equation was proposed for
evaluating the ultimate axial capacity of such columns.

Among these, only a few researchers have studied the mechanical properties of H-
CFST components. However, what differentiates the research in this paper is that the
aforementioned studies focus on H-CFST columns, which are primarily column-type struc-
tures designed to withstand vertical loads. Furthermore, the loading conditions in these
studies are varied [16,18–21]. Most researchers have investigated the mechanical behavior
of H-CFST columns under axial compression [16,18,19], while others concentrated on the
response of H-CFST columns to impact loads [20,21]. Only Uenaka and Mizukoshi [14],
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Zhang et al. [26], and Guo et al. [27] conducted research on the mechanical behavior of
CFST beam-type structures under load. However, the aforementioned studies focus on
solid CFST components rather than H-CFST components. Thus, there is still a lack of
reliable theoretical and applied research support for the use of H-CFST components as
interior bracing for foundation pits.

This study proposes a prefabricated H-CFST interior bracing system for coastal foun-
dation pits such that the interior bracing system consists of the H-CFST components, hoops,
and end supports. The flowchart of the experimental research plan is shown in Figure 3.
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In order to study the transverse bending performance of prefabricated H-CFST brac-
ing, a transverse bending test model with a scale of 1/2.5 of the original bracing was
designed and developed. Through model tests and finite element analysis (FEA), the load-
displacement characteristics, strain distribution, and failure modes of the prefabricated
H-CFST bracing under transverse bending were investigated. Theoretical methods for cal-
culating the bearing capacity of bracing components under transverse bending conditions
have been proposed and validated against experimental results. This study has provided a
reference for the field of costal foundation pits support.

2. The Model Test
2.1. Design and Fabrication of the Experimental Model Specimen

This paper reports the development of a test specimen that is on a scale of 1/2.5 of
the coastal foundation pit bracing of a Qingdao Metro Line 8 station, taking into account
the best site conditions available for the test. The original bracing was designed to have
the same strength as the corresponding concrete bracing. It had a length of 20 m and
was divided into left and right H-CFST components, with the two H-CFST components
connected by the self-designed “hoop”. The H-CFST component was of Q355B steel, the
outer diameter was 700 mm, and the wall thickness of the steel tube was 6 mm. The
fabrication of the concrete core of grade C80 material with 100 mm wall thickness applied
centrifugal technology. The hoop was 35 mm thick and made of Q355B material. The end
supports consisted of 30 HRB400 steel bars with a diameter of 20 mm, which overlapped
with the steel bars inside the top beam. A schematic diagram of the experimental model is
shown in Figure 4.
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Figure 4. Schematic diagram of the experimental model.

The experimental model had a length of 9000 mm and a calculated span of 8000 mm.
The mid-span section of the experimental model had a diameter of 280 mm, and the wall
thickness of the steel tube was 2.4 mm. In order to investigate the performance of bracing
under transverse bending, a concentrated force was applied at the intermediate node
adjacent to the hoop connection in the middle of the span. The concentrated load was
applied using a special supporting loading block so as to avoid local failure in the region of
the load introduction and to better simulate the loading in the on-site system.

2.1.1. H-CFST Component Model

The two parts of the prefabricated H-CFST bracing model used for the experiment
were similar, and they were connected with a hoop. Their steel material was Q235B, and
the internal filling was of grade C30 concrete. The cross-section of the bracing reduced to
a scale of 1/2.5 of the original size is shown in Figure 5. The H-CFST component model
overlapped with the reinforcement cage of the columns of both ends and was fixed after the
poured concrete hardened. One end of 12 HRB400 steel bars with a diameter of 20 mm was
welded to the steel pipe of the H-CFST component model, and the other end overlapped
with the reinforcement cage inside the column, as shown in Figure 6. Moreover, end plates
of 10 mm thickness were set at the nodes at both ends of the bracing to prevent concrete
from being injected into the bracing during pouring. The size of the end plate is shown in
Figure 7. The schematic diagram of the intermediate node (Hoop) connection is shown in
Figure 8.
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The H-CFST component model was connected to the hoop by setting a “shear ring”
structure at the intermediate node, and the shear ring was welded to the steel pipe of
the H-CFST component at the factory with equal intensity. The groove on the shear ring
facilitated alignment operation during the bracing connection and improved the stability
of the bracing during tension.
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2.1.2. Hoop Model

Two H-CFST component models were connected using a hoop of two-halves connected
with bolts, and the dimensions are shown in Figure 9.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 23 
 

 

 

Figure 9. Schematics of one-half of the hoop model. 

2.1.3. Counterforce Structure and Supporting Loading Block 

The main body of the reaction structure was made of reinforced concrete, including 

the foundations and columns of both ends. The cross-sectional dimensions of the columns 

made of C35 concrete were 500 × 500 mm. The foundation was of grade C35 concrete, with 

a cross-sectional size of 500 × 800 mm. The distance between the top of the foundation and 

the bottom of the bracing model was 300 mm. The dimensions of the supporting loading 

block are shown in Figure 10. 

 

Figure 10. Main dimensions of the supporting loading block. 

The supporting loading block consisted of an arc-shaped steel plate, two rib plates, 

and a bottom plate. All these components were of Q235B steel of 20 mm thickness. 

2.1.4. Fabrication of the Experimental Model 

The process of lifting, assembly, and concreting the experimental model on site are 

presented in Figure 11. 

In the fabrication process of the experimental model, the self-designed hoop structure 

facilitated the seamless connection of two H-CFST components. This was achieved by 

avoiding the traditional flange joint method, which requires the H-CFST components to 

be rolled along their longitudinal axes to align the bolt holes [30–32]. Due to the substantial 

volume and weight of internal bracing, this particular step consumed significant man-

power and resources during actual construction. Therefore, the self-designed hoop struc-

ture offered notable advantages in terms of both cost effectiveness and construction con-

venience. 

Figure 9. Schematics of one-half of the hoop model.

The hoop material was Q235B, with a thickness of 14 mm and a slot depth of 10 mm.
Both parts of the hoop were provided by rib plates of 10 mm thickness, and the upper and
lower parts of the hoop were connected using M30 bolts of grade 12.9.

2.1.3. Counterforce Structure and Supporting Loading Block

The main body of the reaction structure was made of reinforced concrete, including
the foundations and columns of both ends. The cross-sectional dimensions of the columns
made of C35 concrete were 500 × 500 mm. The foundation was of grade C35 concrete, with
a cross-sectional size of 500 × 800 mm. The distance between the top of the foundation and
the bottom of the bracing model was 300 mm. The dimensions of the supporting loading
block are shown in Figure 10.
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Figure 10. Main dimensions of the supporting loading block.

The supporting loading block consisted of an arc-shaped steel plate, two rib plates,
and a bottom plate. All these components were of Q235B steel of 20 mm thickness.

2.1.4. Fabrication of the Experimental Model

The process of lifting, assembly, and concreting the experimental model on site are
presented in Figure 11.
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Figure 11. Fabrication process of the experimental model: (a) Lifting; (b) Mounting; (c) As concreted.

In the fabrication process of the experimental model, the self-designed hoop struc-
ture facilitated the seamless connection of two H-CFST components. This was achieved
by avoiding the traditional flange joint method, which requires the H-CFST compo-
nents to be rolled along their longitudinal axes to align the bolt holes [30–32]. Due to
the substantial volume and weight of internal bracing, this particular step consumed
significant manpower and resources during actual construction. Therefore, the self-
designed hoop structure offered notable advantages in terms of both cost effectiveness and
construction convenience.

2.2. Arrangement of Measuring Points
2.2.1. Arrangement of Strain Measuring Points

The strains in the model structure were measured using the XL2118B strain monitoring
instrument (Xieli Technology Development Co., Ltd., Qinhuangdao, China). The employed
strain gauges were 120-20AA (Guangce Electronics Co., Ltd., Yiyang, China) with a sensi-
tivity of 20 mV/V. A total of 8 monitoring sections were arranged on the bracing, and their
positions are shown in Figure 12. Sections 1 and 8 were set at a distance of 0.5 m from the
columns of both ends. Section 5 was set at the centerline of the middle node of the model.
Sections 4 and 6 were situated on the H-CFST component at both edges of the intermediate
node hoop, with Section 4 on the centerline of the supporting loading block and Section
6 set at a distance of 0.5 m from Section 5. The distance between Sections 3 and 4 was
0.5 m, while Sections 2 and 7 were set on the centerline of the midspan of the corresponding
H-CFST component model. The layout of the measurement points is shown in Figure 12.
The arrangement of the strain measurement points and measurement conditions are shown
in Figure 13.
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strain gauge, (c) Measuring equipment.

The meaning of each measuring point is as follows: “Z” indicates that the detecting
direction of the measuring point is parallel to the bracing axis; the first number represents
the section number; when the second number is “1”, it indicates that the measuring point
is located on the upper side of the bracing; when the second number is “2”, it indicates that
the measuring point is located on the lower side.

2.2.2. Arrangement of Displacement Measuring Points

The displacements of the bracing were measured using the CVok-DU191 digital display
dial gauges and their supporting instrument (Xiwaka Precision Measuring Instrument Co.,
Ltd., Dongguan, China), having a range of 100 mm and accuracy of 0.01 mm. A total of
7 monitoring sections were arranged on the bracing, and the positions of the sections are
shown in Figure 14a. The layout of the experimental model and the general arrangement
of the displacement measurements are shown in Figure 14b,c.
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displacement monitoring, (b) Setup for measuring the displacements, (c) Data acquisition system of
the displacement measurements.

Sections 1 and 7 were set at a distance of 0.5 m from the columns of both ends.
Section 5 was set at the centerline of the middle node of the bracing. Section 4 was set at
the centerline of the supporting loading block. The distance between Sections 3 and 4 was
0.5 m. Sections 2 and 6 were at the centerline of the corresponding span of the H-CFST
component model.

2.3. Loading Method of the Experimental Model

The single-point concentrated load method was used for the experimental model, with
the load situated 4.0 m from the central section to the columns of both ends. The supporting
loading block was directly below the loading point, and a ZP-30T jack was placed below
the supporting loading block.

According to previous studies [18,24,28,33], the loadings of the specimen were ap-
plied in a graded manner and arranged as increasing steadily at a rate of approximately
10 kN/min. Each loading procedure consisted of 10 steps such that each loading level was
kept for 5 min. Strain and displacement data were automatically collected at one-second
intervals. To indirectly assess the condition of the bracing, test loads of 100 kN, 150 kN,
200 kN, and 300 kN were applied consecutively to a test model during loading cycles.

2.4. Model Test Results and Analysis
2.4.1. Load-Displacement Diagrams of the Experimental Model

Figure 15 shows the load-displacement diagrams for the maximum test loads of 100 kN,
150 kN, 200 kN, and 300 kN (taking the mean measured values of displacement measuring
point 4 during the loading process of each level).
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point BF-4.

It can be seen that the vertical displacement of the model gradually increased with
the increasing test load, and the slopes of each curve were almost equal when the load
was less than 150 kN. Compared with the curves of 100 kN and 150 kN, the curves of
200 kN and 300 kN showed a sudden increase in the slope at the later state of loading, and
the variation could be divided into two phases, of which the first was is the elastic phase,
where the vertical displacement showed a linear correlation with the test load. The second
phase was the elastoplastic one, where the steel tube of the H-CFST component began to
yield and the vertical displacement of the member accelerated with the increasing test load,
resulting in a gradually increasing slope of the curve. This is consistent with the description
in reference [33]. It is worth noting that the curves of 200 kN and 300 kN had different
starting points at the elastoplastic stage. The starting point of the 200 kN curve was about
150 kN, and that of the 300 kN curve was about 200 kN. The reason for this is that the yield
strength of the steel tube in the experimental model experiences strain hardening when
loaded up to 200 kN. This is consistent with the description in references [34–36].

2.4.2. Variation of Strains with the Load in the Experimental Model

Figure 16 presents the development of strains at each measuring point up to a maxi-
mum load of 200 kN, and a good working state was maintained at each measuring point
while the strains at the upper and lower measuring points of the experimental model
increased with the load.
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The slope of the curves increased significantly after exceeding 150 kN. This behavior is
consistent with the one mentioned earlier. When the load was 150 kN, the maximum strain
value at Z-41 was 918.4 µε, and the respective stress was 203.4 MPa, i.e., the bracing model
was on the verge of yielding. During the loading process, the strain distribution of the
upper and lower measurement points was basically symmetrical along the neutral plane of
the model, which is consistent with the description in reference [34]. The maximum strain
values of each measurement point were distributed within three intervals. Among them,
the greatest strains appeared at the loading point, with a maximum value of 1654.3 µε at
Z-41. The strains at the nodes of both ends of the bracing model were slightly smaller, and
the strains in the middlemost section of the two H-CFST components were the smallest,
with a minimum value of 49.8 µε at Z-72. The straining at the intermediate hoop was
not significant compared to the ends of the H-CFST component model, and the strain of
1110.9 µε at the measurement point Z-51 was significantly greater than the strain of 238.2 µε
at the lower measurement point Z-52.

2.4.3. Failure Mode of the Experimental Model

As shown in Figure 15, a vertical displacement of 29.93 mm occurred at the BF-
4 measuring point when the test load was 150 kN. At this point, the model exhibited
significant bending deformation, and the steel pipe of the model experienced yielding
above the loading point and at both ends of the pipe, which is consistent with the results in
the references [14,37,38]. Thus, the failure took place at 150 kN. According to the failure
criterion based on the deformation in GB 50017-2017 [39], when the cumulative vertical
displacement of the mid-span section in the model exceeded 20 mm, which corresponds to
1/400 of the span length, it should be considered failed. Therefore, the bending capacity of
the prefabricated H-CFST interior bracing system should be 100 kN.

Due to equipment limitations, the stress state of the concrete inside the steel pipe could
only be inferred from the experimental data. According to Figure 15, the elastic phase of
the load-displacement diagram at 150 kN was consistent with those at 100 kN, 200 kN, and
300 kN. If the concrete core inside the steel tube is damaged during loading, the overall
stiffness of the bracing structure should be reduced. When loading again, the slope of the
elastic part of the corresponding load-displacement diagram was expected to increase, but
this was not consistent with the test results. Therefore, it can be concluded that the concrete
inside the steel pipe was not damaged at this time.

Figure 17 presents the distribution of inelastic deformations in the test model at
loadings to different maximum values. The model undergoes inelastic deformation after
unloading from 150 kN, with a maximum value of 1.95 mm at BF-4. When unloading
from 200 kN, inelastic deformations occurred at all seven measuring points. When loading
up to 300 kN, the inelastic deformations developed rapidly, with a maximum value of
32.53 mm at BF-4 and a minimum value of 5.50 mm at BF-1. The displacement values of
each measuring point were strictly symmetrical with respect to the loading point.

After increasing the maximum load to 300 kN, cracks appeared on columns of both
ends for the supporting reactions of the bracing member, as shown in Figure 18. The
cracks basically extended 45◦ outward from the connection between the bracing model and
the column.

Based on the above results, the ultimate transverse bending capacity of the prefab-
ricated H-CFST interior bracing system was determined to be 150 kN. According to the
deformation failure criterion specified in GB 50017-2017 [39], the ultimate transverse bend-
ing capacity of the system should be taken as 100 kN. Considering the reusability of the
prefabricated H-CFST interior bracing system, the design processes should use either the
ultimate capacity under the deformation control criterion or apply a reduction factor to the
load-carrying capacity under the ultimate limit state. Additionally, the system exhibited
two typical failure modes, i.e., local yielding of the steel tube at the loading point and crack-
ing of the two end supports. The failure mode was also mentioned in references [34,40]
Therefore, the weak point of the prefabricated H-CFST interior bracing system was not at
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the connection between the two H-CFST components. The self-designed hoop effectively
mitigated or eliminated the strength and stiffness reduction phenomenon at the joints of
the entire bracing system.
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Figure 18. Cracking of concrete in the columns of both ends.

3. Finite Element Simulations

The basic requirement for the reusability of the prefabricated H-CFST interior bracing
system is that the core concrete within the H-CFST components remains undamaged. To
further investigate the condition of the core concrete after the bracing reaches the afore-
mentioned failure criteria and to explore whether numerical simulation methods can be
used to design and optimize the prefabricated H-CFST interior bracing system, a numerical
simulation approach was employed to simulate the loading process of the bracing. The
results of these simulations were subsequently validated against the experimental results
obtained from the model tests.

3.1. Material Data of the FEA Models

The material data for the FEA models are shown in Table 2.
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Table 2. Material data for the FEA models.

Material Elastic
Modulus/GPa

Tensile
Strength/MPa

Compressive
Strength/MPa

Density/
(kN/m3)

Q235B circular steel tube 200.0 235.0 235.0 78.5
C80 concrete 38.0 2.2 50.2 24.5

HRB400 rebar 200.0 400.0 / 78.5

3.2. Element Type, Element Mesh, and Boundary Condition

In order to better validate the experimental results, a finite element model of the same
size as the experimental model shown in Figure 19a was established using ABAQUS 2022.
The specific meshing details are shown in Figure 19b,c.
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Figure 19. Finite element model and mesh generated for the bracing: (a) Finite element model,
(b) Overall mesh, (c) Local mesh.

The two sides of the model were fixedly connected through reference points, and both
the concrete core and steel tube were meshed with C3D8R elements with three translational
degrees of freedom per node. Computational accuracy and efficiency were fully considered
during the meshing process, and the mesh density was increased in areas with complex
stress conditions and contact relationships.
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3.3. Constitutive Models
3.3.1. Core Concrete

The transverse bending response of concrete was analyzed using the plastic damage
model in ABAQUS 2022 [41]. The elastic modulus and Poisson’s ratio of concrete were
determined according to the recommendations of ACI Committee 318 [42]:

Ec = 4730
√

fc, (1)

µc = 0.2 (2)

Han et al. [19] proposed a stress–strain relationship for constrained concrete in com-
pression after simulating CFST components. The equivalent stress–strain model suitable
for ABAQUS 2022 finite element analysis was as follows:

y =

{
2x− x2, (x 6 1)

x
β0(x−1)η+x , (x > 1)

, (3)

where x = ε/ε0, y = σ/σ0; η = 2; σo = fc
(
N/mm2); εo = εc + 800ξ0.2 × 10−6; ξ =

As fy
Ac fck

=

α× fy
fck

; εc = (1300 + 12.5 fc)× 10−6; β0 =
(
2.36× 10−5)[0.25+(ξ−0.5)7]

( fc)
0.5 × 0.5 > 0.12.

The following stress–strain relationship was used for the concrete in tension [43]:

y =

{
1.2 · x− 0.2 · x6 (x ≤ 1)

x
0.31·σp2·(x−1)1.7+x

(x > 1) , (4)

where x = ε/εp, y = σ/σp; σp = 0.26 · (1.25 · fc)
2/3 ; εp = 43.1 · σp(µε).

3.3.2. Outer Steel

The quadratic plastic flow model [44] was used to describe the stress–strain relation-
ship for the low-carbon steel of the tube:

σs =



Esεs εs ≤ εe
−Aε2

s + Bεs + C εe < εs ≤ εe1
fy εe1 < εs ≤ εe2

fy

[
1 + 0.6 εs−εe2

εe3−εe2

]
εe2 < εs ≤ εe3

1.6 fy εs > εe3

, (5)

where εe = 0.8 fy/Es; εe1 = 1.5εe; εe2 = 10εe1; εe3 = 100εe1; A = 0.2 fy/(εe1 − εe)
2;

B = 2Aεe1; C = 0.8 fy + Aε2
e − Bεe.

3.4. Steel Tube–Concrete Interface

The contact relationship between the steel tube and its core concrete is the key factor
in ensuring the authenticity and effectiveness of the simulation results. According to
existing studies [25,45], using pressure models in the normal direction of the contact
surface and Coulomb friction models in the tangential direction can best reflect synergistic
deformations.

According to the Coulomb friction model, the contact surface between the steel tube
and concrete can transmit shear stress until it reaches a point (τl) where the shear stress is
less than the bond stress. There is a relationship, as follows:

τl = µp ≥ τb, (6)
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where µ is the frictional factor of the contact surface between the steel tube and concrete
and is taken as 0.6; and τb = 2.314− 0.0195(D/d), in which D and d are the outer diameter
and thickness of the steel pipe [45], respectively.

3.5. FEM Results and Analysis
3.5.1. Load-Displacement Diagrams of the Experimental Model

Figure 20 shows the load-displacement diagrams of the test model and the numerical
simulation under various test loads.
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(a) 100 kN, (b) 150 kN, (c) 200 kN, and (d) 300 kN.

Taking the maximum load of 200 kN as an example, when the load was 200 kN,
the vertical displacement of the mid-span section of the model was 46.12 mm, and the
FEA result was 44.39 mm. The two results were in good agreement, and the distribution
of deflection at each measuring point along the length of the component followed the
variation law of the sine half-wave curve [40,46,47]. Due to errors in the production and
manufacturing process of the bracing model, as well as certain defects in the material, the
measured vertical displacements often tended to be greater than the respective values from
the FEM analyses, which is also mentioned in references [40,48].
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3.5.2. Variation of Strains with Load in the Experimental Model

The strain distribution along the horizontal direction of the experimental model at
200 kN is shown in Figure 21.
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Figure 21. Distribution of strains along the horizontal distance in the experimental model at a load of
200 kN.

The FEA curve in the figure was obtained by calculating the corresponding numerical
simulation results. It was seen that the results of the numerical simulation were in good
agreement with the measured values.

3.5.3. Failure Mode of the Experimental Model

The FEA results of the experimental model at a load of 150 kN are shown in Figure 22.
In this case, the steel tube of the model yields at the loading position and at both ends, and
the maximum stress in the concrete core was 25.10 MPa, which was consistent with the
above inference.
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The above results indicate that the prefabricated H-CFST interior bracing system
designed based on the deformation control criterion did not experience damage to its core
concrete unless the two typical failure modes mentioned earlier occurred. Therefore, under
the condition that the prefabricated H-CFST interior bracing system was not damaged
during usage, the system could be reused multiple times. Additionally, the finite element
model established using the methods described earlier could accurately simulate the stress
response and failure modes of prefabricated bracing under transverse bending. Hence, it is
feasible to consider using numerical simulation methods for the design and optimization
of the prefabricated H-CFST interior bracing system.

4. Evaluation of Bearing Capacity

According to the experiments explained above and FEM analyses, the first yielding
appeared on the surface of the steel tube, and at increasing maximum loads, cracks would
appear in the concrete columns at both ends of the system. It may be further anticipated
that if the H-CFST component and the columns of both ends are not damaged, the steel
hoop will yield on its tensile zone. On account of the experimental results explained above,
the flexural bearing capacity of the H-CFST component, hoop and end supports should be
considered and evaluated in the design process. The maximum concentrated load of each
component in the middle of the span can be obtained by calculating the maximum bending
moments in each component and combining them with the bending moment diagram of
the bracing due to transverse loading. The flexural bearing capacity was obtained based on
the calculation results above.

The stress state of the experimental model is due to transverse bending, consisting of
normal and shear stresses in the cross-section [49]. Because the existence of shear stresses
prevents the cross-sections from remaining plane [50], the assumption of planes remaining
planes is not applicable here. However, as the shear force is constant over the entire length
of the member due to the single point load [51], the displacement due to warping of adjacent
cross-sections is uniform and the warping in the section does not change the distribution of
normal stresses evaluated based on the assumption of planes remaining planes. Therefore,
the next analyses were based on this assumption.

4.1. Bending Capacity of the H-CFST Component

According to the FEM analyses and experimental results, the maximum normal stress
in the H-CFST component appeared in the section of maximum bending, and the maximum
bending moment M was calculated as:

M = γmWsc fsc, (7)

where γm is the plastic development coefficient of the H-CFST component; Wsc is the
composite section modulus of the H-CFST component; fsc is the design value of the
combined compressive strength.

γm was expressed as:

γm = (1− 0.5ψ)
(
−0.4832θ + 1.9264

√
θ
)

, (8)

where ψ is the void fraction of the H-CFST component, which is the ratio of void area to total
area. The results indicate that the plasticity of concrete increases due to the constraint of the
steel tube, i.e., the strain corresponding to the maximum stress increases. The descending
branch of the stress–strain curve tended to be uniform [25].

4.2. Bending Capacity of the Hoop

To simplify the calculation, the longitudinal force generated between the H-CFST
component and the hoop was assumed to be fully transmitted when subjected to load.
According to the FEA and experimental results, the most unfavorable position on the hoop
was the cross-section with the maximum bending moment. The simplified model was a
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statically indeterminate beam where the fixed-end supports were provided by the concrete
columns and connecting steel bars, and the reaction forces could be resolved from:{

δ11F1 + δ12F2 + ∆1F = 0
δ21F1 + δ22F2 + ∆2F = 0

, (9)

where F1 and F2 are the reaction forces after releasing excess constraints.
From the equations above, the maximum bending moment M could be numerically

equated to the concentrated force e in value; it followed that:

M = F [kN ·m], (10)

4.3. Bending Capacity of the End Supports

In engineering practice, bracing overlapped with the cage of rebars and was connected
by the concrete block. Therefore, the bending capacity of the bracing at both end supports
equaled the bending capacity of the top beam. The bending capacity of the end supports
was expressed as follows:

M 6 α1 fcbx
(

h0 −
x
2

)
+ f ′y A′s

(
h0 − a′s

)
, (11)

where fc is the design value of the axial compressive strength of the concrete; As and A′s are
the cross-sectional areas of longitudinal ordinary steel bars in the tensile and compressive
zones, respectively; b is the width of a rectangular section or the web width of an inverted
T-shaped section; h0 is the effective height of the cross-section; α′s is the distance from the
combined force point of longitudinal ordinary steel bars and prestressed steel bars in the
compression zone to the compressed edge of the section.

4.4. Bending Capacity of the Experimental Model

The maximum concentrated load in each component was obtained on account of the
experiments, FEM simulations, and theoretical evaluations, as presented in Table 3. The
results indicate that the bending capacity of the experimental model was determined by
that of the H-CFST component.

Table 3. Material data for the FEA models.

H-CFST
Component Hoop Column FEA Model EXP

The load determining
the bending capacity, kN 130.62 477.05 293.56 147.18 150.00

4.5. Optimization Design of the H-CFST Bracing

Based on the above results, with no damage to other components, the hoop could bear
a significantly greater load than the other components. Therefore, the cost-effectiveness
of prefabricated H-CFST bracing could be improved further by optimizing the wall thick-
ness of the hoop, which was 14 mm in the experimental model. If d is the wall thick-
ness of the hoop representing the same stiffness and strength as the H-CFST component,
then d = 7 mm. Figure 23 presents the results of the FEM analyses for this thickness. It
could be seen that the central section of the upper hoop and one side of the steel pipe
yielded simultaneously.

Figure 24 presents the load-displacement diagrams of the prefabricated H-CFST
bracing system with thickness values of 1 d, 1.5 d, 2.0 d, and 2.5 d on the basis of the
FEM simulations.
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When the thickness exceeds 1.5 d, the contribution of the increasing wall thickness to
the bearing capacity of the bracing will be reduced significantly. Therefore, a wall thickness
of 1.5 d is recommended for the hoop in prefabricated H-CFST bracing.

5. Conclusions

This study is focused on the utilization of a prefabricated hollow concrete-filled steel
tube (H-CFST) bracing system, which has not yet received extensive research attention
in coastal pit engineering. In comparison to traditional concrete bracing systems, this
innovative support structure offers increased reusability and cost effectiveness. Through a
combination of experimental methods and finite element analysis, an in-depth investigation
was conducted into the performance of the prefabricated H-CFST bracing system under
transverse bending conditions. This research not only provided essential data for the design
of coastal pit supports but also contributed replicable methodologies and results for the
broader field of study.

This study introduced theoretical methods for calculating the load-bearing capacity of
each component under transverse bending conditions and validated these methods using
experimental results. This significantly bolsters the theoretical foundation for the future
design and assessment of bracing systems. Importantly, this research demonstrated the
feasibility of employing prefabricated H-CFST bracing systems in the challenging context
of complex coastal soil and geological conditions. Consequently, it offers novel insights
and solutions for the sustainable development of coastal pit engineering.

The following conclusions are based on the results from the experiments, FEM simula-
tions and theoretical analyses of the prefabricated H-CFST bracing:
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1. The self-designed hoop component significantly mitigated the strength and stiffness
reduction phenomenon at the joint of H-CFST components, ensuring that the prefab-
ricated H-CFST bracing system provides safety comparable to traditional concrete
bracing in supporting coastal foundation pits;

2. Under transverse bending conditions, the prefabricated H-CFST bracing system
exhibited two typical failure modes, i.e., local tensile yielding of the steel tube and
tensile cracking of end supports;

3. Finite element modeling accurately predicted the failure modes of the bracings and
provided a reference for the optimized design;

4. The theoretical calculation methods using plane section assumption for the bend-
ing capacity of bracing components accurately predicted the bending capacity of
each component.

As a new form of internal bracing system, the mechanical properties of the prefabri-
cated H-CFST bracing need to be investigated further, as shown in Figure 3. Due to the
challenges in replicating the bracing system’s stress conditions during pit excavation in
model tests, it is essential to conduct on-site application research on prefabricated H-CFST
bracings. The next step will focus on on-site experiments with prefabricated H-CFST
bracings and monitoring parameters, such as axial forces and structural deformations. This
research aims to investigate the stress response and deformation patterns of prefabricated
H-CFST bracings during pit excavation.

Combining the results from on-site experiments with construction practices, standard-
ized procedures will be developed, and reasonable acceptance criteria proposed. This will
enhance the application research of prefabricated H-CFST bracings in the field of coastal
foundation pit support.
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