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Abstract: Container shipping plays a pivotal role in global trade, and understanding the duration
that vessels spend in ports is crucial for efficient voyage planning by shipping companies. However,
these companies often rely solely on one-way communication for required arrival times provided by
terminals. This reliance on fixed schedules can lead to vessels arriving punctually, only to face berths
that are still occupied, resulting in unnecessary waiting times. Regrettably, limited attention has been
given to these issues from the perspective of shipping companies. This study addresses this gap by
focusing on the estimation of dwell times for container vessels at a terminal in the Port of Busan
using various machine learning techniques. The estimations were compared against the terminal’s
operational reference. To compile the dataset, a 41-month history of terminal berth schedules and
vessel particulars data were utilized and preprocessed for effective training. Outliers were removed,
and dimensions were reduced. Six regression machine learning algorithms, namely adaptive learning,
gradient boosting, light gradient boosting, extreme gradient boosting, categorical boosting and
random forest, were employed, and their parameters were fine-tuned for optimal performance on the
validation dataset. The results indicated that all models exhibited superior performance compared to
the terminal’s operating reference model.

Keywords: vessel dwell time; machine learning; regression; berth plan; container vessel; container terminal

1. Introduction
1.1. Research Background

The emergence of steel shipping containers has positioned container shipping at the
forefront of international trade, catalyzing globalization and amplifying trade flows. An
impressive 80% of global trade in goods is facilitated through an extensive network of
container vessels [1]. These vessels have steadily grown in size over time, with larger
capacities contributing to enhanced operational efficiency [2]. However, the expansion
of vessel dimensions necessitates extended port stays unless additional quay cranes are
allocated to expedite berthing operations. This prolonged duration that vessels spend at
ports, known as vessel port dwell time, has escalated in significance, particularly for ship-
ping enterprises [3]. For shipping companies, vessel port dwell time dictates the vessel’s
departure and validates the projected time of arrival at its subsequent destination. This, in
turn, guides strategic planning, risk mitigation, and efficient navigational preparations. On
the terminal side, vessel port dwell time serves as a pivotal measure, reflecting the prowess
of container terminals in rendering services and quantifying their operational efficiency.

Vessel port dwell time, also referred to as vessel turnaround time, vessel time in
port or berth time, designates the period during which a vessel is stationed at a port. As
illustrated in Figure 1, the nomenclature and process of vessel-related timestamps are
employed at container terminals. The actual time of arrival (ATA) signifies the moment
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a vessel approaches the port and comes to a stop for anchoring. Upon securing a berth,
the vessel’s arrival at the berth corresponds to the actual time of berthing (ATB). The ATB
timestamp corresponds to the instant when the vessel completes mooring to the port’s bitts.
Subsequent to arrival, terminal personnel such as forepersons and stevedores board the
vessel to validate its stowage plan and prepare for cargo handling operations. The actual
time of work (ATW) denotes the juncture when the vessel commences lifting containers
on and off the vessel, signifying the initiation of cargo handling operations. The actual
time of (work) completion (ATC) signifies the point at which the vessel finishes loading or
unloading designated containers, concurrently concluding terminal operations. When the
vessel is poised for departure, piloted, and lines released, the timestamp corresponds to
the actual time of departure (ATD). Intervals between these timestamps may entail idling
periods, potentially attributed to factors such as terminal staff shift changes, plan revisions,
and various contingencies. Vessel port dwell time is inherently defined as the duration
between ATD and ATB, encapsulating the period during which the vessel remains at the
port. Typically, vessel dwell time closely parallels the interval between ATD and ATB.
Yet, deviations may arise if the quantities of loaded, unloaded, and shifted containers are
modified during berthing. Furthermore, variations in time spans may manifest between
ATB and ATW, as well as between ATC and ATD, contingent on circumstances and diverse
factors, encompassing port labor union policies, pilot or tugboat association regulations,
and localized weather conditions. Given the multifaceted nature of factors influencing
vessel dwell time, conventional estimations grounded in cargo load-based assessments
often prove inadequate.
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Consequently, the incorporation of machine learning techniques, capable of capturing
nuances that elude human observation, is advocated. This underscores the rationale behind
our hypothesis to harness machine learning models to outperform incumbent terminal-
operated dwell time estimations. Machine learning algorithms hold the potential to uncover
intricate patterns and relationships within extensive datasets that conventional statistical
methods might overlook. This capacity becomes especially advantageous when confronted
with intricate maritime systems and data.

1.2. Scope of the Study and Research Area

This study is predominantly centered on a container terminal situated within the
Busan New Port precinct in South Korea. Renowned as the foremost port city in the nation
and ranked 7th on a global scale [4], the port of Busan boasts a staggering container traffic
volume of 22,078,000 TEUs (twenty-foot equivalent units) as of 2022. The port city hosts
two principal clusters of container terminals, namely Busan Port and Busan New Port.
Of these vibrant terminals, the Busan New Port Pier 1, also known as the Pusan New
International Terminal (PNIT), emerged as the experimental site for this study. The PNIT
encompasses three berths, each endowed with a 50,000-ton capacity. Leveraging authentic
operational history data, our hypothesis was subjected to rigorous evaluation.

1.3. Literature Review

Previous studies have predominantly directed their attention toward terminal op-
erations when delving into the domain of vessel dwell time. Some researchers have
concentrated on modeling container cargo dwell time using simulation techniques. Stud-
ies [5–9] have tackled the estimation of container dwell time at terminal facilities, with a
primary focus on enhancing cargo rehandling efficiency and identifying factors that impact
overall terminal operations.
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Concurrently, several works have investigated the factors influencing vessel turnaround
time through analytical hierarchical process (AHP) analysis. Mapotsi [10] investigated
factors responsible for extended vessel turnaround time at a dry bulk terminal. They
formulated a multiple regression model encompassing diverse independent variables,
including waiting time, idle periods, sailing and berth delays, alongside uncontrollable
variables such as rain, wind, and visibility. Nyema [11] adopted a descriptive survey to
gauge the significance of factors influencing vessel turnaround time by surveying approx-
imately 500 employees at a container terminal. Rupasinghe, Sigera et al. [12] employed
questionnaires across various stakeholder groups within terminal operations, utilizing
AHP methodologies, and revealed determinants of delayed vessel turnaround time.

Studies have endeavored to characterize port productivity via vessel turnaround
time analysis. Zhang and Kim [13] advocated the minimization of vessel turnaround
time through optimized terminal quay crane (QC) allocation. Buhari, Ndikom et al. [14]
developed a regression model predicting port revenue using cargo throughput and vessel
turnaround time. Hong, Merk et al. [15] discerned factors influencing port performance
in China’s Shanghai port, employing statistical tools. Ming and Shah [16] examined
operational processes within a petroleum terminal to mitigate vessel turnaround time.
Jayaprakash and Gunasekaran [17] measured port performance using vessel turnaround
time and service time, formulating a non-linear regression model that elucidates their
interrelationships. Ðelović and Mitrović [18] employed vessel turnaround time to evaluate
berth productivity in a dry bulk cargo port.

Conversely, literature has also focused on identifying factors affecting vessel turnaround
time across various terminals. Loke, Othman et al. [19] explored correlations between berth
turnaround time and parameters such as total moves, discharge, and load quantities. Pre-
mathilaka [20] formulated a multiple linear regression model that integrates factors such as
waiting time, container moves, quay crane deployment, crane intensity, and weather vari-
ables affecting vessel turnaround time. Dayananda Shetty, Gurudev et al. [21] conducted
a detailed analysis of two-year vessel turnaround time data to identify driving factors.
AV and Abijath [22] attributed increased vessel turnaround time at Cochin Port Trust to
pre-detention and working time delays. Smith [23] analyzed port dwell times of container
vessels having called at ports in the United States through automatic identification system
(AIS) data, establishing a link between cargo volumes and vessel dwell time. Ducruet and
Itoh [24] identified determinants impacting ship turnaround time through network analysis
of international ports and nations.

The operational strategies adopted by shipping companies significantly influence
fuel savings, given the substantial contribution of fuel costs to overall operating expenses.
Research [25] indicates that fuel expenses constitute over 50% of total ship operating
costs, necessitating meticulous fleet management. In this context, Moon and Woo [26]
investigated the relationship between vessel dwell time in port and vessel operations at
sea, considering operational costs and CO2 emissions. Their work aligns closely with
our study, emphasizing the significance of vessel dwell time in fostering efficient fleet
management and operation. This concept can be encapsulated by the term “just-in-time
arrival” (JITA) [27,28], also referred to as the “virtual arrival” (VA) [29] policy. The principle
of the just-in-time arrival policy entails a streamlined operational protocol wherein a vessel,
designated as A, adjusts its sea-going speed with consideration for the impending departure
of another vessel, labeled B, from the berth where vessel A is destined to dock. This dynamic
synchronization curtails excessive bunker consumption and associated emissions stemming
from high-speed navigation. An illustrative instance of this approach can be found in the
work of Yoon et al. [30], who leveraged historical vessel voyage trajectories to model
forthcoming routes, augmenting the precision of vessel arrival time estimates at a container
terminal with the overarching aim of implementing a robust JITA policy. It is pertinent
to assert that endeavors of [26,30] are closely aligned with our objectives, centered on
establishing streamlined interactions between vessels and terminals, thereby amplifying
overall efficiencies and fostering data transparency through objective investigations.



J. Mar. Sci. Eng. 2023, 11, 1846 4 of 29

Limited attention, however, has been accorded to estimating vessel dwell time from
a carrier perspective, particularly using machine learning-based regression models. One
notable study by Mokhtar and Shah [31] focused on predicting vessel turnaround time at
a container terminal using a multiple linear regression model. Nevertheless, this study
employed only a month’s worth of data for model development, potentially limiting its
representation of trends. Despite their insightful findings, follow-up studies in this area
have remained scarce over the past 17 years. As highlighted by their work [31], vessel
turnaround time is influenced by factors such as quay crane allocation and cargo handling,
yet the adoption of more advanced methodologies is warranted.

Engaging personnel from a prominent container shipping company reveals the sig-
nificance of having accurate vessel arrival and departure information. Anticipating port
congestion using real-time data like the automatic identification system data could facilitate
proactive management of port situations [32]. Presently, communication between ports and
carriers is primarily one-way, with carriers adhering to the terminal’s schedule. Establish-
ing a two-way communication channel could enable vessels to adjust their speed at sea,
thereby mitigating the need for excessive waiting time and contributing to fuel savings and
emission reductions.

1.4. Research Objective

The primary objective of this study is to construct a comprehensive multiple regression
model for the precise estimation of vessel port dwell time, employing the prowess of
machine learning models. This model’s effectiveness will be measured against the backdrop
of prevailing terminal operations. In pursuit of this aim, the researchers embarked on the
creation of six distinct machine learning models designed for regression analysis. Through
an exhaustive process of grid searching, the optimal training configuration was identified,
yielding the lowest error metrics across the dataset. Subsequently, the model exhibiting
the best performance was systematically juxtaposed against the reference model’s error
metrics. This rigorous comparison sought to validate the superior efficacy of the proposed
model and ascertain its potential as a robust tool for estimating vessel departure times, thus
empowering container shipping enterprises with a reliable predictive framework.

1.5. Contributions

This study makes several significant contributions to the container carrier dwell
time forecast:

1. The machine learning-based regression mode: a pioneering aspect of this study lies in
the development of a novel machine learning-based regression model. This model
was meticulously trained using comprehensive historical data on berth schedules,
spanning an impressive 41-month duration. This extensive dataset served as the
foundation for training and rigorously validating the model’s predictive capabilities.

2. Enhanced voyage planning and terminal operations: the outcomes of this research
offer tangible benefits not only to shipping companies but also to terminal oper-
ators. By enabling more effective voyage planning for shipping firms, the study
facilitates streamlined interactions between vessels and terminals, reminiscent of the
concept of the just-in-time arrival policy. This alignment fosters improved overall
operational efficiency.

3. Efficiency with simple data: remarkably, this study achieved commendable results
using a straightforward and basic dataset consisting of previous berth schedules and
vessel particulars. The model’s performance surpasses that of the reference model,
underscoring the effectiveness of its approach.

2. Materials and Methods
2.1. Research Flow

The schematic diagram in Figure 2 illustrates the development of machine learning
(ML) models designed to predict container vessels’ dwell time at the port. The process
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commenced with the collection of ten years’ worth of berth schedule history data from a
container terminal. In conjunction with this, pertinent particulars data for the vessels in
berth were obtained through web crawling. Given the initial dataset’s inherent imbalance,
the authors opted to utilize only the most recent three years of data to enhance the model’s
performance. Subsequently, a new dataset was meticulously curated for training the
ML models.
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Before embarking on model training, several data preprocessing techniques were
judiciously employed. These techniques encompass outlier removal, feature engineering,
and dimensionality reduction. In total, six different ML models were considered for the
regression task: adaptive boosting (AdaBoost), gradient boosting, light gradient boosting
machine (LGBM), extreme gradient boosting (XGB), categorical boosting (CatBoost) and
random forest.

To fine-tune the models’ performance, a grid search methodology was applied to opti-
mize their hyperparameters. Ultimately, the outcomes generated by the best-performing
model were rigorously compared with reference data derived from terminal operations.

2.2. Dataset Configuration
2.2.1. Data Collection

A multitude of container terminals readily provide their berth plans or schedules,
often accessible through their websites. Fortunately, many terminals offer not only current
berth schedules but also historical ones spanning various durations. A visit to one such
website affiliated with a terminal in the Busan New Port, South Korea, facilitated the
retrieval of years’ worth of historical berthing plans (https://www.pnitl.com/infoservice/

https://www.pnitl.com/infoservice/vessel/vslScheduleList.jsp
https://www.pnitl.com/infoservice/vessel/vslScheduleList.jsp
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vessel/vslScheduleList.jsp, accessed on 30th August 2023). In our quest for data richness,
we gathered an extensive 12,153 rows of historical berth data from this source, equivalent
to a decade of records. A representative sample of the berth schedule can be seen in Table 1.

Table 1. Berth schedule history sample.

Berth Company Voyage Vessel * Time of Berth Time of
Departure

Loading
Qty

Discharging
Qty

Shifting
Qty

T2(P) BLA V246005 V246
1 January 2019

06:15:00
1 January 2019

16:00:00 139 211 0

* Specific vessel names and voyage details have been concealed for privacy reasons.

In Table 1, the “Berth” column denotes the assigned berth for the vessel, with the
terminal housing a total of three berths: T1, T2, and T3. The notation “(P)” signifies that the
vessel berthed on the ‘port’ side, which corresponds to the left side of the vessel, while “S”
denotes ‘starboard’, signifying the right side. The “Company” field refers to the vessel’s
operating company name, represented by a three-letter code (defined in Appendix A).
The “Voyage” code combines the vessel’s unique code with the number of port calls in
a given year. “Time of Berth” indicates the vessel’s berthing time at the terminal, while
“Time of Departure” signifies the moment of departure after cargo operations. The features
“Loading Qty”, “Discharging Qty”, and “Shifting Qty” represent the quantity of containers
handled between the vessel and the terminal, measured in TEUs (twenty-foot equivalent
units). As elucidated in Figure 1, vessel dwell time is easily computed by subtracting “Time
of Berth” from “Time of Departure”.

Furthermore, a range of vessel particulars data, including length overall (LOA), width,
gross tonnage, age, and capacity, were incorporated to enhance the ML model’s per-
formance and interpretability. These particulars were sourced through web crawling
techniques and cross-verified with South Korean government public data repositories.

2.2.2. Data Exploration

During the exploratory data analysis phase, it became apparent that the original
dataset exhibited a skewed and non-uniform distribution. Although initially appearing
suitable for use, the dataset revealed a shift in the port’s recent trends compared to
historical records. To provide clarity, we visualized the total port calls and TEU counts at
this terminal.

Figure 3 illustrates the total port calls at the terminal by year, while Figure 4 presents
the total TEU counts over the same period. It is notable that annual port calls remained
at their peak from 2014 to 2017, but a significant decline in port calls occurred from 2018
onwards. Conversely, Figure 4 indicates that TEU counts remained consistently high, even
reaching their peak in 2018. This discrepancy can be attributed to the pandemic-induced
port congestion, which led to a reduction in seaborne trade handling worldwide from
2020 to 2022. Notably, the trend of fewer port calls was driven by the increased visits of
gigantic vessels (exceeding 10,000 TEU capacity).

According to JOC Group [33], the global ship turnaround time increased due to the
influx of high-capacity vessels (over 10,000 TEU). This was driven by the assumption that
larger vessels inherently enhance port productivity. As larger vessels handle more contain-
ers during a single port call, the number of vessels calling at the terminal decreases while
container quantities remain substantial. This shift in port dynamics prompted us to focus
primarily on the latest data, spanning over three years—41 months—for model training.

https://www.pnitl.com/infoservice/vessel/vslScheduleList.jsp
https://www.pnitl.com/infoservice/vessel/vslScheduleList.jsp
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2.2.3. Splitting Dataset

The details of the dataset split are outlined in Table 2.

Table 2. Split dataset description.

Dataset Number of Rows Proportion Timespan

Train (randomly split) 2653 67.68% January 2019~August 2022 (32 months)
Validation (randomly split) 664 16.96%

Test 597 15.25% September 2022~June 2023 (9 months)

Total 3914 100% 41 months

The dataset was composed of a total of 3914 rows of data, encompassing a 41-month
duration. Within this dataset, the test data covered a period of 9 months, representing real-
world data against which the model’s predictions were assessed. The remaining 32 months
of data were designated as the training set.

To avert the risk of overfitting, a common challenge in machine learning, where a
model becomes excessively specialized to the training data, capturing not only underlying
patterns but also noise, a validation dataset was thoughtfully created. This dataset was
separated from the original training dataset and employed as a crucial tool to prevent
overfitting. Both the new training and validation sets were randomly extracted from the
initial training dataset.
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2.3. Data Preprocessing

Data preprocessing is a pivotal phase in the preparation of data for machine learning
models. It encompasses a range of techniques, including cleaning, handling missing values,
transforming and selecting features, and addressing data imbalances. In this section, we
meticulously executed a step-by-step preprocessing approach, encompassing the following
stages: (1) removing outliers, (2) feature engineering, and (3) dimensionality reduction.

2.3.1. Removing Outliers

Outliers, those data points that markedly deviate from the general dataset pattern,
can result from various sources, including data collection errors, measurement noise, or
genuine extreme values. Addressing outliers is essential as they have the potential to
distort both statistical analyses and machine learning model predictions. To mitigate the
influence of outliers, we applied the interquartile range (IQR) method [34]. This method
calculates the IQR as the difference between the 75th percentile (Q3) and the 25th percentile
(Q1) of the data. The IQR effectively encapsulates the middle 50% of the data, reducing the
impact of extreme values compared to the range defined by the minimum and maximum
values. Outliers are typically identified through the following equations:

Lower Outliers < Q1− (1.5× IQR) (1)

Upper Outliers > Q3 + (1.5× IQR) (2)

Figure 5 presents two box plots illustrating the difference in dwell time distribution in
the dataset. The left figure displays raw data with outliers, while the right one exhibits the
dataset after outlier removal using the IQR method. The central box in the plot represents
the IQR. The top edge of the box represents the upper quartile, while the bottom edge
represents the lower quartile. The length of the box corresponds to the spread of this
middle 50% of the data. The orange horizontal line inside the box represents the median or
the middle value of the dataset. The whiskers extend from the edges of the box to show
the range of the data. They typically extend to a certain multiple of the IQR from the
quartiles. Any data points beyond the whiskers are considered outliers like plotted as dots
in the figure. Clearly, the raw data contained numerous outliers, while the processed data
exhibited significantly less distortion in dwell time values.
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2.3.2. Feature Engineering

Feature engineering entails selecting, creating, or transforming input variables to
enhance a machine learning model’s performance, often drawing on domain-specific
knowledge. In this context, we identified and managed features through a systematic
approach. For instance, we retained features related to company and berth dependencies, as
we believed they played significant roles. Regarding the company feature, companies with
fewer than 100 calls at this port during the dataset period were categorized as ‘infrequent’
to mitigate undue influence on the model. Additionally, to capture time series information
such as seasonality and secular trends, we extracted year and month information from the
‘Time of Berth’ feature. Ship age was computed by subtracting the ship’s year built from the
year of berthing at the terminal, offering a representation of the age of the vessels. Lastly, the
‘totalLoad’ feature was derived by aggregating loading, discharging, and shifting quantities.

Figure 7 illustrates the distribution of categorical features, revealing a slight minority in
the allocation of T3 berth. MSC (Mediterranean Shipping Company, Geneva, Switzerland)
emerged as the most frequent company, followed by MAE (Maersk Sealand, Miramar,
FL, USA). Figure 8 presents histograms depicting the distribution of numerical features.
Features related to cargo quantity, such as loading, discharging, shifting, and total load,
exhibit skewed trends, with fewer than 2000 cargos outweighing the larger ones. Notably,
vessel dimension-related features, including gross tonnage (grossTon), length overall (LOA),
width, and capacity, displayed random distributions, indicating a diverse range of vessels
calling at this port, irrespective of their size and capacity. It is important to note that the
dwell time feature exhibited a Gaussian distribution with some skew, suggesting that the
dataset can be effectively trained without significant degradation of machine learning
model performance.
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2.3.3. Covariate Shift Detection

Covariate shift in machine learning refers to a situation where the distribution of
input covariates in the training data differs from the distribution of input features in the
test or deployment data, which is likely to lead to the poor performance of the model
prediction on the test data [35]. In this section, several covariate shift detection techniques
are explained.

Figure 9 depicts a distribution plot comparing the training and test datasets. While
each feature within both datasets did not exhibit significant imbalances, the plot highlights
that the test dataset aligns well with the distribution of the training dataset. This observation
provides evidence that the dataset is relatively unaffected by covariate shifts.
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Another technique employed to assess covariate shift is principal component analysis
(PCA) [36]. PCA, a commonly used dimensionality reduction technique in machine learning
and statistics, indirectly offers insights into potential covariate shifts by visualizing data in a
reduced-dimensional space. PCA transforms the original data into a new coordinate system,
with the first principal component capturing the most variance, the second component
the second most, and so forth. This transformation enables us to focus on the most salient
aspects of the data while reducing noise and redundancy.

Figure 10 illustrates the results of PCA visualization for covariate shift detection. After
standardizing the data, we conducted PCA with two components. The objective of this
analysis is to identify any significant divergence between the data points from the training
and test datasets in this visualization, which could indicate the presence of a covariate shift.
As shown in Figure 10, we observe the extent of overlap between the datasets, which serves
as a key indicator of potential covariate shift. Notably, the visualization reveals that there is
considerable overlap between the training and test datasets, signifying that the dataset is
relatively immune to the effects of covariate shifts.
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Moreover, the positions and spreads of the data points along the x-axis (Principal
Component 1 or PC1) and y-axis (Principal Component 2 or PC2) in the plot can offer
valuable insights into the covariance structure of the data. One notable observation is
the horizontal alignment of the test dataset around values of PC2 ranging from 2 to 3,
while the training dataset exhibits a wider horizontal distribution below PC2 of 3. This
discrepancy in concentration along PC2 may indicate dissimilar covariance structures
between the two datasets. The data’s positioning implies that the test dataset has a higher
density of data points along PC2 within the range of 2 to 3. In contrast, the training
dataset demonstrates a more dispersed distribution along PC2 below the value of 3. This
difference in concentration along PC2 suggests potential variations in covariance patterns
between the two datasets. In practical terms, this suggests that the test dataset may exhibit
stronger correlations or relationships captured by PC2 within the range of 2 to 3, which are
less pronounced in the training dataset. This finding could imply the presence of certain
patterns or relationships unique to the test dataset, as represented by PC2, which are not as
prevalent in the training data.

The final measure to triple-check its covariate shift is a method called t-distributed
stochastic neighbor embedding (t-SNE) [37]. The main idea behind t-SNE is to map each
data point from its original high-dimensional space to a lower-dimensional space while
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preserving the pairwise similarities between data points. It does this by modeling the
probability distributions of pairwise similarities in both high- and lower-dimensional
spaces. The algorithm minimizes the difference between these distributions, aiming to
keep similar data points close to each other and dissimilar ones farther apart in the lower-
dimensional representation. The method is also a dimensionality reduction technique
commonly used for visualizing high-dimensional data in a lower-dimensional space. t-SNE
is frequently used for visualizing high-dimensional data in a lower-dimensional space,
making it an effective choice for detecting covariate shifts, especially given our dataset’s
29 features.

Figure 11 showcases the t-SNE-driven plot for covariate shift detection, revealing the
distribution of data points from the training and test datasets in the t-SNE space. Both
datasets are clustered together, indicating similar characteristics. In summary, employing
these measures for detecting covariate shifts provides strong evidence that the dataset
exhibits consistent characteristics across its entirety.
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2.3.4. Dimensionality Reduction

Dimensionality reduction is a technique used in machine learning to reduce the
number of features or variables in a dataset while retaining as much relevant information
as possible. High-dimensional datasets with many features can often suffer from issues
like the curse of dimensionality, increased computational complexity, and increased risk of
overfitting. To prevent those issues, we demonstrated a feature selection technique that
involves selecting a subset of the original features and informative features for the given
problem. Some common feature selection methods include filter methods [38], wrapper
methods [39], and embedded methods [40].

Each of these methods presents its own advantages and disadvantages. Filter methods
employ statistical measures or heuristics to rank features based on their individual rele-
vance to the target variable [38]. However, the mere selection of highly relevant features
through filter methods does not guarantee their sustainability for the model. On the other
hand, wrapper methods utilize a specific machine learning algorithm to assess subsets of
features [39]. They involve training and evaluating models with various feature subsets to
identify the optimal set of features. While effective, wrapper methods necessitate multiple
model training iterations and are susceptible to overfitting, particularly when the dataset
is small. In contrast, embedded methods combine the strengths of both filter and wrap-
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per methods by integrating feature selection into the model training process [40]. These
methods evaluate feature relevance within the context of the model’s learning process,
potentially leading to a more balanced feature selection that aligns with the model’s gener-
alization capacity. Moreover, embedded methods typically exhibit computational efficiency
compared to wrapper methods, as they perform feature selection as an integral part of the
model training process, reducing the need for multiple model training iterations.

One of the classes in the scikit-learn Python library, SelectFromModel (SFM), was
employed to demonstrate embedded methods. Initially, we used a random forest regressor
model as the reference model. After fitting the model with the training dataset, SFM was
applied to extract crucial features. The determination of feature importance in tree-based
models is grounded in the concept of a feature’s contribution to reducing impurity in
the nodes of trees. We employed the Gini Importance (GI) metric [41] to assess feature
importance in the random forest model, as described in Equations (3) and (4).

G =
C

∑
i=1

p(i)·(1− p(i)) (3)

GIi = ∑t in all trees
nt

N
·(G be f ore split− G a f ter split) (4)

In Equation (3), G is Gini Impurity, while p(i) is the probability of picking a datapoint
with class i of the total classes C [42]. In Equation (4), nt represents the number of samples
that reach node t, while N denotes the total number of samples in the dataset. G be f ore split
corresponds to the Gini impurity of the node before the split, while G a f ter split signifies
the weighted average of the Gini impurities of the two child nodes following the split. In
simpler terms, the Gini Importance of a feature is the sum of reductions in Gini impurity
observed when that feature is used for splits across all trees in the random forest. Features
that consistently lead to purer nodes (i.e., lower Gini impurity) after a split are deemed
more important. Additionally, since Gini importance values are usually normalized to add
up to 1 or 100, we have normalized them to sum up to 1.

During training, the criterion employed was a mean squared error, with the threshold
set to the median and a random state of 42. Following the fitting process, the R-squared
(R2) score for the model was 0.81 for the validation set and 0.72 for the test set.

Table 3 displays the feature importance results from the trained random forest model,
where the threshold for feature importance was set at 2.116896 × 10−3. In the original
dataset, there were 29 features, but after filtering, only 15 remained.

Table 3. Feature importance.

Feature Importance

totalLoad 8.035243 × 10−1

workingYear 7.270265 × 10−2

discharging 1.888127 × 10−2

loading 1.803106 × 10−2

workingMonth 1.556914 × 10−2

shift 1.272530 × 10−2

LOA 9.228835 × 10−2

capacity 8.053313 × 10−3

grossTon 7.731356 × 10−3

shipAge 6.373691 × 10−3

width 6.099715 × 10−3

yearBuilt 5.785803 ×10−3

company_MAE 2.269882 × 10−3

company_MSC 2.165225 × 10−3

berth_T1 (Median) 2.116896 × 10−3
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Table 3. Cont.

Feature Importance

berth_T2 1.906887 × 10−3

company_COH 1.737024 × 10−3

berth_T3 1.385001 × 10−3

company_ZIM 8.983881 × 10−4

company_ONE 7.757470 × 10−4

company_SKR 6.906458 × 10−4

company_HLC 3.933310 × 10−4

company_HMM 2.815237 × 10−4

company_COS 2.066013 × 10−4

company_infrequent 1.809573 × 10−4

company_HAS 1.498511 × 10−4

company_OOL 1.069325 × 10−4

company_BLA 2.766817 × 10−5

company_DJS 9.507312 × 10−7

2.4. Machine-Learning Models for Regression Tasks

Machine Learning (ML) is about teaching algorithms to recognize patterns in data
and use those patterns to predict outcomes or classify information [43]. In pursuit of even
more accurate predictions, ensemble learning techniques like bagging and boosting have
emerged as powerful strategies. Bagging, short for “bootstrap aggregating”, assembles
predictions from multiple instances of a single model, each trained on a different part of
the data, effectively reducing overfitting and enhancing predictive stability [43]. On the
other hand, boosting, a sequential learning process, constructs a sequence of models, each
focusing on correcting the mistakes of its predecessor. This iterative approach ensures
a refined and robust final model capable of capturing intricate relationships within the
data [43]. In this subsection, an array of ensemble learning techniques, such as adaptive
boosting, gradient boosting, light gradient boosting machine, extreme gradient boosting,
categorical boosting and random forest, were briefly explained. All models presented in
this study were used to compare their estimation performances.

2.4.1. AdaBoost Regressor [44]

Adaptive boosting, or AdaBoost, is an ML algorithm designed for both classification
and regression tasks. AdaBoost is particularly effective at improving the performance of
weak learners by sequentially combining their predictions to create a strong overall model.

After training a weak learner on the training data, it gives more weight to the mis-
classified data points, effectively focusing on the mistakes made by the previous learners.
Moreover, the predictions of all weak learners are combined with weights based on their
performance, while learners with higher accuracy or lower loss are given more weight. Mis-
classified points receive higher weights, making them more likely to be correctly classified
in the next iteration. The final prediction in AdaBoost is made by combining the predictions
of all weak learners, with each learner’s contribution being weighted based on its accuracy.

The prominent feature of AdaBoost lies in its adaptability. It adjusts its focus on
problematic data points as the iterations progress, allowing it to concentrate on the cases
where previous models struggled. This adaptiveness leads to a strong ensemble model that
can outperform individual weak learners.

2.4.2. GradientBoost [45]

Similar to AdaBoost, gradient boosting is an ensemble learning model used for both
classification and regression tasks. However, unlike AdaBoost, gradient boosting builds
a sequence of models where each new model tries to correct the mistakes made by the
previous ones in a more systematic and data-driven manner. The term “gradient” refers
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to the use of a gradient of the loss function when building each sequential model in
the ensemble.

An initial model is trained on the data, and the next model is trained to predict the
residuals, which are differences between actual and predicted values, of the previous model.
It then combines the predictions of all models, and the predictions from the new model
are added to the previous predictions, incrementally refining the overall prediction. The
previous process is repeated, with each new model aiming to further reduce the errors
made by the ensemble of previous models.

Gradient boosting is especially effective when dealing with complex relationships
in data and high-dimensional datasets. It can capture nonlinear interactions and handle
outliers better than some other algorithms.

2.4.3. LGBM Regressor [46]

LightGBM (light gradient boosting machine) is an efficient gradient boosting frame-
work specifically designed for speed and performance. It is an open-source machine
learning library developed by Microsoft. LightGBM is built to be faster and use less
memory than other gradient boosting models while maintaining high accuracy or R2 score.

Like other gradient boosting models, LightGBM builds an ensemble of weak learners
to create a strong predictive model. It also uses a leaf-wise tree growth strategy, which
prioritizes splitting nodes that lead to the largest reduction in loss. This strategy can speed
up training but requires additional care to prevent overfitting. In addition, this machine
uses histogram-based techniques to speed up the computation of gradients and Hessians
during the tree-building process. This further contributes to its efficiency.

LightBGM is especially suitable for large datasets with many features, as its effi-
cient algorithms can handle these situations more effectively than some other gradient
boosting models.

2.4.4. XGB Regressor [47]

Like other gradient boosting techniques, XGBoost, short for Extreme Gradient Boost-
ing, builds an ensemble of weak learners to create a strong predictive model. XGBoost
enhances the concept of gradient boosting by incorporating regularization techniques
and other optimizations for improved performance. As in others, after starting with an
initial prediction, the residuals are calculated to improve these residuals with each new
tree. Then, the model constructs a decision tree based on the features and the calculated
residuals. The tree-building process involves selecting the best splits that minimize a loss
function, which typically measures the difference between predicted and actual residuals.
For regularization, it applies techniques such as L1 (Lasso) and L2 (Ridge) regularization to
prevent overfitting. Once a new tree is constructed, its predictions are used to update the
overall prediction. The predictions of all trees are combined, and each tree’s contribution is
controlled by the learning rate. The previous steps are repeated for a specified number of
iterations, which means trees. Each new tree focuses on reducing the errors made by the
ensemble of previous trees.

2.4.5. CatBoost Regressor [48]

The CatBoost regressor (categorical boosting regressor) is an ML algorithm designed
for regression tasks built on the CatBoost framework. CatBoost is specifically optimized to
handle categorical features effectively while also providing strong predictive performance
for both categorical and numerical data. The CatBoost regressor is also one of the gradient
boosting models and shares similarities with other gradient boosting techniques.

CatBoost uses an innovative approach called ordered boosting, which treats categorical
features in a way that preserves their natural order and enhances the model’s ability to cap-
ture their influence on predictions. It also employs a method to encode categorical features
into numerical values during training, resulting in improved accuracy and efficiency. The
regressor includes L2 regularization to control model complexity and prevent overfitting.
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CatBoost has gained popularity in various machine learning competitions and real-
world applications due to its ability to handle categorical features effectively and strong
predictive performance. It is especially valuable when working with datasets that contain a
mix of categorical and numerical features.

2.4.6. Random Forest Regressor [49]

The random forest regressor is an algorithm designed for regression tasks. It is a
variant of the random forest algorithm, which is an ensemble learning technique. Random
forest builds an ensemble of decision trees and combines their predictions to create a strong
predictive model.

For each tree in the ensemble, a random subset of the data is sampled with replacement.
This process is called bootstrap sampling, and it creates slightly different datasets for each
tree. Each sampled dataset is then used to build an individual decision tree. These trees
can be deep and complex and are trained to predict the target values based on the input
features. In addition to sample data, random forest randomly selects a subset of features for
each tree split. This randomness helps decorrelate the trees and reduce overfitting. Once
all trees are constructed, their predictions are combined and averaged to obtain the final
ensemble prediction.

The strength of the random forest regressor lies in its ability to handle complex
relationships in the data, mitigate overfitting, and produce accurate predictions. Random
forest is less sensitive to noisy data and outliers compared to individual decision trees.

2.5. Machine Learning Models Training

In this section, the crucial process of training machine learning models for the regres-
sion task at hand is explained.

2.5.1. Error Metrics

Error metrics play a crucial role in quantifying the performance of regression models
and evaluating their predictive accuracy. In this subsection, we explore a range of error
metrics employed to assess the quality of our trained models.

• Mean Absolute Error (MAE) [50]

MAE =
∑n

i=1
∣∣Yi − Ŷi

∣∣
n

(5)

where Ŷi is the prediction of data point i, Yi is the true value of data point i and n is the total
number of data points

Mean absolute error, or MAE, measures the average absolute difference between
predicted and actual values. It is calculated by taking the average of the absolute differences
between predicted and actual values. MAE is easy to interpret and gives equal weight to
all errors, but it might not be suitable when outliers are present.

• Mean Squared Error (MSE) [50]

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (6)

MSE, which stands for mean squared error, measures the average of the squared
differences between predicted and actual values. It penalized larger errors more heavily
than similar ones due to squaring. It is widely used but can be sensitive to outliers as their
squared values dominate the overall error.

• Rooted Mean Squared Error (RMSE) [50]

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (7)
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Root mean squared error, or RMSE, is the square root of the MSE, and it is often used
to measure the typical size of errors in predictions. RMSE is in the same units as the original
data, making it more interpretable. Like MSE, it is sensitive to outliers.

• R-squared (R2 score) [50]

R2 = 1− RSS
TSS

(8)

where RSS is the sum of squares of residuals, TSS is the total sum of squares.
R-squared is a statistical metric used to evaluate the goodness of fit of a regression

model. In the context of machine learning, regression models aim to predict a continuous
target variable based on one or more independent variables (features). R-squared quantifies
how well the independent variables explain the variability in the target variable. Yet, it tends
to increase as more independent variables are added to the model, even if those variables
are not truly meaningful. Thus, it does not account for model complexity. Additionally,
R-squared can be misleading when used with nonlinear relationships, as it might still yield
high values even if the model does not fit well.

• Adjusted R-squared (adjusted R2 score) [50]

Adjusted R2 = 1− (

(
1− R2)× (n− 1)

n− p− 1
) (9)

where R2 is the regular R-squared value, n is the number of observations (data points), and
p is the number of independent variables in the model.

The adjusted R-squared is often used to counter the issue of adding unnecessary
variables to improve R-squared. The adjusted R-squared takes into account the number of
independent variables in the model, penalizing the addition of unnecessary variables. This
makes it a more reliable metric for assessing model fit while considering model complexity.

The key difference between R-squared and adjusted R-squared lies in how they handle
model complexity. R-squared tends to increase with the addition of more variables, making
it susceptible to overfitting. Adjusted R-squared, on the other hand, introduces a penalty
for adding variables, providing a balance between model fit and simplicity. Therefore, in
this study, adjusted R-squared was designated as a key metric to determine which model
performs best and how much it is superior to others.

2.5.2. Hyperparameter Tuning [51]

Hyperparameter tuning plays a pivotal role in optimizing the performance of machine
learning models. We explored the process of selecting the most appropriate hyperparam-
eters to enhance the predictive accuracy and generalizability of our models. Through
meticulous fine-tuning of parameters such as learning rate, the number of estimators,
and maximum depth, our goal was to strike the delicate balance between underfitting
and overfitting, thereby maximizing the effectiveness of our models in addressing real-
world problems.

All machine learning models underwent training via the grid search cross-validation
method. This technique systematically explores the best combination of hyperparameters
by assessing model performance across various hyperparameter value combinations, em-
ploying cross-validation. Table 4 provides an array of hyperparameter values used for
tuning each model.

The grid search method constructs a grid comprising all possible hyperparameter
value combinations, where each combination represents a unique model configuration. For
each configuration within this grid, the model undergoes training and evaluation through
cross-validation, which entails dividing the dataset into multiple folds (e.g., k folds [52]).
The model trains on (k − 1) folds and evaluates the remaining fold. This process repeats
k times, each time using a different fold as the evaluation set. In our experiment, we set
the parameter k to 10. After evaluating all configurations via cross-validation, each model
identifies the configuration that yields the best performance metric, often determined by
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the lowest error. Subsequently, the best hyperparameter configuration is selected before
the final model is trained using the entire training dataset and the chosen hyperparameters.
The results of hyperparameter tuning are presented in Section 3.2.

Table 4. Model parameters.

Model Parameter Possible Value List

AdaBoost
n_estimators [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100, 150]
learning_rate [0.001, 0.01, 0.1,0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

GradientBoost
n_estimators [10, 20, 30, 40, 50, 100, 150]
learning_rate [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
max_depth [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

LGBMRegressor

n_estimators [50, 100, 150]
learning_rate [0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
max_depth [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
num_leaves [2, 4, 6, 8, 10, 12, 15, 30, 31]

XGBRegressor

n_estimators [10, 20, 30, 40, 50, 100, 150, 200, 250, 300]
learning_rate [0.0001, 0.001, 0.01, 0.1, 1]
max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

booster [gbtree, gblinear, dart]

RandomForest
n_estimators [50, 100, 150, 200, 250, 300]
max_depth [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

CatBoostRegressor

iterations [50, 100, 150, 200, 250, 300]
learning_rate [0.0001, 0.001, 0.01]
max_depth [None, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
l2_leaf_reg [0.2, 2, 5, 10, 20]

2.6. Reference Model

In this subsection, we delve into the computation of the reference model’s performance.
At the container terminal under examination, the process of predicting and estimating
berthing and departure times for vessels expected to arrive at the terminal occurs days
or weeks in advance. Terminal operators take into consideration a multitude of factors,
including estimated arrival times, total cargo handling quantities, and other determinants.
This process forms the basis for creating a berthing plan [53]. However, the exact algorithms
governing the reference model’s operations remain somewhat elusive to outsiders, includ-
ing the authors ourselves. Nevertheless, we were able to observe the predicted results, as
all records were stored within the terminal operating system (TOS). Therefore, rather than
defining the precise modeling intricacies, the authors regarded the reference model of the
container terminal as a holistic representation of the prediction outcomes derived from
the terminal’s operations. In this study, we defined the reference model’s outcomes using
historical berth schedule data.

Re f _MAE, or reference mean absolute error (MAE), is computed by aggregating the
MAEs of numerous vessels within the research time period. It can be expressed simply
by calculating the mean value of the estimated dwell time values for vessel n using l
estimations and subtracting it from the actual dwell time for vessel n.

Re f _MAE =
∑m

n=1 |(
∑l

s=1 estimated dwell times
l n)− actual dwell timen|

m
(10)

In Equation (10), m represents the total number of monitored vessels, n is the index of
the individual vessels, l denotes the total number of reference estimations of vessel n, and s
is the timestamp index of vessel n.

While computing Re f _MAE, we identified a few data points exhibiting significantly
higher errors and chose to exclude those outliers to ensure a fair comparison with our
models. Figure 12 comprises box plots that illustrate the differences in errors before and
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after the removal of outliers. The left figure displays Re f _MAE without outliers following
the application of the IQR method.
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Figure 13 presents a histogram depicting the errors generated by the reference model.
Despite the removal of outliers, the reference model still exhibited relatively substantial
errors, with an average error of 277 min.
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3. Results

In this section, the results of this study are described in detail, covering model predic-
tion results, hyperparameter tuning results and reference model and a comparison with
the reference model.

3.1. Model Prediction Results

In this subsection, we compare the prediction results of six different regression machine
learning models trained on the training dataset, considering both the validation and
test datasets.

Figures 14 and 15 display the prediction results performed by the CatBoost model
on the validation and test datasets, respectively. The y-axis in each figure represents the
dwell time (in minutes) of vessels, which varies from under 500 min to over 3000 min. The
x-axis represents the index of datasets. As previously mentioned in Table 2, the total rows
in the validation set amount to 664; for the test set, there are 597 data points. The blue line
represents the original values of the vessel’s dwell time, which corresponds to the ground
truth. The model’s predicted dwell times for both datasets are plotted in orange. These
plots demonstrate a strong overlap between the model’s results and the original values,
indicating a successful training process.
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Table 5 provides a comprehensive overview of the model prediction results for both
the validation and test datasets. During the validation period, all models, except AdaBoost,
performed similarly, yielding a mean absolute error (MAE) of around 180 min and an R2

score of 0.82. Fortunately, the adjusted R2 scores for these models were not significantly
different from the ordinary R2 scores, indicating that the feature selection and dimensional-
ity reduction techniques effectively contributed to model performance. In general, model
results on the validation dataset tend to be slightly superior to predictions on the test
dataset, assuming that the models were trained without data leakage or data distribution
mismatch. This slight difference is because test datasets are typically held separate from
both training and validation, representing new, unseen data that the models have not
encountered before. In this context, the model prediction results on the test dataset were
slightly lower than those on the validation dataset, demonstrating no signs of data leakage
or covariate shift. Models performed well on the test dataset, achieving adjusted R2 scores
of around 0.75 and a mean absolute error of approximately 250 min.
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Table 5. Model prediction result.

Dataset Model MSE * RMSE * MAE * R2 Score * Adjusted R2 *

Validation

AdaBoost 94,785.37 307.87 236.79 0.77 0.76
GradientBoost 69,828.51 264.25 182.20 0.83 0.82

LGBMRegressor 74,334.73 265.02 182.47 0.83 0.82
XGBRegressor 69,638.51 263.89 180.76 0.83 0.82
RandomForest 73,022.97 270.23 186.28 0.82 0.82

CatBoostRegressor 71,168.17 266.77 189.83 0.82 0.82

Test

AdaBoost 102,045.05 319.44 248.95 0.75 0.74
GradientBoost 102,545.59 320.23 256.62 0.75 0.74

LGBMRegressor 104,920.72 323.91 260.28 0.74 0.74
XGBRegressor 101,342.16 318.34 255.24 0.75 0.75
RandomForest 106,842.78 326.87 259.06 0.74 0.73

CatBoostRegressor 94,295.66 307.08 248.47 0.77 0.76
* Values were rounded off to the nearest hundredth.

3.2. Hyperparameter Tuning Results

This subsection provides an overview of the hyperparameter tuning results for the six
machine learning models used in this study.

Hyperparameters are parameters set before the training process that significantly
influence the performance and behavior of a machine learning algorithm. As previously
mentioned in Section 2.5.2, we utilized the GridSearchCV class in the scikit-learn library
0.20.4 for hyperparameter tuning. The results in Table 6 display the tuned hyperparameters
for each machine learning model. The duration of the tuning process varied depending
on the number of parameters involved in the grid search. These hyperparameters tuning
experiments were conducted on a PC equipped with an Intel Core i7-10700F processor,
32 GB of RAM, and a solid-state drive. The programming tasks were performed using
Python 3.7 on a Windows 11 machine.

Table 6. Hyperparameter tuning result.

Model Parameter Hyper-Value R2 Score * Tuning Duration

AdaBoost
n_estimators 8

0.82 0:00:26learning_rate 0.4

GradientBoost
n_estimators 50

0.86 0:05:22learning_rate 0.1
max_depth 4

LGBMRegressor

n_estimators 50

0.86 0:09:32
learning_rate 0.1
max_depth 8
num_leaves 15

XGBRegressor

n_estimators 50

0.86 0:19:44
learning_rate 0.1
max_depth 4

booster gbtree

RandomForest
n_estimators 250

0.85 0:01:03max_depth 7

CatBoostRegressor

iterations 300

0.85 0:52:28
learning_rate 0.01
max_depth 9
l2_leaf_reg 0.2

* R2 scores were rounded off to the nearest hundredth.

3.3. References Result and Comparison

The exact algorithms of the reference model remain a black box, as it is challenging
for outsiders, including the authors, to comprehend the intricacies of its operation. Nev-
ertheless, the authors had access to the predicted results, as all records made by terminal
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operators were stored in the terminal operating system (TOS). Therefore, instead of defining
the precise modeling approach, the authors regarded the reference model of the container
terminal as the aggregate prediction results derived from the terminal operation.

To clarify the results, consider this scenario: three days before vessel A’s planned
arrival, its berthing was originally scheduled for 10:00 on September 10th, with a departure
time at 23:00 on the same date and an estimated dwell time of 11 h. However, for some
reason, 24 h before its planned berthing, the terminal suddenly changed its berthing time
to 13:00 on September 10th and its departure time to 04:00 on the next date. The estimated
dwell time was also adjusted from 11 h to 15 h. When the vessel actually arrived and
departure, the actual arrival time was at 12:00 on September 10th, and the departure
occurred at 00:00 on September 11th, with an actual dwell time of 12 h. In this case, the
terminal predicted its dwell time twice. The initial prediction absolute error was 1 h, and
the subsequent error was 3 h. Thus, the mean absolute error for this case amounted to
2 h. The final reference model results were obtained by performing similar calculations for
every vessel’s case in the test dataset period from September 2022 to June 2023.

As calculated in Section 2.6, “Reference model”, the reference model produced absolute
errors with an average of 277.89 min for the test dataset period. As shown in Table 5, all
models that made predictions on the test dataset outperformed the reference model.

4. Discussion
4.1. Result Analysis

In this study, we employed six different machine learning models, including adaptive
boosting, gradient boosting, light gradient boosting, extreme gradient boosting, categorical
boosting, and random forest, to predict vessel dwell times using historical berthing sched-
ules. The results of these models are summarized in Table 5. Notably, all the model results
on the validation dataset outperformed those on the test dataset.

This discrepancy in performance between the validation and test datasets, despite their
similar sizes, may suggest differences in their underlying characteristics. The validation
set was randomly sampled from the original training dataset spanning from January 2019
to August 2022, potentially inheriting some time-related trends and information from
the training data. In contrast, the test dataset was selected from September 2022 to June
2023, making it distinct from the training data. This divergence implies that our models
successfully learned from the training data without overfitting, as they generalized well to
unforeseen data in the future.

Several factors contributed to the success of this study:

1. Statistics and visualization approach: initially, the data collection process aimed
for a larger dataset, assuming it would yield better results. However, during the
analysis, we recognized the significance of considering trends in container move-
ment and vessel capacity. For example, larger vessels with capacities exceeding
10,000 TEUs increased port calls at the terminal more than smaller vessels. Smaller
vessels tended to have shorter stays and carried fewer containers. As terminal ef-
ficiency and container handling demands increased [33], more frequent port calls
became prevalent. We also employed visualization tools such as Matplotlib and
Seaborn, as illustrated in Figures 3, 4 and 7–9, to explore dataset distributions and
trends. This proactive approach allowed us to filter and assess data based on distribu-
tion and trend characteristics.

2. Data normalization: scaling data is a crucial step in machine learning to ensure consis-
tent and effective model training. We utilized the standard scaler [54], a data scaling
technique, to normalize the input features before training our models. Standard
scaling transforms each feature into a mean of zero and a standard deviation of one.
This technique benefits algorithms sensitive to feature scaling differences, promoting
robustness, faster convergence, and better feature importance selection.

3. Feature selection: feature selection played a significant role in refining our models.
Features were removed based on their median threshold feature importance value,



J. Mar. Sci. Eng. 2023, 11, 1846 24 of 29

calculated using the SelectFromModel (SFM) class in the scikit-learn library. This pro-
cess helped us identify which features were most useful for model training. To assess
the impact of this technique, we conducted a training experiment using only the top
four features by importance, including “totalLoad”, “workingYear”, “discharging”,
and “loading”. The results, as shown in Table 7, revealed that while the validation
set results were similar to the initial model, those on the test set significantly differed.
This observation suggests that factors influencing vessel dwell time, traditionally
defined by various studies [10–12,19–22,24,31], may not be universally applicable. In-
stead, these factors may vary depending on terminal-specific policies and operational
dynamics, highlighting the importance of selecting features that align with the specific
terminal’s historical data when estimating vessel dwell times.

4. Hyperparameter tuning: to optimize model performance, hyperparameter tuning
was conducted using the grid search cross-validation (GridSearchCV) technique.
This method systematically explores a predefined hyperparameter grid to identify
the optimal combination for each model. The adoption of hyperparameter tuning
enhanced model performance and facilitated the identification of the best parameters
for each model.

Table 7. Model results from the reduced features.

Dataset (with Four Features) Model MSE * RMSE * MAE * R2 Score * Adjusted R2 *

Validation

AdaBoost 92,436.03 304.03 228.14 0.77 0.77
GradientBoost 76,503.75 276.59 193.59 0.81 0.81

LGBMRegressor 74,334.73 272.64 189.74 0.82 0.82
XGBRegressor 74,460.39 272.87 188.41 0.82 0.82
RandomForest 76,809.47 277.15 192.07 0.81 0.81

CatBoostRegressor 75,157.26 274.15 194.83 0.81 0.81

Test

AdaBoost 148,320.86 385.12 285.97 0.64 0.63
GradientBoost 162,420.81 403.01 302.61 0.60 0.60

LGBMRegressor 159,764.90 399.71 299.39 0.61 0.61
XGBRegressor 163,696.40 404.59 304.05 0.60 0.60
RandomForest 166,919.44 408.56 307.55 0.59 0.59

CatBoostRegressor 157,256.97 396.56 293.88 0.61 0.61

* Values were rounded off to the nearest hundredth.

These factors collectively contributed to the success of our models in predicting
vessel dwell times accurately and robustly. Our study demonstrates the importance of
comprehensive data analysis, data scaling, feature selection, and hyperparameter tuning in
enhancing the performance of machine learning models for complex tasks.

4.2. Additional Validation by Varying Test Periods

In this subsection, we present additional validation experiment results. While our
models have demonstrated their effectiveness, we sought further verification through an
additional experiment. As mentioned earlier, we trained the models on the training dataset
and evaluated them on both the validation and test datasets. However, given that our
dataset includes the ‘Time of Berth’ timestamp, we decided to divide the test dataset into
several sub-groups based on specific time intervals. These intervals consisted of 8 weeks
(2 months), 4 weeks (1 month), 3 weeks, 2 weeks, 1 week, 3 days, 2 days, and 1 day prior
to the vessel’s arrival. This segmentation aligns with the typical planning horizon of
international carriers who schedule fleet voyages weeks in advance and make adjustments
in the days leading up to arrival at the port.

The process of dividing the dataset proceeded as follows: taking the timestamp of the
first row in the test data, which was 12 September 2022, we used it as a reference to define
the upper boundary of the next sub-group based on the selected time interval. For instance,
in the 8-week time interval, the upper boundary would be 12 October 2022. Any data
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falling within this boundary constituted the first chunk of the test dataset. We repeated this
process for all eight defined periods.

Figure 16 illustrates the model error results on various test periods, and Table 8
provides detailed information on these results, including mean absolute error (MAE)
values for each sub-group. To arrive at these results, we calculated the MAE for each
sub-group and then computed the mean values. Table 5, which showcases the test dataset
results, revealed that the categorical boosting regressor (CatBoostRegressor) performed the
best, with an MAE of 248.47 min, closely followed by adaptive boosting (AdaBoost) with
an MAE of 248.95 min.
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Figure 16. Model error results on various test periods.

Table 8. Model mean absolute error results on various test periods (unit: minutes).

Model
Periods

8 Week * 4 Week * 3 Week * 2 Week * 1 Week * 3 Day * 2 Day * 1 Day *

AdaBoost 242.396 250.935 236.639 248.752 235.696 248.439 244.896 243.515
GradientBoost 244.078 246.804 245.425 250.212 254.591 260.625 241.191 240.822

LGBMRegressor 249.272 252.415 247.249 263.452 266.728 263.309 248.555 246.057
XGBRegressor 242.385 249.663 243.872 251.331 254.349 259.973 243.866 241.726
RandomForest 245.394 257.632 249.070 257.939 262.667 254.654 244.358 243.338

CatBoostRegressor 250.829 243.101 241.473 246.606 238.345 249.675 238.043 233.003
Reference 256.294 269.475 254.000 270.398 271.590 245.833 279.521 277.598

* Values were rounded off to the nearest thousandth.

However, in this additional experiment, no significant differences were observed in the
model results across various test periods. For instance, on the 8-week chunk, the extreme
gradient boosting regressor (XGBRegressor) and AdaBoost exhibited the lowest errors, but
on the 4-week chunk, both models experienced a sharp increase in errors. Conversely, the
CatBoostRegressor outperformed the other models on four separate occasions: the 4-week,
2-week, 2-day, and 1-day periods. It is worth noting that there was a slight decreasing trend
in performance over the different time intervals. Although the CatBoostRegressor is the
most suitable model for this task, the selection of the best model may vary on different
datasets due to the inherent randomness in machine learning and the specific data chosen.

4.3. Limitations of This Study

However, this study has some limitations. Firstly, our testbed focused on a single
container terminal, which means that the model results are specific to this particular termi-
nal. Additionally, we did not consider other types of vessels, such as general cargo, liquid
natural gas (LNG), chemical tankers, or pure car and truck carriers (PCTCs). Furthermore,
we could not incorporate real-time terminal-oriented data, such as quay crane allocation
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plans, which could potentially enhance prediction accuracy. Moreover, the exact algorithms
used by the terminal to estimate port dwell time remain undisclosed to us. Having access to
these algorithms would have allowed for a more precise comparison between our models
and the terminal’s estimations.

Last but not least, there is still room for improvement in this ML modeling. Although
all models trained in this study outperformed the reference model, a 30-min improvement,
which represents about a 12% gain, may not be significantly superior to the reference
model. Utilizing machine learning models can lead to more accurate estimates of vessel
dwell time compared to terminal-provided estimates, reducing planning uncertainties and
increasing operational efficiency. However, this improvement is contingent on employing
better techniques and a variety of data sources to build a more sophisticated machine
learning model.

5. Conclusions
5.1. Summary

This study aimed to estimate the dwell time of container vessels in the port using
multiple machine learning models and techniques, comparing these estimations with those
provided by the terminal’s operational reference. We compiled a dataset using 41 months
of terminal berth schedule history and vessel particulars data. Prior to training our models,
we performed data preprocessing, including the removal of outliers and dimensionality
reduction, to optimize the dataset for training. We trained six regression machine learning
algorithms: adaptive boosting, gradient boosting, light gradient boosting, extreme gradient
boosting, categorical boosting and random forest. The model parameters were fine-tuned
to achieve the best results on the validation dataset. The outcome of this analysis revealed
all of the machine learning models outperformed the reference model used at the terminal
by using simple datasets and fewer resources.

5.2. Future Works

Future endeavors will address some of the limitations encountered in this study. We
intend to expand our research to various terminals and vessel types, including pure car
and truck carriers (PCTCs) and chemical carriers, as their port dwell times are known to
be shorter compared to container vessels. Additionally, we will consider incorporating
various types of data sources, such as automatic identification system (AIS) data and
arrival documents (e.g., customs, immigration, and quarantine—CIQ), which may undergo
changes upon a ship’s arrival. These enhancements will contribute to a more comprehensive
and accurate estimation of vessel dwell times.
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Appendix A. Shipping Company Code

Table A1 shows a description of the company codes utilized at this terminal. The
majority of these shipping companies are involved in the international shipment of con-
tainer cargo. It is important to note that these company codes were designated by termi-
nal personnel.

Table A1. Company code description.

Company Code Full Name

MSC MEDITERRANEAN SHIPPING COMPANY S. A. (MSC)
MAE MAERSK SEALAND
SKR SINOKOR MERCHANT MARINE CO., LTD
ONE Ocean Network Express (ONE)
ZIM ZIM INTEGRATED SHIPPING SERVICES LTD
HLC HAPAG-LLOYD AG
COS CHINA OCEAN SHIPPING (GROUP) CO.
COH COSCO SHIPPING KOREA CO.
HMM HMM CO., LTD
HAS HEUNG-A SHIPPING CO., LTD
OOL ORIENT OVERSEAS CONTAINER LINE (OOL)
BLA BEN LINE AGENCY
APL AMERICAN PRESIDENT LINES., LTD.
DJS DONGJIN SHIPPING CO., LTD

Appendix B. Correlation Heatmap

Figure A1 displays a heatmap illustrating the correlations between independent fea-
tures present in the original dataset.
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