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Abstract: This study proposed a deep reinforcement learning-based energy management strategy
(DRL-EMS) that can be applied to a hybrid electric ship propulsion system (HSPS) integrating liquid
hydrogen (LH2) fuel gas supply system (FGSS), proton-exchange membrane fuel cell (PEMFC) and
lithium-ion battery systems. This study analyzed the optimized performance of the DRL-EMS
and the operational strategy of the LH2-HSPS. To train the proposed DRL-EMS, a reward function
was defined based on fuel consumption and degradation of power sources during operation. Fuel
consumption for ship propulsion was estimated with the power for balance of plant (BOP) of the
LH2 FGSS and PEMFC system. DRL-EMS demonstrated superior global and real-time optimality
compared to benchmark algorithms, namely dynamic programming (DP) and sequential quadratic
programming (SQP)-based EMS. For various operation cases not used in training, DRL-EMS resulted
in 0.7% to 9.2% higher operating expenditure compared to DP-EMS. Additionally, DRL-EMS was
trained to operate 60% of the total operation time in the maximum efficiency range of the PEMFC
system. Different hydrogen fuel costs did not affect the optimized operational strategy although the
operating expenditure (OPEX) was dependent on the hydrogen fuel cost. Different capacities of the
battery system did not considerably change the OPEX.

Keywords: deep reinforcement learning; energy management strategy; liquid hydrogen; hybrid
electric ship propulsion system

1. Introduction

After the International Maritime Organization (IMO) announced its initial strategy
for reducing greenhouse gas (GHG) emissions, it has been continuously strengthening
regulations to reduce GHG emissions from ships [1]. The IMO has set a target to reduce
GHG emissions related to maritime transport by 50% compared to 2008 levels. The Eu-
ropean Commission has predicted that if additional measures for GHG reduction are not
implemented, the proportion of GHG emissions generated by the shipping industry will
increase by 17% by 2050 [2]. Furthermore, the IMO is applying the Energy Efficiency Design
Index (EEDI) to newly constructed ships to explore GHG emission reduction measures at
the design stage of these vessels [3].

One effective method to successfully achieve the IMO’s GHG emissions reduction
goals is the implementation of alternative fuels and hybrid propulsion systems. According
to E.A. Bouman et al. (2017), the use of alternative fuels has been reported to have a
potential for up to an 80% reduction in CO2 emissions, while the application of hybrid
propulsion systems can result in a reduction potential of over 15% [4]. Among these options,
hydrogen fuel is being considered as one of the fuels that can ultimately emit zero GHGs
and can be used for both coastal and ocean-going ships. Furthermore, with the continuous
advancement of fuel cell and battery technologies and the electrification of ship energy
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systems, research projects are actively underway to operate hybrid electric propulsion
systems (e.g., hydrogen fuel cell + battery) in ships [5].

The ZEMSHIP project aimed to develop and realize the first hydrogen-powered
passenger ship with a capacity of over 100 persons. The electric motor consumes electric
power of 100 kW which is generated from a proton-exchange membrane fuel cell (PEMFC)
and the integrated batteries. The first boat developed by this project, FCS Alsterwasser,
has been operating on the Alster in Hamburg since 2008 [5]. The HySeas III is a project
aimed at developing and demonstrating the use of fuel cells to power a Roll-on/Roll-
off/Passenger (RoPax) ferry operating in the Orkney Islands, off the coast of Scotland. The
ferry uses a hybrid propulsion system consisting of PEMFC of 6 × 100 kW and batteries of
768 kWh, allowing it to operate on fuel cells when conditions are optimal, and switch to
battery power when necessary [6,7]. The FLAGSHIPS project aims to take zero-emission
waterborne transport to an entirely new level by deploying two commercially operated
hydrogen fuel cell vessels by 2023. The demo vessels include the world’s first commercial
cargo transport vessel operating on hydrogen, plying the river Seine in Paris [8]. The HFC
MARINE project aims to use hydrogen and fuel cells for marine applications. The intention
of the first phase is to design a solution geared for demonstration onboard the new modular
ferry design by Odense Maritime Technology. The project explored the feasibility of using
fuel cells in marine environments with a focus on hydrogen safety and certification, fuel
cell cooling, air compression, installation integration, and cost of ownership [5].

The hybrid electric ship propulsion system (HSPS), which combines two or more
power sources, offers excellent fuel economy and is an effective solution for reducing GHG
emissions. However, the control problem for the efficient operation of multiple power
sources becomes more complex when compared to conventional ship propulsion systems.
As a result, research on energy management strategy (EMS) for effective control of hybrid
propulsion systems is actively being conducted across various applications, including
vehicles, aircraft, and ships [9–17]. S. Antonopoulos et al. (2021) presented an energy man-
agement framework for hybrid power plants in ships, based on model predictive control
(MPC), and evaluated the performance of this framework [9]. C. Musardo et al. (2005)
proposed an EMS based on the adaptive equivalent consumption minimization strategy
(A-ECMS), which can be applied to hybrid electric vehicles (HEVs). They also introduced a
method for estimating equivalence factors for driving cycles [12]. G. Du et al. (2020) pro-
posed an energy management algorithm for HEVs using newly introduced reinforcement
learning (Dyna-H) and deep reinforcement learning (AMSGrad) algorithms. They re-
ported fast training speeds and high optimal control performance for these algorithms [13].
K. Deng et al. (2022) introduced an EMS for hybrid railway vehicles considering the degra-
dation of a PEMFC and validated the performance of the proposed EMS based on real
measured data in a stochastic training environment [16].

Many algorithms for EMS of the hybrid power system can be broadly categorized
into rule-based and optimization-based approaches [18]. Among these, rule-based EMS
has the advantage of easily controlling the system in real time and having simple control
procedures. However, it requires a lot of experience from system designers and operators,
does not guarantee the optimal operation points for various operating profiles, and often
requires tuning of parameters. On the other hand, optimization-based EMS can propose
optimal operating strategies for the target system using online or offline optimization algo-
rithms and delivers excellent energy management performance across various operating
profiles. Optimization-based EMS, employing methods such as dynamic programming
(DP), Pontryagin’s minimum principle (PMP), or heuristic global optimization algorithms,
can calculate optimal energy management problems, making it widely used as a benchmark
solution for analyzing the performance of other algorithms. However, global optimization
algorithms, including DP, demand significant computational resources, are challenging to
adapt to unknown operating conditions, and PMP is not suitable for online optimal control
due to the complexity of Hamiltonian function computations (i.e., it is suitable for offline
optimal control).
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To overcome the limitations of conventional offline optimization, research on
optimization-based EMS that can allocate the output of the target system in real-time
(referred to as online EMS) is actively underway [19]. Online EMS can be implemented
using various methodologies such as model predictive control, reinforcement learning
(RL), equivalent consumption minimization strategy, stochastic dynamic programming,
and more. Among these, RL-based online EMS can achieve performance similar to global
optimization-based EMS through agent training, has lower computational costs when
utilizing the trained agent in actual operations, and can effectively handle high-order
models or problems due to its model-free characteristics. For these reasons, many studies
were conducted to apply RL-based online EMS to energy management problems in hybrid
power systems [11,13,16]. However, despite the strengthening of emission regulations and
the consideration of various alternative fuels and power sources in the maritime industry,
research on EMS for HSPS remains insufficient.

Meanwhile, most of the research on online EMS for HSPS conducted thus far has
focused on propulsion systems using diesel, LNG, and gaseous hydrogen as the main
fuel [9,10,17]. Among these, hydrogen is a promising zero-carbon ship fuel for the future.
However, when ship capacity increases or bunkering intervals are extended, the volume of
fuel tanks needed to store gaseous hydrogen becomes very large. In contrast, when storing
hydrogen fuel in a liquid state and using it as fuel by vaporization, it is expected that
liquid hydrogen (LH2) can reduce the volume of fuel tanks, as it has a higher volumetric
energy density than gaseous hydrogen (approximately twice as high as 700 bar gaseous
hydrogen) [20,21]. Furthermore, the individual volume of fuel tanks required for storing
high-pressure gaseous hydrogen is not higher than that of LH2 fuel tanks. It means the
number of tanks, valves, and associated equipment should be significantly increased due
to its low volumetric energy density.

LH2 is stored at an extremely low saturation temperature, which is around 20 K at
atmospheric pressure. Therefore, it requires a fuel gas supply system (FGSS) to match the
supply conditions for fuel cells [22], and additional power for the balance of the plant (BOP
power) needs to be supplied to the LH2 FGSS and PEMFC systems. In other words, it
means that the BOP power must be provided to meet the power demand requirements.
This additional power can be sourced from either the propulsion system or other onboard
power plants. Thus, to apply online EMS to LH2-HSPS, the supply of BOP power for
producing the required power should be included in the energy management problem.
However, existing EMS proposals for HSPS, based on prior research, have only considered
cost functions related to the power demand for propulsion, and degradation of fuel cells
and batteries without the BOP power of the FGSS and power sources. Therefore, there is
a need for research on EMS for systems that use LH2 as a fuel with consideration of BOP
power for the LH2 FGSS and the PEMFC system.

Therefore, this study proposes an EMS for LH2-HSPS using deep reinforcement learn-
ing. Constructing an EMS that considers both power demand and BOP power based on
models of the LH2 FGSS, PEMFC, and battery systems that constitute LH2-HSPS, energy
management performance is compared with conventional optimization algorithms, which
are DP and sequential quadratic programming (SQP). Furthermore, we assess the opti-
mized operation strategy with the proposed DRL-EMS through sensitivity analysis of key
parameters and changes in operating profiles that affect the EMS. This research provides
academic contributions by offering an EMS that can be applied to LH2-HSPS and considers
the BOP power of the target system, with an analysis of its performance. It is expected to
provide meaningful insights into the energy management problems of LH2-based hybrid
power systems for various industries in the future. The rest of this study is organized as
follows: Section 2 introduces the description of models of the LH2 FGSS, PEMFC, and bat-
tery systems. In Section 3, a methodology for energy management is suggested. Section 4
presents the results and discussion, and Section 5 shows the conclusions of this study
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2. Model Description
2.1. Description of Target Ship

A Platform Supply Vessel (PSV) is a ship designed to support the transportation,
installation, operation, and maintenance of offshore installations. PSVs perform various
tasks in offshore environments and are equipped with a dynamic positioning system to
control the vessel’s position and direction for safe and stable operations. When dynamic
positioning is used to control the vessel in real time, the required power for the target vessel
can vary significantly. In ships like PSVs, where the power demand varies significantly
over time, online EMS demonstrates superior performance compared to rule-based EMS
since it relies on predefined rules for power distribution. Furthermore, when a battery
system that allows for charging and discharging of power at desired times is integrated into
LH2-HSPS, it can operate the PEMFC system more efficiently when variations of power
demand are significant [10].

Therefore, 2 MW-class PSV is selected as the target ship for applying DRL-EMS. The
power demand of a PSV is determined based on its operational mode, which includes laden
voyage, dynamic positioning operation, partial load voyage, and standby mode. While
many research studies are ongoing to predict the required power for varying environmental
conditions, this study assumes a general required power profile of PSVs based on the
existing literature [23–25]. This power profile is utilized as a reference profile for DRL,
DP, and SQP (Figure 1a). Additionally, to assess the online performance of DRL-EMS
when applied to unknown power profiles not used during training, we considered three
additional power profiles as shown in Figure 1b–d.
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2.2. Liquid Hydrogen Fuel Gas Supply System

The LH2 FGSS plays a role in vaporizing the stored LH2 and supplying fuel to meet the
pressure and temperature conditions required by the PEMFC system. This system consists
of a fuel tank for storing LH2, a pump for transferring LH2, an ethylene glycol/water
(GW) mixture system for supplying thermal energy, valves, and controllers. When the fuel
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tank volume is not large, or transient states in the FGSS do not occur frequently, there is
an advantage to reducing the risk of hydrogen leaks and not requiring redundancy units
by installing a pressure build-up unit that pressurizes the tank to pressure of a certain
level using an external heat source instead of the LH2 pump [22]. However, since the PSV
experiences significant fluctuations in the output of the LH2 FGSS and PEMFC system, it is
assumed a pump-type FGSS to ensure a stable fuel supply.

In this study, the LH2 FGSS is simulated using Aspen HYSYS software to calculate
the changes in hydrogen fuel flow rate, pressure, and temperature due to fluctuations in
the output of the PEMFC system during operation. Figure 2 shows the implemented LH2
FGSS in Aspen HYSYS and Table 1 represents key design specifications for each piece
of equipment.
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Figure 2. Model of the LH2 FGSS in Aspen HYSYS.

Table 1. Specifications of each piece of equipment for the LH2 FGSS.

Item Unit Value

Volume of LH2 fuel tank m3 100.00
Initial liquid percent level of LH2 fuel tank % 83.00

Initial tank pressure barg 1.90
Volume of GW tank m3 1.00

Outlet temperature of GW heater K 313.15
Pressure drop of GW heater bar 0.10

Inlet temperature of LH2 vaporizer (H2 stream) K 24.54
Outlet temperature of LH2 vaporizer (H2 stream) K 298.15

Maximum flow rate of H2 kg/h 154.20
Pressure drop in LH2 vaporizer (H2 stream) bar 0.20

Inlet temperature of LH2 vaporizer (GW stream) K 313.15
Outlet temperature of LH2 vaporizer (GW stream) K 283.15

Maximum flow rate of GW kg/h 7890.00
Pressure drop in LH2 vaporizer (GW stream) bar 1.40

The Modified Benedict–Webb–Rubin (MBWR) and Peng–Robinson equations are used
for the hydrogen and GW streams, respectively, and the composition of the hydrogen
stream is assumed to be 99.8% para-hydrogen and 0.02% ortho-hydrogen based on mole
fractions. The sizing of key equipment for dynamic simulation is performed considering
the maximum H2 flow rate for the maximum output of the PEMFC system. In particular,
the volume of the LH2 fuel tank is determined as 100 m3 based on the required fuel quantity
for a case where the PEMFC system, the main power source generates all required power
during operation, following the IGF Code [26]. The LH2 vaporizer is simulated as a shell
and tube-type heat exchanger. The governing equations for each piece of equipment used
in the calculations are shown in Equations (1)–(8) [27,28].
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Tanks

dm f ,tank

dt
= ∑

i

.
m f ,in,i − ∑

j

.
m f ,out,j (1)

m f ,tank: Mass of fluid stored in the tank
.

m f ,in,i: Mass flow rate of fluid i entering the tank
.

m f ,out,j: Mass flow rate of fluid j exiting the tank

dE f ,tank

dt
= ∑

i

.
m f ,in,ih f ,in,i − ∑

j

.
m f ,out,jh f ,out,j (2)

E f ,tank: Internal energy of fluid stored in the tank
h f ,in,i: Enthalpy of fluid i entering the tank
h f ,out,j: Enthalpy of fluid j exiting the tank

Pumps

Ppump =

.
m f (p f ,out − p f ,in)

ρ f ηpump
(3)

Ppump: Power consumption of the pump
p f ,out: Outlet pressure of fluid
p f ,in: Inlet pressure of fluid
ρ f : Density of fluid
ηpump: Efficiency of the pump

Heat Exchanger

d(m f ,shellh f ,shell,out)

dt
=

.
m f ,shell

(
h f ,shell,in − h f ,shell,out

)
−

.
QHX (4)

m f ,shell : Mass of accumulated fluid in shell side
.

m f ,shell : Mass flow rate of fluid in shell side
h f ,shell,in: Enthalpy of entering fluid in shell side
h f ,shell,out: Enthalpy of exiting fluid in shell side
.

QHX : Heat flow rate between shell and tube side

d(m f ,tubeh f ,tube,out)

dt
=

.
m f ,tube

(
h f ,tube,in − h f ,tube,out

)
+

.
QHX (5)

m f ,tube: Mass of accumulated fluid in tube side
.

m f ,tube: Mass flow rate of fluid in tube side
h f ,tube,in: Enthalpy of entering fluid in tube side
h f ,tube,out: Enthalpy of exiting fluid in tube side

.
QHX = UA∆TLM (6)

U: Overall heat transfer coefficient
A: Heat transfer area
∆TLM: Logarithmic temperature difference

Heater

Pheater =

.
m f (h f ,out − h f ,in)

ηheater
(7)

Pheater: Power consumption of the heater
ηheater: Efficiency of the heater
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Valves
.

m f = k
√

ρ f (p f ,out − p f ,in) (8)

k: Pressure drop coefficient

2.3. Description of Power Sources
The PEMFC stack is modeled based on electrochemistry to simulate the voltage, current, and

stack temperature. Also, the model can calculate the additional power required for the BOP. After
modeling individual cells using Equations (9)–(13) [29,30], cell models are connected to simulate the 2
MW class PEMFC system. A schematic diagram of the PEMFC system can be shown in Figure 3. The
current flowing through the PEMFC stack is calculated based on the supplied hydrogen flow rate,
and this is used to determine the voltage applied to the PEMFC stack, thus calculating the system’s
output. Additionally, the power consumption of BOP is determined by the power consumption
of the air compressor, H2 compressor, GW radiator, and air fan. All calculations are performed
using Simulink/Simscape and Aspen HYSYS, and the developed PEMFC stack model was validated
against the polarization curve of NEDSTACK’s FCS 10-XXL product [31]. It should be noted that the
output of the PEMFC system produced through the combination of stacks and the BOP power for the
system can vary slightly depending on the system’s configuration and the detailed specifications of
each piece of equipment. In this study, it was assumed that the flow rate, pressure, and temperature
conditions of hydrogen supplied to multiple stacks are consistent, and the BOP power was calculated
for the entire PEMFC system.

Vcell = Vnernst − Vact − Vohm − Vconc (9)

Vcell : Cell voltage
Vnernst: Nernst voltage
Vact: Activation loss
Vohm: Ohmic loss
Vconc: Concentration loss

Vnernst = −
GH2O

2F
+

RT
2F

ln(
αH2,aα0.5

O2,a
αH2O,c

) (10)

F: Faraday constant
GH2O: Gibbs free energy of water
R: Gas constant
T: Temperature
αH2,a: Chemical activity of hydrogen at anode side
αO2,a: Chemical activity of oxygen at anode side
αH2O,c: Chemical activity of water at cathode side

Vact =
RT

2θactF
ln(

jcell
j0

) (11)

θact: Coefficient of activation loss
jcell : Current density
j0: Reference current density

Vohm = icell Rohm (12)

icell : Current
Rohm: Electric resistance

Vconc = mconcexp(nconc jcell) (13)

mconc: Coefficient of concentration loss
nconc: Coefficient of concentration loss
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On the other hand, PEMFC stacks installed in ships or mobility applications have a relatively
shorter lifetime compared to stationary applications. If there are rapid output changes in the stacks
and if very high and low outputs continue, degradation is accelerated, leading to higher replacement
costs over the lifespan. Therefore, it is necessary to consider the decreasing lifespan of PEMFC stacks
during operation in energy management problems. P. Pei et al. (2008) investigated the effects of
load-changing cycles, start/stop cycles, idling time, and high-power load conditions on the lifespan
of automotive PEMFC through experimental research and proposed a degradation model based on
arithmetic equations [32]. Additionally, Y. Liu et al. (2020) examined rule-learning-based EMS for
fuel-cell hybrid vehicles using the mentioned degradation model and reported an effective reduction
in hydrogen consumption and an increase in the lifespan of PEMFC stacks [14]. Similarly, in this
study, the proposed model is used to calculate the effective degradation cost of the PEMFC system
with Equation (14) and parameters in Table 2.

∆Vloss,FC = kp{(k1t1 + k2n1 + k3t2 + k4t3) + β} (14)

Table 2. Parameters of the PEMFC degradation model (the data were from [14,32]).

Item Unit Value Definition

kp - 1.72 Accelerating coefficient
k1 %/h 0.00126 Output power < 2% of max. power
k2 %/cycle 0.00196 Full start-stop operation
k3 %/h 0.0000593 Output variation rate > 5% of max. power per second
k4 %/h 0.00147 Output power > 90% of max. power
β %/operation 0.01 Natural decay rate

The power charging and discharging of the battery system are simulated by connecting cell mod-
els based on the Equivalent Circuit Model (ECM) in series and parallel. Similar to the PEMFC system,
a heat management system using GW as a thermal medium is modeled using Simulink/Simscape.
A water-cooling type is a heat management system commonly used in batteries to dissipate heat
generated during charging and discharging. When this type is used as a heat management system, a
liquid coolant, typically water or GW, is circulated through a series of channels and tubes that are
embedded within the battery pack or attached to its exterior surface. Once the coolant has been
heated by the batteries, it is circulated to a radiator where it is cooled by air or another coolant. The
cooled coolant is then circulated back into the battery, where it absorbs heat and the cycle repeats.
Water-cooling systems offer several advantages over other types of heat management systems, such as
air-cooling or passive cooling. They can dissipate heat more efficiently and effectively, which allows
the battery to operate at higher power levels for longer periods of time. Additionally, water-cooling
systems can be designed to be more compact and lightweight than other types, which is particularly
important in applications where space and weight are limited, such as ship propulsion.

The used ECM consists of a 4-parameters model, which includes one voltage source, two
resistors, and one capacitor. Each parameter was calculated as a two-dimensional look-up table based
on the state of charge (SOC) and temperature of the battery cell, referencing the research results of
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Huria et al. (2012) [33]. The heat management system of the battery system using GW as a thermal
medium was modeled using Equations (15)–(17).

mplatecp,plate
dTplate

dt
= kAplate

Tbattery − Tplate

L
− hGW Ach(Tplate − TGW) (15)

mplate: Mass of the cold plate
cp,plate: Specific heat of the cold plate
k: Thermal conductivity
hGW : Convective heat transfer coefficient of GW
Ach: Heat transfer area of cooling channels

Nu =

favg
8 (Reavg − 1000)Pravg

1 + 12.7

√
favg
8 (Pr

2
3
avg − 1)

(16)

favg: Friction factor with averaged condition between the inlet and outlet
Reavg: Reynolds number with averaged condition between the inlet and outlet
Pravg: Prandtl number with averaged condition between the inlet and outlet

f =
1[

−1.8log10

{
6.9
Re +

(
1

3.7
r
D

)1.11
}]2 (17)

r: Roughness of tube
D: Diameter of tube

Lithium iron phosphate (LiFePO4, LFP)-based battery cells have the disadvantage of relatively
low gravimetric energy density. However, they are relatively inexpensive because they do not use
expensive materials like cobalt and nickel. Additionally, they have a long lifespan under conditions
where the maximum C-rate is not high. Moreover, they are widely used in large-scale applications
such as ships and space industries due to their low risk of explosion or fire [34,35]. Therefore, in this
study, it is assumed that the target battery system uses LFP-based cells.

J. Wang et al. (2011) conducted experimental research to investigate capacity fade in graphite-
LFP cells by varying cell temperature, depth of discharge, and C-rate. They found that at low
C-rates, capacity fade was significantly affected by time and temperature, while at high C-rates, the
effect of the C-rate became more pronounced. Furthermore, based on the experimental results, they
generalized the power-law equation for capacity fade [35]. Similar to the PEMFC system, we used
the following degradation model based on existing research results to consider the degradation rate
of battery cells in the energy management problem, as shown in Equation (18) with parameters in
Table 3.

∆Eloss,bat = ∆AhzB1/zexp(
−Ea + αCCrate

zRT
)E(z−1)/z

loss,bat (18)

Ah: Ah-throughput
Eloss,bat: Capacity loss
Crate: C-rate

Table 3. Parameters of the battery system and the degradation model.

Item Value

Materials LiFePO4 (LFP)/graphite
Cells configuration 272S 432P
Nominal voltage 980.00 V

Nominal capacity (Ah) 2048.00 Ah
Nominal capacity (kWh) 2007.04 kWh

Available DoD 80%
Available energy 1605.63 kWh
SOC breakpoints 0, 0.1, 0.25, 0.5, 0.75, 0.9, 1

Temperature breakpoints 5, 20, 40 ◦C
B 31,630
z 0.55

Ea 31,700 J/mol
R 8.3145 J/(mol·K)
αC 370.3
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2.4. System Efficiency
Using the models for LH2 FGSS and the PEMFC system, the efficiency of the target system

is approximated based on the power of the PEMFC system using Equation (19), which includes
hydrogen consumption with BOP power. Additionally, the calculated system efficiency is used to
estimate hydrogen consumption in the energy management problem. Since the BOP power from the
battery system is not significantly high compared to the LH2 FGSS and PEMFC system, we assumed
the battery system can generate all auxiliary power during operation of the PSV.

ηsystem(PFC) =
PFC,total(PFC)− PFGSS,BOP(PFC)− PFC,BOP(PFC)

.
mH2 (PFC)·LHVH2

(19)

ηsystem: System efficiency
PFC: Output power of the PEMFC system excluding BOP power
PFC,total : Output power of the PEMFC system
PFGSS,BOP: BOP power of the LH2 FGSS
PFC,BOP: BOP power of the PEMFC system

Figure 4 depicts the system efficiency of the LH2-HSPS calculated through Equation (19) and the
required mass flow rate of hydrogen as a function of fraction for the maximum output of the PEMFC
system, which is 2 MW. The maximum efficiency of the LH2-HSPS is found to be approximately 59%,
occurring within the 10~20% fraction of output power. Additionally, it is confirmed that BOP power
reduces the system efficiency of the LH2-HSPS by approximately 7%, resulting in a difference of 17.5 kg/h
in the required hydrogen mass flow rate based on the maximum output power.
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3. Methodology of Energy Management
The energy management problem of the LH2-HSPS addressed in this study takes the output of

the PEMFC system as the control variable. As mentioned earlier, it is assumed that all BOP power for
the LH2 FGSS and the PEMFC system is generated by the PEMFC system. Additionally, the reward
function (for DRL-EMS) or objective function (for DP-EMS and SQP-EMS) of this problem considers
operating expenditure (OPEX) with hydrogen consumption and the degradation of the PEMFC and
battery systems. Constraints are imposed on the state of charge (SOC) of the battery system and the
power demand of the PSV. To summarize, the problem can be described with Equations (20)–(28).
Detailed parameters for solving energy management problems can be shown in Table 4.

P∗
FC(t) = argmin(CH2 (t) + CFC,deg(t) + Cbat,deg(t) + Cbat,eq(t)) (20)

s.t.
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CH2 (t) = CostH2 ·
.

mH2 (PFC(t))·∆t (21)

CFC,deg(t) = CostFC·PFC,max·
∆Vloss,FC(PFC(t))

EOLFC
·∆t (22)

Cbat,deg(t) = Costbat·Ebat·
∆Eloss,bat(PFC(t), Preq(t))

EOLbat
(23)

Cbat,eq(t) = CostH2 ·
s

LHVH2

·Pbat(t)·
{

1 −
SOC(t)− SOCre f

0.5(SOCmax − SOCmin)

}p

∆t (24)

Preq(t) = PFC(t) + Pbat(t)−
{

Paux,FGSS(t) + Paux,FC(t) + Paux,bat(t)
}

(25)

SOC(0) = SOCre f (26)

SOC(t) ∈ [SOCmin, SOCmax] (27)

PFC(t) ∈
[
PFC,min, PFC,max

]
(28)

CH2 : Cost for hydrogen consumption
CFC,deg: Equivalent cost for PEMFC degradation
Cbat,deg: Equivalent cost for battery degradation
Cbat,eq: Equivalent cost for battery power
s: Equivalence factor

Table 4. Parameters for energy management problem.

Parameter Reference Value

Cost of Hydrogen (CostH2 ) 8 USD/kg [21]
LHV of Hydrogen (LHVH2 ) 33.3 kWh/kg

Cost of PEMFC System (CostFC) 700 USD/kW [22,36]
Cost of Battery System (Costbat) 140 USD/kWh [37,38]
Coefficient for SOC Penalty (p) 3

Reference Value of SOC (SOCre f ) 0.5
Maximum Value of SOC (SOCmax) 0.9
Minimum Value of SOC (SOCmin) 0.1

Maximum Value of PEMFC Output (PFC, max) 2000 kW
Minimum Value of PEMFC Output (PFC, min) 0 kW

End of Life of PEMFC System (EOLFC) 10%
End of Life of Battery System (EOLbat) 20%

3.1. Deep Reinforcement Learning
The Deep Q-network (DQN) algorithm used in this study is based on the Q-learning algorithm

widely used in reinforcement learning. It effectively trains agents for high-dimensional or large
state and action spaces by approximating Q-values for each state and action obtained through the
Q-function, typically defined as the following Equation (29), using a neural network [39]. The Q-
values computed through the Q-function represent the expected value of the return (i.e., cumulative
reward) that can be obtained when taking action (a) in a specific state (s). In the case of the Q-learning
algorithm, training occurs through interaction with the environment, and Q-values for all actions in
all states are continuously updated. Once the learning is completed, the agent can choose the optimal
action in each state.

Qπ(s, a) = Eπ [Gt|St = s, At = a] = Eπ
[
Rt+1 + γqπ

(
s′, a′

)∣∣St = s, At = a
]

(29)

Qπ : State-action value function with policy π

Gt: Return after time t
St: State at time t
At: Action at time t
Rt+1: Reward at time t + 1
γ: Discount factor

One of the features of the DQN algorithm is the use of separate prediction and target networks.
During training, the prediction network is continuously updated, while the target network is updated
less frequently. The target network provides target Q-values for the loss function, defined as follows,
at each training step. Additionally, the target network mitigates the overestimation of Q-values
approximated by the neural network by providing stable target Q-values. During each episode,
the neural network is trained through random sampling from the experience pool. The gradient of
the loss function is computed, and the optimal action value is obtained using the gradient descent
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algorithm with Equation (30). The loss function represents how optimally the current prediction
network approximates the action value. Training proceeds by continuously updating both the target
and prediction networks. Figure 5 represents the overview of the DQN algorithm and detailed
hyperparameters can be shown in Table 5.

Lθ = E
[{

R + γmaxQ
(
s′, a′; θ′

)
− Q(s, a; θ)

}2
]

(30)

Lθ : Loss function with parameter θ.
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Table 5. Hyperparameters of the Deep Q-network.

Item Value

Batch size 128.00
Discount factor 1.00
Epsilon value 0.01~1.00

Number of hidden units 256.00
Number of elements for action space 100.00

3.2. Benchmark Algorithms
To verify and assess the optimality of the PEMFC system’s output determined through DRL-

EMS and the total OPEX obtained, the results are compared with the DP algorithm for the same
energy management problem. DP is a widely used algorithm for continuous-time control problems,
including energy management in hybrid propulsion systems. The dynamic model considered in this
study evolves over time and, following the principle of optimality, the DP algorithm calculates the
optimal cost-to-go function for all time and state nodes through backward calculation. Based on this,
it provides optimal control results through forward calculation [40].

As mentioned in Section 1, the DP algorithm is advantageous for global optimization, but as
the number of state and control variables increases, the computational complexity escalates rapidly,
making it unsuitable for online EMS applications. Therefore, to assess the online energy management
performance of RL-EMS, an online EMS based on the SQP algorithm and ECMS (SQP-EMS) is
additionally developed [41,42].

4. Results and Discussion
Before analyzing the optimal operational strategy applied to LH2-HSPS by

DRL-EMS, the optimization results with DP-EMS and SQP-EMS algorithms are compared to evaluate
the performance of these algorithms, as shown in Table 6. It is observed that both DRL-EMS and SQP-
EMS resulted in 0.2% and 10.9% higher OPEX, respectively, compared to DP-EMS. The significant
impact on the performance of these two algorithms was attributed to the equivalent degradation cost
of the PEMFC system. The degradation rate calculated through the model exhibited discontinuities
at low-load operations (<40 kW) and high-load operations (>1800 kW), which SQP-EMS, based
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on gradient descent, failed to sufficiently consider. Additionally, DRL-EMS yielded OPEX values
nearly identical to DP-EMS, indicating that the effective utilization of the battery system allowed
DP-EMS to calculate slightly lower OPEX. Meanwhile, Figure 6 shows the changes in the calculated
PEMFC system output and SOC when each EMS is applied. As mentioned earlier, it can be observed
that DP-EMS is most effectively utilizing the battery system based on the SOC changes, while SQP-
EMS appears to underutilize the installed battery system in situations where future required power
is uncertain.

Table 6. Comparison of optimized operating expenditure with different algorithms.

CH2 ,total CFC,deg,total Cbat,deg,total Total Cost Ratio to DP

DRL-EMS 36,588 2650 1245 40,483 USD 1.002
DP-EMS 36,159 2743 1491 40,393 USD 1.000

SQP-EMS 36,834 7575 390 44,799 USD 1.109

Figure 7 shows a histogram and cumulative percent of the PEMFC system’s power output
counted in 30 min intervals using DRL-EMS for the reference operating profile. It is evident that, due
to the decreasing LH2-HSPS LHV efficiency as the PEMFC system output increases, the optimization
has resulted in operation times at power levels lower than the average required power (~420 kW) for
about 60% of the time. On the other hand, the system efficiency plot reveals that the system efficiency
is highest when the PEMFC system output is 20% or less of its maximum value. The fraction of this
average required power is 21%. In other words, DRL-EMS has been trained to operate within the
maximum efficiency range of the PEMFC system as much as possible.
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energy management algorithm.

In the previous results, it is confirmed that approximately 90% of OPEX was incurred through
hydrogen fuel consumption, indicating the necessity of saving hydrogen consumption for the efficient
operation of LH2-HSPS. Figure 8 represents cumulative hydrogen consumption when using the same
DRL-EMS but distributing power based on PEMFC stack efficiency instead of system efficiency. With-
out considering of auxiliary power, a total of 4074 kg of fuel was consumed, which is approximately
11% lower compared to the system efficiency-based calculation. Since ships have limited space for
equipment relative to their capacity, the appropriate sizing of each piece of equipment should be
determined in the design phase. When using LH2 as fuel without a separate external power plant
to supply BOP power required for ship propulsion, power must be supplied through the PEMFC
system for propulsion. In this case, as explained earlier, there is a significant difference of about 11%
in fuel consumption per operation, affecting the volume of the fuel tank. Therefore, the volume of the
LH2-powered ship’s fuel tank to be built in the future should be determined by thoroughly reviewing
the system efficiency of LH2-HSPS.
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Figure 8. Cumulative hydrogen consumption with and without consideration of BOP power for the
liquid hydrogen fuel gas supply system and PEMFC system.

To further analyze the optimal energy management performance of the DRL-EMS, two sen-
sitivity analyses are conducted. Among them, Figure 9 represents the energy management results
with different hydrogen fuel costs, which has the most significant impact on LH2-HSPS’s OPEX. The
training is performed for unit hydrogen fuel costs of 2, 4, and 6 USD/kg. The calculation results
showed that the hydrogen fuel price exhibited a linear relationship with OPEX compared to the
reference case. Additionally, when examining the average power generated by the PEMFC system
in each case, it is found that nearly identical average power is produced in all cases. This implies
that the change in hydrogen fuel price does not determine the operational strategy of LH2-HSPS,
and the decrease in OPEX is attributed to changes in hydrogen fuel prices rather than changes in the
operating mode.

Furthermore, a sensitivity analysis of DRL-EMS performance with respect to battery system
capacity can be shown in Figure 10. Since the equivalent degradation cost of the battery system does
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not account for a significant portion of OPEX, LH2-HSPS’s OPEX does not exhibit significant changes
for all investigated battery system capacities. It showed a maximum difference of approximately
2.2% compared to the reference case (i.e., capacity of 2000 kWh). The increase in battery system
capacity leads to a trade-off relationship with equivalent degradation cost under the same charging
and discharging conditions due to the combined effects of system cost increase and C-rate decrease.
Consequently, it is determined that this did not have a significant impact on the overall OPEX.

Finally, considering that various operation modes can occur during a vessel’s operation, the
performance of DRL-EMS is evaluated on three additional operation profiles not used in the training.
The calculation results showed that, depending on the cases, OPEX is higher by approximately
0.7% to 9.2% compared to DP-EMS (Figure 11). Case 2, which demonstrated performance similar
to DP-EMS, exhibited a distribution of power demand in the histogram that closely resembled that
of DP-EMS. On the other hand, Case 3 and Case 4, which showed significant differences from DP-
EMS, have distinct distributions of power demand compared to the reference case (Figure 12). In
essence, it is concluded that DRL-EMS’s performance could decrease when significantly different
operations occurred compared to the required power variations used in its training. However, despite
being arbitrary power demands not used in the training of DRL-EMS, the fact that they still show a
maximum difference of up to 9.2% compared to DP-EMS indicates that DRL-EMS exhibits remarkable
optimization performance, as compared to the results of SQP-EMS (Table 6). Also, one of DRL-EMS’s
advantages is its ability to use an agent trained under various operating conditions directly in actual
operations. By continuously updating neural networks based on data obtained from equipment
installed on real vessels and conducting ongoing training, it is expected that DRL-EMS can provide
an effective EMS for diverse operations.
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Figure 11. Energy management results for Cases 1 to 4 with dynamic programming and deep
reinforcement learning algorithms.
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5. Conclusions
This study proposed a deep reinforcement learning-based energy management strategy (DRL-

EMS) that can be applied to a liquid hydrogen-powered hybrid electric ship propulsion system (LH2-
HSPS) and compares and analyzes its performance with EMS using dynamic programming (DP-EMS)
and sequential quadratic programming (SQP-EMS). The study also investigated the optimal operation
strategy for LH2-HSPS. Modeling of LH2-HSPS was conducted to calculate the optimal operating
expenditure (OPEX) considering BOP power for the LH2 FGSS and PEMFC system within LH2-
HSPS. The reward function of the energy management problem consists of hydrogen consumption,
degradation of the PEMFC and battery systems, and equivalent consumption of the battery system.
DRL-EMS demonstrated superior global and real-time optimization performance compared to DP-
EMS and SQP-EMS. Additionally, additional performance analysis was conducted for three operation
profiles not used in training, revealing OPEX values 0.7% to 9.2% higher than DP-EMS. Meanwhile,
DRL-EMS was trained to operate in the maximum efficiency region of the PEMFC system for 60% of
LH2-HSPS operation time. It was observed that changes in hydrogen fuel cost significantly affect
OPEX of the LH2-HSPS but do not induce changes in operation strategy. Furthermore, variations in
battery system capacity result in a trade-off relationship between equipment cost and C-rate, affecting
equivalent degradation cost, but not causing significant changes in OPEX of the LH2-HSPS.

The results of this study suggest that the proposed energy management methods and system
operation strategies can serve as guidelines for the economic design and efficient operation of hybrid
power systems using LH2 as a fuel.
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Abbreviations

Nomenclature
A Area
a Action
B Coefficient for battery degradation
Crate C-rate
C Cost
cp Specific heat
E Internal energy
EOL End of life
Ea Activation energy
Eloss Capacity loss
f Friction factor
G Gibbs free energy
Gt Return at time t
h Enthalpy
i Current
j Current density
k Pressure drop coefficient or thermal conductivity
kp, k1, k2, k3, k4 Coefficients for PEMFC degradation
LHV Lower heating value
m Mass
mconc Coefficient for concentration loss
.

m Mass flow rate
nconc Coefficient for concentration loss
P Power
p Pressure
.

Q Heat flow rate
q State-action value function
rt Return at time t
R Gas constant
Rohm Electric resistance
SOC State of charge
s State
T Temperature
U Overall heat transfer coefficient
V Voltage
z Coefficient for battery degradation
αC Coefficient for battery degradation
α Chemical activity
β Coefficient for PEMFC degradation
η Efficiency
ρ Density
θ Coefficient for activation loss or parameter set
γ Discount factor
Abbreviations
BOP Balance of plant
CO2 Carbon dioxide
DP Dynamic programming
DQN Deep Q-network
DRL Deep reinforcement learning
ECM Equivalent circuit model
EEDI Energy efficiency design index
EMS Energy management strategy
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FGSS Fuel gas supply system
GHG Greenhouse gas
GW Ethylene glycol/water mixture
HEV Hybrid electric vehicle
HSPS Hybrid electric ship propulsion system
IGF Code International code of safety for ships using gases or other low-flashpoint liquids as fuel
IMO International maritime organization
LFP Lithium iron phosphate
LH2 Liquid hydrogen
LHV Lower heating value
LNG Liquefied natural gas
MBWR Modified Benedict–Webb–Rubin
OPEX Operating expenditure
PEMFC Polymer electrolyte membrane fuel cell
PMP Pontryagin’s minimum principle
PSV Platform supply vessel
RL Reinforcement learning
SOC State of charge
SQP Sequential quadratic programming
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