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Abstract: Hull form optimization becomes prone to the curse of dimensionality as the number of
design variables increases. The traditional sensitivity analysis method requires massive computational
fluid dynamics (CFD) computations and analyzing the effects of all variables on the output; thus, it is
extremely time-consuming. Considering this, the development of a rapid and effective dimensionality
reduction method is particularly important. The Karhunen–Loève (K–L) transform method projects
data from a high-dimensional space onto a low-dimensional space in the direction of the eigenvectors
corresponding to large-variance eigenvalues. It extracts the principal components that represent the
hull offset information to represent the hull geometric characteristics by analyzing the relationship
between the variables in the sample offset matrix. The geometric information matrices of new
hull forms can be rapidly reconstructed from the principal components. Compared with direct
optimization methods, fewer variables are used to control the deformation of the hull form from
the perspective of geometric deformation, avoid a large number of CFD calculations, and improve
the efficiency of optimization. This study examined the relevant K–L matrix solution methods and
the corresponding hull form reconstruction methods and proposed eigenvalue-based hull form
reconstruction equations. The K–L transform method was combined with a previously developed
multidisciplinary platform for a comprehensive optimization of ship hydrodynamic performance for
hull form optimization, and its effectiveness was verified by using it to optimize DTMB 5415. The
results showed that the K–L transform–based dimensionality reduction method significantly reduces
the time consumption of optimization while maintaining an acceptable optimization performance.

Keywords: Karhunen–Loève transform; hull form optimization; dimensionality reduction recon-
struction method

1. Introduction

With the rapid development of computer technology, computational fluid dynamics
(CFD) has been significantly advancing. Ship designers have introduced optimization
technology into ship design and have combined it with CFD technology to develop a
CFD-based method for automatic hull form optimization. The CFD method substantially
reduces the time and economic costs compared with a ship model test. However, for
complex optimization problems or scenarios with many design variables, it can have a very
high computation cost and even lead to the curse of dimensionality. Therefore, effectively
reducing the number of design variables and the dimensionality of the design space is a
major problem in hull form design optimization.

Currently, the above problem is solved mainly using the sensitivity analysis (SA)
method. The SA method can qualitatively or quantitatively assess the effects of the input
variables on the output objective function. Cheng et al. [1] proposed an uncertainty and
sensitivity analysis framework for ship motion data, in which the sensitivity and uncertainty
of the samples or weights generated by an artificial-neural-network-based surrogate model
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are analyzed. Hu et al. [2] adjusted an airfoil curve using control points and a free-form
deformation technique and reduced the dimensionality of control variables by SA. Guan
et al. [3] used an SA procedure to estimate the effects of the values assigned to the key
calculation parameters of a fully parametric hull form optimization algorithm on the
calculation process and results. Hamed [4] numerically optimized a trimaran hull form
using an optimization platform, with the total resistance and the propeller intake flow
defined as the study objectives. Moreover, information about highly significant regions of a
hull was obtained by surface SA based on an adjoint solver. Jung [5] introduced examples of
SA of the effects on the added resistance and speed loss in waves caused by the variations in
ship dimensions. SA has been proven to be a feasible method for dimensionality reduction,
and variance-based SA has been widely used to determine variables that are unimportant
for this purpose. Therefore, Liu et al. [6] implemented variance-based SA in a hull form
optimization model and identified a variable that did not affect dimensionality reduction.
Guan et al. [7] developed an automatic calculation framework for the resistance of a small-
waterplane-area twin hull at different speeds, for which a fully parametric model was
established to realize automatic geometric transformation. They also performed an SA of
all parameters to the resistance and a correlation analysis between the design variables
and the resistance, including the calculation and examination of the correlation coefficients.
Jeon et al. [8] identified important hull form parameters and estimated their optimal values
that satisfied the required intercept time of mission competence and the turning rate of
a specific underwater vehicle based on SA. Coppedè et al. [9] proposed a computational
framework for the hydrodynamic shape optimization of complex hull forms and applied it
to improve the calm-water performance of the KRISO Container Ship. They also performed
a preliminary SA of the mesh size to reduce the computational burden of the CFD solver.
Fu et al. [10] proposed a multiobjective optimization method for autonomous underwater
gliders based on the fast elitist nondominated sorting genetic algorithm (NSGA-II) and
performed an SA of the variables. In hull form optimization, models of the input variables
and performance indicators are established to compare the effects of the variables on the
ship performance. This enables identification of the important variables and elimination
of the variables with the minimum effects on the performance, to realize dimensionality
reduction.

SA requires calculation of the effects of all variables on the output and, thus, has a high
computational cost. Different from SA, the Karhunen–Loève (K–L) transform reduces data
dimensionality by projecting data in the direction of the eigenvectors corresponding to large
eigenvalues based on an analysis of the data matrix. K–L transform–based dimensionality
reduction needs to consider only the relationships between the variables in the sample data
matrix and does not require calculating the effects of the variables on the objective function.

Considering that K–L and directional seismic wave methods can extract target signals
and suppress random noise, Yue et al. [11] used these methods to solve the problem of diffi-
culty in the separation of weak effective signals. Fan et al. [12] developed a spatiotemporal
model based on the K–L decomposition, a multilayer perceptron, and a long short-term
memory network for estimating temperature distributions by a three-step procedure. Ahuja
et al. [13] suggested that a large-sized discrete Fourier transform of a colored random pro-
cess approximates the behavior of the K–L transform in terms of achieving approximate
decorrelation between frequency-domain terms. Trudu et al. [14] proposed a new method
for computing the K–L transform for application to complex voltage data for the detection
and noise reduction of astronomical signals. Siripatana et al. [15] applied a generalized
K–L expansion that incorporated the construction of a reference basis of spatial modes
and a coordinate transformation to the prior field. Reed and Roberts [16] applied the
K–L transform to a 44-group version of the 2-D C5G7 benchmark problem. Allaix and
Carbone [17] proposed a method for the discretization of random fields by combining
a K–L series expansion and the finite element method. Azevedo et al. [18] studied the
numerical approximation of a homogeneous Fredholm integral equation of the second kind
associated with the K–L expansion of Gaussian random fields. Liu et al. [19] proposed to
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encode the third spectral information with an adaptive K–L transform and mathematically
proved that interspectral correlations are preserved in two-dimensional randomly encoded
spatial information. Ai [20] obtained the K–L expansion and distribution identity for a
demeaned stationary Ornstein–Uhlenbeck process and applied them to the small-deviation
asymptotic behavior of the L2 norm and Laplace transform of the process. Chowdhary
and Najm [21] introduced a Bayesian K–L expansion procedure that allows developing a
probabilistic model based on the principal components and accounts for the inaccuracies
due to a limited sample size. Feng et al. [22] suggested that a K–L representation of a target
random medium can be efficiently estimated by projecting reconstructed samples onto
the K–L basis. Diez et al. [23–25] elaborated the mathematical principle behind the K–L
transform and applied it to the optimization of the David Taylor Model Basin (DTMB)
5415 hull form for the first time. Using control points as the design variables based on
a free-form deformation technique, they reduced the initial number of design variables
from 29 to 4 using the K–L transform. Concurrently, 95% variability of the original design
space was retained. In addition, the convergence speed was improved while achieving
optimization results approximate to those without dimensionality reduction.

In hull form optimization, the dimensionality of the hull form geometric information
matrix can be reduced using the K–L transform to extract several principal components
to represent the geometric characteristics of the full shape. This allows for rapid recon-
struction of the geometric information matrix of a new hull form and the control of hull
form variability using a few variables from the perspective of geometric transformation.
Consequently, complex CFD computations are avoided, and the time cost is reduced.

The remainder of this paper is structured as follows: Section 1 presents the mathe-
matical principle, derivation, and geometric implications of the K–L transform and the
detailed steps and procedure of using it to reduce dimensionality. Section 2 describes the
methods for solving the eigenvalues and eigenvectors of the covariance matrices. Section 3
discusses the methods for obtaining the eigenvalues of a matrix. Section 4 proposes a
K–L transform–based method for hull form reconstruction, which serves as the basis for
applying the K–L transform to the geometric transformation of a hull form. Section 5
presents the multidisciplinary platform developed for a comprehensive optimization of
ship hydrodynamic performance and its application to the optimization of the DTMB 5415
hull form. Section 6 summarizes this study and provides an outlook for future research.

2. K–L Transform Method
2.1. Basic Principle of K–L Transform

Harold [26–28] proposed the K–L transform, by which discrete signals are transformed
into a series of uncorrelated coefficients. The K–L transform describes a sample using
fewer features, thereby reducing the dimensionality of the feature space. Its most salient
advantage is decorrelation, and it is the best transform in terms of the mean square error
(MSE). Its mathematical definition is as follows.

For a discrete case, a uniform sampling is performed on x(t) in interval a ≤ t ≤ b; thus,
x can be expressed using the following vector form:

x = [x(t1), x(t2), . . . , x(tn)]
T (1)

x is expanded using a system of orthonormal vectors uj, j = 1, 2, . . . , ∞ as follows:

x =
∞

∑
j=1

cjuj (2)

x is estimated with a finite series d as follows:

x̂ =
d

∑
j=1

cjuj (3)



J. Mar. Sci. Eng. 2023, 11, 230 4 of 26

Thus, the MSE is
ε = E[(x− x̂)T(x− x̂)] (4)

because ui
Tuj =

{
1, j = i
0, j 6= i

, cj = uj
Tx,

ε = E[
∞

∑
j=d+1

uj
TxxTuj] =

∞

∑
j=d+1

uj
TE[xxT ]uj (5)

Setting Ψ = E[xxT ] yields

ε =
∞

∑
j=d+1

uj
TΨuj (6)

When the orthogonality condition is satisfied, the following equations can be obtained
using the Lagrange multiplier method:

g(uj) =
∞

∑
j=d+1

uj
TΨuj −

∞

∑
j=d+1

λj[uj
Tuj − 1] (7)

d
duj

g(uj) = 0, j = d + 1, . . . , ∞ (8)

(Ψ− λj I)uj = 0, j = d + 1, . . . , ∞ (9)

Thus, it can be concluded that when x is expanded in the eigenvector direction of
matrix Ψ, the MSE of truncation reaches the minimum value. When x is approximated with
d number of uj, the MSE of truncation is

ε =
∞

∑
j=d+1

λj (10)

β =

d
∑

j=1
λj

∞
∑

j=1
λj

(11)

where λj represents the eigenvalues of matrix Ψ.
Thus, the MSE of truncation when x is expanded using the eigenvectors corresponding

to the largest d number of eigenvalues of the matrix is smaller than that from the expansion
of x using d coordinates in any other orthogonal coordinate system. The percentage ratio of
the sum of the d largest eigenvalues to the sum of all eigenvalues, β, is referred to as the
feature contribution rate, to which a threshold is assigned during dimensionality reduction.
The orthogonal coordinate system consisting of the d eigenvectors used in the expansion is
referred to as the d-dimensional K–L transform coordinate system in the D-dimensional
space where x is located. The coefficient for the expansion of x in the K–L coordinate system
is referred to as the K–L transform of x.

2.2. K–L Transform–Based Data Dimensionality Reduction Process

The K–L transform represents an orthogonal transform A ∈ Rn×n, where vectors
X ∈ Rn are mapped onto vectors Y ∈ Rn and the components of vector Y are uncorrelated,
that is,

C = E
{
(X− X)(X− X)

T
}

(12)

where X is the mean of the original data and C is the covariance matrix of the demeaned
data.
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The covariance matrix is subjected to eigendecomposition, and the resulting eigenval-
ues are arranged in a descending order as follows:

Czi = λizi (13)

where λi represents the eigenvalues and Zi represents the eigenvectors corresponding to λi.
The dimensionality after dimensionality reduction depends on the threshold assigned

to β, with a larger threshold leading to a larger retained variance and a smaller MSE. If
the predefined threshold is satisfied and the dimensionality of the original matrix can be
reduced to K, the threshold of β is defined as

β = 1− ε =

∞
∑

i=K+1
λ i

∞
∑

i=1
λ i

(14)

For a transformation matrix A consisting of the eigenvectors corresponding to the
largest K eigenvalues, the mapping relationship from X to Y is

Y = A
(
X− X

)
(15)

Figure 1 shows a flowchart of the dimensionality reduction process using the K–L
transform. The detailed steps are as follows:

(1) An M × N sample dataset (where M and N are the numbers of samples and feature
dimensions, respectively) is demeaned.

(2) The covariance matrix of the demeaned sample data matrix is calculated.
(3) The eigenvalues and eigenvectors of the resulting N × N covariance matrix are

calculated.
(4) The eigenvalues are arranged in a descending order, and their corresponding eigen-

vectors are arranged in a corresponding order.
(5) A threshold is assigned to β. If the ratio of the sum of the K (K < N) largest eigen-

values to the sum of all eigenvalues (feature contribution rate) is larger than the
threshold, the dimensionality of the original data can be reduced to K. An N × K
transformation matrix is established using the eigenvectors corresponding to the
largest K eigenvalues.

(6) An M × K matrix is obtained by multiplying the normalized M × N sample data
matrix with the N × K transformation matrix, thereby reducing the dimensionality of
the sample data matrix from N to K.

As shown in Figure 1, the core of dimensionality reduction using the K–L transform
is obtaining the eigenvalues of the covariance matrix. In the following, we discuss and
present the investigation on the methods for solving the eigenvalues and eigenvectors of
the covariance matrix and reducing the solution time.
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3. Methods for Eigenvalue of Matrix

The core step of the K–L transform method is solving the eigenvalues and eigenvec-
tors of the covariance matrix of the sample data matrix. The methods for obtaining the
eigenvalues of matrices mainly include the Jacobi iteration and rapid principal component
analysis (PCA) methods, as described below.

3.1. Jacobi Iteration Method

Low-order linear equations, such as AX = B, are typically solved using the pivot
elimination method. However, engineering problems frequently involve computer-aided
solutions of large sparse matrix equations, which need to be obtained using an iterative
method. Its major principle is as follows:

Consider the following equations:
a11x1 + a12x2 + . . . + a1nxn = b1
a21x1 + a22x2 + . . . + a2nxn = b2

· · ·
an1x1 + an2x2 + . . . + annxn = bn

(16)

where coefficient matrix A is nonsingular and aii 6= 0. These equations can be transformed
to obtain the following iteration equations:

x(0) = (x1
(0), x2

(0), . . . , xn
(0))

T

xi
(k+1) = 1

aii
(bi −

n
∑

i = 1
j 6= i

aijxj
(k)) (17)

where x(0) represents the initial vectors and x(k) represents the vectors at the k-th iteration.
The matrix form is as follows: First, the coefficient matrix, A, of the equations is

decomposed into three components, that is, A = L + D + U:
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D =


a11

a22
. . .

ann

L =


0

a21 0
...

. . .
an1 an2 · · · 0

U =


0 a12 · · · a1n

0 · · · a2n
. . .

...
0

 (18)

where D, L, and U are the diagonal, lower triangular, and upper triangular matrices,
respectively.

Thus, the following matrix formulation can be derived:

Dx = −(L + U)x + b (19)

which can be rearranged as

x = −D−1(L + U)x + D−1b (20)

which can be simplified as
x = Bx + d (21)

Thus, the Jacobi iteration equations can be expressed in the following matrix form:{
x(0) = (x1

(0), x2
(0), . . . , xn

(0))
T

x(k+1) = Bx(k) + d
(22)

From the above process, the Jacobi iteration method involves a simple calculation
process, requiring only the multiplication of matrices in each iteration. However, it has
remarkable disadvantages, including a low convergence speed and a large computer
memory requirement.

3.2. Rapid PCA Method

PCA requires the calculation and eigendecomposition of the covariance matrix of the
input sample data to obtain its eigenvalues and eigenvectors. For a sample data matrix X of
size n× d (where n and d are the numbers of samples and feature dimensions, respectively),
its covariance matrix S is a d × d square matrix. Extremely complex calculations are
required when d is large. The rapid PCA algorithm solves the transposed matrix of the
covariance matrix, instead of directly solving the covariance matrix. The dimensionality
of the covariance matrix of the transposed matrix depends on the number of samples.
When the number of feature dimensions is much larger than the number of samples, the
transposed matrix can be very easily solved using the rapid PCA algorithm.

The derivation of the rapid PCA algorithm is as follows: For an n × d matrix of a
sample dataset Z with the number of samples, n, much smaller than the number of feature
dimensions, d, the covariance matrix is

S = ZTZ (23)

The transposed matrix of the covariance matrix is

R = ZZT (24)

S and R have the same nonzero eigenvalues:

(ZZT)v = λ v (25)

Multiplying both sides of the above equation with ZT yields

(ZTZ)ZTv = λ ZTv (26)
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Thus, the eigenvectors of S are ZTv.
From the above equations, the eigenvalues and eigenvectors of the original covariance

matrix can be obtained by solving those of its transposed matrix.
From the principles of the two methods described above, the Jacobi iteration method

is typically suitable for obtaining computer-aided eigenvalues of matrices. It can deal
with moderate computational complexity; however, it requires a long solution time in
cases of massive computations. The rapid PCA algorithm is suitable when the number
of feature dimensions is much larger than the number of samples. By solving the feature
matrix of the transposed matrix, it transforms a high-dimensional matrix to be solved into
a low-dimensional matrix, thereby improving the computational efficiency.

We previously developed a multidisciplinary platform for a comprehensive optimiza-
tion of ship hydrodynamic performance (SHIPMDO-WUT) using a radial basis function
(RBF)– based interpolation method [29–33] for hull form modification. In this method, the
number of discrete points on a hull surface usually reaches thousands, resulting in tens of
thousands of dimensions of covariance matrix, making the direct eigendecomposition of
the covariance matrix considerably difficult. Because the number of feature dimensions is
much larger than the number of samples, the covariance matrix was solved using the rapid
PCA method, thereby substantially reducing the dimensionality by eigendecomposition
and improving the solution efficiency.

4. K–L Transform–Based Hull Form Reconstruction Method

The core of the K–L transform–based hull form reconstruction method is solving
the problem that the design variables in the projected dimensionality-reduced matrix are
not points on the hull surface and do not have physical relevance. This problem makes
obtaining a new hull form directly by RBF modification impossible. This study developed
a transformation-matrix-based method for offset matrix reconstruction that can ensure
surface smoothness of the new reconstructed hull form. In the following, the hull form
reconstruction process is described, including the presentation of the derivation of its
equations and the application of the process to actual cases.

4.1. Hull Form Reconstruction Process

In the K–L transform–based dimensionality reduction, a sample offset matrix of hull
forms obtained by varying the original hull form is subjected to dimensionality reduction to
obtain projection and eigenvector matrices. Each column of the projection matrix following
the dimensionality reduction represents a new design variable, which is a combination
of the initial variables and does not correspond to a discrete point on the hull surface.
Because the new design variables do not have physical relevance, a new hull form cannot
be obtained by surface modification, thus necessitating another method to generate it. The
process of generating a new hull form using the new design variables is referred to as hull
form reconstruction. Figure 2 shows a flowchart of the hull form reconstruction process.
The steps are detailed as follows:

(1) Using SHIPMDO-WUT, a hull surface is discretized [29–33], and a certain number of
variable points are selected as the design variables.

(2) A certain number of samples are collected using the uniform experimental design
method to generate a sample offset matrix and the corresponding hull forms using
the RBF-based shape modification method.

(3) For each sample hull form generated, M offset points are selected, and their x-, y-, and
z-coordinates are arranged in a geometric information matrix.

(4) The covariance matrix of the demeaned geometric information matrix is calculated
using the K–L transform method to obtain its eigenvalues and eigenvectors. The
eigenvectors are arranged according to the eigenvalues, and a threshold of β is as-
signed to generate a transformation matrix. The sample offset matrix is normalized
and multiplied with the transformation matrix to produce a projection matrix.
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(5) The new design variables in the dimensionality-reduced projection matrix and their
respective variation ranges are defined.

(6) Hull form reconstruction is performed using the hull form reconstruction equations
to obtain the hull offset matrix and generate the corresponding hull form.
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In the hull form reconstruction method, the core problem is the reconstruction of the
new offset matrix from the dimensionality-reduced projection matrix. In the following, this
core problem is discussed.

N sample hull forms are sampled. For each hull form, M offset points are selected, and
their x-, y-, and z-coordinates are arranged as a geometric information matrix, which can be
expressed as

xi
T = (x1, y1, z1, x2, y2, z2, . . . , xM, yM, zM); (27)

The geometric information matrices of the N sample hull forms are used as the basis
function. Subsequently, the offset matrix of each hull form is decomposed into a linear
combination of several sample hull forms as follows:

xi = x +
N

∑
j=1

aijuj (28)

The mean of each column is subtracted from the elements in the corresponding column.
The geometric characteristics of each demeaned sample hull form can be expressed as

x̃i = xi − xi (29)

The demeaned geometric information matrices of all sample hull forms can be ex-
pressed as

X̃ = (x̃1, x̃2, . . . , x̃N) (30)
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The covariance matrix of the geometric information matrices can be obtained as

S = X̃X̃T =
N

∑
i=1

x̃i x̃i
T (31)

The covariance matrix is subjected to eigendecomposition to obtain the eigenvalues
and the corresponding eigenvectors as follows:

XXTuj = λjuj (32)

where λj represents the eigenvalues and uj represents the eigenvectors.
The threshold of β, which determines the dimensionality after dimensionality reduc-

tion, is calculated as

β =

MP
∑

j=1
λj

3M
∑

j=1
λj

(33)

The eigenvalues are arranged in a descending order. The eigenvectors corresponding
to the first Mp eigenvalues constitute the transformation matrix,

U = (u1, u2, . . . , uMP) (34)

Each geometric information matrix is reconstructed to obtain the offsets of the corre-
sponding reconstructed hull form as follows:

xi
rec = x +

MP

∑
j=1

ai juj (35)

where ai j = x̃i
Tuj represents the new design variables, uj represents the retained eigenvec-

tors, and x is the mean geometric information matrix, that is, a matrix consisting of the
means of the geometric information of all sample hull forms.

In summary, in the K–L transform/dimensionality reduction–based hull form recon-
struction, the offset matrix of a hull form can be obtained using Equation (35). This is
possible when the mean geometric information matrix, values of the new design variables,
and retained eigenvector matrix (i.e., transformation matrix) are known, thereby generating
a new hull form.

4.2. Examples of Hull Form Reconstruction

As shown in Figure 3, the Series 60 hull form was optimized using SHIPMDO-WUT.
First, the Series 60 hull surface was discretized. The model consisted of two surfaces,
and each surface was discretized in the U and V directions into a 40 × 30 point cloud.
As shown in Figure 4, 10 variable points are selected and defined to be variables in the
Y-direction. Table 1 lists their respective variation ranges. Using a uniform experimental
design, 50 samples were collected, and the surface was varied using the RBF method;
consequently, a sample offset matrix of 50 sample hull forms was obtained, with each
hull surface represented as a 40 × 30 point cloud. The offset matrix was subjected to
dimensionality reduction using the K–L transform procedure, with the threshold of β set as
95%. Accordingly, a total of 180,000 eigenvalues were obtained, which were arranged in a
descending order. Except for the first 50 eigenvalues, all eigenvalues were approximately
zero. Based on Table 2, the sum of the first 5 eigenvalues is 10.17 and that of the first 50
eigenvalues is 10.61. The first 10 eigenvalues are significant in magnitude, based on Table 3.
Figure 5 shows the distribution of the 10 largest eigenvalues. The percentage ratio of the
sum of the first 5 eigenvalues to the sum of all eigenvalues is 95.9%, which is higher than
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the preset threshold (95%), as shown in Figure 6. Thus, the eigenvectors corresponding to
the first 5 eigenvalues were selected to constitute the transformation matrix.
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Table 1. S60 variation ranges of variables.

Serial
Number Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Upper limit 1.243 1.885 2.396 3.22 3.371 4.203 2.743 3.369 1.058 1.273
Lower limit 1.051 1.577 2.055 2.795 2.963 3.751 2.270 3.010 0.908 1.075

Table 2. Five largest eigenvalues.

Serial Number 1 2 3 4 5

Eigenvalue 6.49 1.95 1.05 0.46 0.22

Table 3. Ten largest eigenvalues of S60.

Serial
Number 1 2 3 4 5 6 7 8 9 10

Eigenvalue 6.49 1.95 1.05 0.46 0.22 0.16 0.13 0.08 0.06 0.01
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The hull surface was reconstructed by feeding a random set of new variables aij into
Equation (36). Figures 7–9 show the line plans of the reconstructed hull forms.

xrec
i = x +

5

∑
j=1

aijuj (36)
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First, the threshold of β for dimensionality reduction was set as 95% by default.
The eigenvectors corresponding to the 5 largest eigenvalues were used to constitute the
transformation matrix. The reconstructed hull form (KLE-5) had smooth molded lines,
indicating that the 5 principal components were adequate to retain most of the geometric
information in the original space and, thus, could replace the initial 10 design variables.

When the threshold of β was set as 90%, the eigenvectors corresponding to the 4
largest eigenvalues were used to constitute the transformation matrix. The percentage ratio
of the sum of the 4 largest eigenvalues to the sum of all eigenvalues was 94.1%. Figure 8
shows the line plan of the reconstructed hull surface (KLE-4).

When the threshold of β was changed to 85%, the number of eigenvectors retained in
the transformation matrix decreased to 3, because the percentage ratio of the sum of the 3
largest eigenvalues to the sum of all eigenvalues was 89.8%. Figure 9 shows the line plan of
the hull form reconstructed after dimensionality reduction (KLE-3).

The body plans of KLE-4 and KLE-3 exhibited unsmooth molded lines compared
with that of KLE-5. Based on the principle of the K–L transform, a smaller threshold of
β leads to a smaller number of retained eigenvalues, a smaller number of corresponding
eigenvectors, and a lower dimensionality of the transformation matrix. Consequently, a
lower dimensionality of the design space is achieved after dimensionality reduction. In
addition, exclusion of eigenvectors corresponding to large eigenvalues leads to an increased
MSE and loss of information and, thus, an unsmooth surface of the reconstructed hull
form. Thus, an excessively small threshold of β for dimensionality reduction using the K–L
transform will lead to retention of an inadequate number of principal components, loss of
information, and finally, an unsmooth surface of the reconstructed hull form. For hull form
optimization, a 95% threshold of β for dimensionality reduction is safe to ensure that the
major geometric information in the design space is retained after dimensionality reduction.

5. Optimization of Wave-Making Resistance Coefficient for DTMB 5415
5.1. Optimized Object

Figure 10 shows a three-dimensional (3D) model of DTMB 5415. Table 4 lists the
major parameters of the model. Lwl is the waterline length, Bwl is the maximum waterplane
width, Lcb is the longitudinal center of buoyancy (LCB), and T is the draft. Cb is the block
coefficient, Cm is the fullest cross-section area, ∇ is the volume of displacement, and Swet is
the wetted surface area.
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Table 4. Major parameters of DTMB 5415.

Lwl Lcb Bwl T Cb Cm ∇ Swet

5.699 m 3.293 m 0.679 m 0.248 m 0.339 0.548 0.550 m3 4.904 m2

5.2. Description of Optimization Problem

(1) Objective of optimization

The objective of optimization was to minimize the wave-making resistance (WMR)
coefficient Cw at Froude number Fr = 0.22.

min fobj = Cws. t. Fr = 0.22

(2) Setting of optimization variables

The DTMB 5415 hull surface was discretized into a 40 × 30 point cloud. Some points
on the bow, centerline of the stern, and deck side line were fixed. Figure 11 shows the
locations of the fixed points (blue dots) on the hull surface. Ten points on the bow are
selected as variable points Y1–Y10. The red dots in Figure 11 represent the positions of
the variable points on the hull surface. The variable points are defined as variable in the
Y-direction; that is, their Y-coordinates are the design variables to be optimized. Table 5
summarizes the variation ranges of the variable points.
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Table 5. DTMB variation ranges of variables.

Serial
Number Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Upper limit 0.1325 0.1933 0.0955 0.0404 0.0629 0.1157 0.0152 0.0258 0.2100 0.2836
Lower limit 0.1104 0.1581 0.0801 0.0331 0.0514 0.0946 0.0125 0.0211 0.1860 0.2502

(3) Constraint conditions.

Hydrostatic constraint: Constraint on the volume of displacement: |∇−∇opti|
∇ ≤ 1%.

Constraint on the LCB: |Lcb−Lcbopti|
Lcb

≤ 1%.
Geometric constraints: Some points on the stern, deck side line, and centerline were

fixed to ensure the ship length, width, and molded depth did not vary.

5.3. CFD Simulation

This study used the commercial software SHIPFLOW as CFD solver. Solve the wave-
making resistance coefficient based on potential flow theory. Create a surface mesh using
the XMESH module in SHIPFLOW. Then the wave-making resistance coefficient is obtained
by surface mesh with fine precision. The mesh distribution is shown in Figure 12.
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The wave resistance coefficient Cw and the friction coefficient Cf are calculated by
the formulas of SHIPFLOW and the International Towing Tank Conference (ITTC). The
results are then compared with the experimental data. The specific calculation formula is
as follows:

C f =
0.075

(log10 Re− 2)2 (37)

Re is the Reynolds number.
The resistance coefficients calculated by SHIPFLOW and ITTC formulas are in good

agreement with the experimental data. Therefore, SHIPFLOW meets the requirements
of simulation optimization. The data comparison is shown in Figure 13. The relevant
SHIPFLOW calculation results are verified in [34,35].
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Figure 13. Data comparison chart of DTMB 5415.

5.4. Optimization Process

The whole optimization process is based on SHIPMDO-WUT, a comprehensive op-
timization platform for ship hydrodynamic performance developed by our team. The
optimization process is shown in Figure 14.

(1) Direct optimization process

First, the original ship is discretized into 40× 30 spatial point clouds, and the invariant
points and variable points are selected according to the ship optimization experience. Then,
based on the hull surface deformation method of radial basis function interpolation, the
parametric deformation is realized, and the deformed hull is subjected to hydrostatic
calculation to select the hull that meets the hydrostatic constraints. Finally, the hull that
meets the hydrostatic constraints is imported into the SHIPFLOW software to calculate
the wave-making resistance, and the iterative optimization is carried out based on the
multiobjective particle swarm optimization (MOPSO) of the optimization algorithm module.
If the convergence condition is satisfied, the optimized ship type is obtained, and if the
convergence condition is not satisfied, the optimization variables need to be modified.

(2) Dimensionality reduction optimization process

The overall optimization process is consistent with the above. The difference is
that the optimization variable in the direct optimization process is the variable point Y-
direction coordinate value. However, the optimization variables in the dimension reduction
optimization process are based on the optimization variables in the direct optimization
process, which are obtained by the K–L transformation method.
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5.5. Optimization Results

Direct optimization and optimization using the K–L transform–based dimensionality
reduction reconstruction method were performed to compare their optimization perfor-
mances and efficiencies. The results are discussed below.

(1) Results of direct optimization

Using the hydrodynamic performance optimization platform, the Y-coordinates of the
10 variable points were defined as the design variables, and the hull surface was modified by
varying the coordinates using the RBF method. The WMR was calculated using SHIPFLOW.
A particle swarm optimization algorithm was used, with both the number of particles and
iterations set as 50. The hull surface was directly optimized.

The resulting optimal hull form had a WMR coefficient of Cw = 4.90 × 10−4 and a
WMR of 3.328 N, whereas the original shape hull had a WMR coefficient of Cw = 6.83 ×
10−4 and a WMR of 4.647 N. Thus, direct optimization decreased the WMR coefficient and
WMR by 28.25% and 28.38%, respectively. The optimized hull form had a larger volume
of displacement and smaller LCB and wetted surface area than the original hull form.
Figure 15 shows the optimization convergence curve. The objective function is observed to
converge after approximately 3000 iterations. Tables 6 and 7 summarize the optimization
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results and the variations in the hydrostatic parameters, respectively. Figures 16 and 17
compare the line plans of the optimized and original hull forms. The shape of the bulbous
bow of the optimized hull form is not markedly different from that of the original hull form.
The optimized hull form is concave near the bow part of the design waterline, making the
design waterline appear slenderer and changing the geometric shape under the design
waterline from V- to U-shaped compared with the original hull form.
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Table 6. Optimization results of direct optimization.

Number of
Iterations for
Convergence

WMR Coefficient Cw
(Variation %)

WMR Rw
(Variation %)

Original hull form - 6.83 × 10−4 4.647 N

Direct optimization 3000 4.90 × 10−4

(−28.25%)
3.328 N

(−28.38%)

Table 7. Comparison of hydrostatic parameters of direct optimization.

Volume of Displacement ∇
(Variation %) LCB Lcb (Variation %) Wetted Surface Area Swet

(Variation %)

Original hull form 0.550 m3 3.293 m 4.904 m2

Direct optimization 0.553 m3

(+0.55%)
3.286 m

(−0.21%)
4.903 m2

(−0.2%)

(2) Results of dimensionality reduction optimization

The uniform experimental design method was used to sample the 10 design variables
(Y1–Y10) described above to obtain 200 samples. The hull form was varied using the RBF
method to generate 200 sample hull forms, which were screened to retain only those shapes
that satisfied the predefined constraints of the volume of displacement and LCB. The offset
information of the sample hull forms that satisfied the constraints was used to generate
the offset matrix. A total of 113 sample hull forms satisfied the constraint conditions. The
3D model of DTMB 5415 was divided into three surfaces. Each surface was discretized
into a 40 × 30 point cloud, generating a total of 3600 points. Each point was divided into
three dimensions of x, y, and z. Thus, the offset matrix for a sample hull form had a size of
113 × 10,800.

The dimensionality was reduced using the K−L transform procedure, with the thresh-
old of β set as 95%. A total of 406,800 eigenvalues were obtained and arranged in a
descending order. Except for the first 113 eigenvalues, all eigenvalues were approximately
zero. The sum of the first 6 eigenvalues was 2.95 (Table 8), and the sum of the first 113 eigen-
values was 3.065. The first 10 eigenvalues were significant in magnitude (Table 9). The ratio
of the sum of the first 6 eigenvalues to the sum of the total eigenvalues was 96.24%, which
was larger than the preset threshold of β (95%); this can be seen from Figure 18. Figure 19
shows the distribution of the first 6 eigenvalues. Thus, the eigenvectors corresponding to
the first 6 eigenvalues after dimensionality reduction constituted the transformation matrix,
which was projected to obtain new design variables P1–P6.

The offsets of the reconstructed hull forms were obtained using Equation (35). The
original hull form was optimized using the new design variables, P1–P6. The WMR
coefficient was calculated using SHIPFLOW. A particle swarm optimization algorithm was
used, with both the number of particles and iterations set as 50.

Table 8. Six largest eigenvalues.

Serial Number 1 2 3 4 5 6

Eigenvalue 1.75 0.52 0.23 0.19 0.15 0.11

Table 9. Ten largest eigenvalues.

Serial
Number 1 2 3 4 5 6 7 8 9 10

Eigenvalue 1.75 0.52 0.23 0.19 0.15 0.11 0.06 0.03 0.01 0.003
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The optimized hull form had a WMR coefficient of Cw = 4.98 × 10−4 and a WMR of
3.394 N, representing decrease of 27.07% and 26.96% compared with those of the original
hull form, respectively. The optimized hull form had a larger volume of displacement,
larger wetted surface area, and slightly smaller LCB than the original hull form. Figure 20
shows the convergence curve for the WMR optimization. The objective function is observed
to converge after approximately 1000 iterations. Table 10 shows the optimization results,
and Table 11 compares the hydrostatic parameters of the original and optimized hull forms.
Figures 21 and 22 compare the original and optimized hull forms. The bulbous bow shape
of the optimized hull form does not vary markedly from that of the original hull form. The
optimized hull form is concave near the design waterline at the bow, making the design
waterline appear slenderer and changing the geometric shape under the design waterline
from V- to U-shaped compared with the original hull form.
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Figure 20. Optimization convergence curve of dimensionality reduction optimization.
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Table 10. Optimization results of dimensionality reduction optimization.

Number of
Iterations for
Convergence

WMR Coefficient Cw
(Variation %)

WMR Rw
(Variation %)

Original hull form 6.83 × 10−4 4.647 N
Dimensionality

reduction
optimization

1000 4.98 × 10−4

(−27.07%)
3.394 N

(−26.96%)
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Table 11. Comparison of hydrostatic parameters of dimensionality reduction optimization.

Volume of Displacement ∇
(Variation %) LCB Lcb (Variation %) Wetted Surface Area Swet

(Variation %)

Original hull form 0.550 m3 3.293 m 4.904 m2

Dimensionality
reduction optimization

0.554 m3

(+0.73%)
3.283 m

(−0.30%)
4.920 m2

(+0.33%)

(3) Comparison of direct and dimensionality reduction optimization results.

Figures 23 and 24 compare the line plans of the hull forms obtained using the two
different optimization methods. The bulbous bow shape obtained from the dimensionality
reduction optimization is slightly slenderer than that obtained from the direct optimization.
The hull form is concave in the design waterline near the bow, making the design waterline
appear slender. Moreover, it is convex in that near the midship, making the design waterline
appear fuller and changing the geometric shape under the design waterline from V- to U-
shaped. Figures 25–27 compare the wave disturbances of the hull forms obtained using the
two optimization methods and the original hull form. The original hull form has markedly
more scattered waves than the hull forms obtained by both the direct and dimensionality
reduction optimizations. However, the hull form obtained by the dimensionality reduction
optimization has fewer scattered waves than that by the direct optimization, as indicated
by the red ellipses. Figure 28 compares the transverse cross sections of the longitudinal
waves at y/lpp = 0.12. Owing to the optimized bow shape, the hull forms obtained by the
direct and dimensionality reduction optimizations have low-magnitude wave disturbances
around the hull, which are favorable, and markedly low waves at the bow and midship,
which decrease the WMR. Tables 12 and 13 compare the results and time consumptions and
the hydrostatic parameters of the hull forms obtained by the two optimizations, respectively.
The hull forms obtained by the two optimizations have larger volumes of displacement and
LCBs closer to the stern than the original hull form. The optimal hull forms obtained by
the two optimizations and the original hull form do not have significantly different wetted
surface areas. The hull form obtained by the dimensionality reduction optimization has
a larger wetted surface area, a larger volume of displacement, and an LCB closer to the
stern than that obtained by the direct optimization. Compared with the WMR coefficient of
the original hull form (Cw = 6.833 × 10−4), those of the hull forms obtained by the direct
and dimensionality reduction optimizations decrease by 28.25% and 27.07%, respectively.
Compared with the WMR of the original hull form, those of the hull forms obtained by
the direct and dimensionality reduction optimizations decrease by 28.38% and 26.96%,
respectively. Thus, the results of the direct and dimensionality reduction optimizations do
not differ significantly.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 23 of 28 
 

 

 
Figure 23. Comparison of body plan views of hull forms obtained by direct and dimensionality 
reduction optimizations. 

 
Figure 24. Comparison of profile views of hull forms obtained by direct and dimensionality reduc-
tion optimizations. 

 
Figure 25. Comparison of wave disturbances of original hull form and hull form obtained by direct 
optimization. 

Figure 23. Comparison of body plan views of hull forms obtained by direct and dimensionality
reduction optimizations.



J. Mar. Sci. Eng. 2023, 11, 230 22 of 26

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 23 of 28 
 

 

 
Figure 23. Comparison of body plan views of hull forms obtained by direct and dimensionality 
reduction optimizations. 

 
Figure 24. Comparison of profile views of hull forms obtained by direct and dimensionality reduc-
tion optimizations. 

 
Figure 25. Comparison of wave disturbances of original hull form and hull form obtained by direct 
optimization. 

Figure 24. Comparison of profile views of hull forms obtained by direct and dimensionality reduction
optimizations.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 23 of 28 
 

 

 
Figure 23. Comparison of body plan views of hull forms obtained by direct and dimensionality 
reduction optimizations. 

 
Figure 24. Comparison of profile views of hull forms obtained by direct and dimensionality reduc-
tion optimizations. 

 
Figure 25. Comparison of wave disturbances of original hull form and hull form obtained by direct 
optimization. 
Figure 25. Comparison of wave disturbances of original hull form and hull form obtained by direct
optimization.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 24 of 28 
 

 

 
Figure 26. Comparison of wave disturbances of original hull form and hull form obtained by di-
mensionality reduction optimization. 

 
Figure 27. Comparison of wave disturbances of hull forms obtained by direct and dimensionality 
reduction optimizations. 

Figure 26. Comparison of wave disturbances of original hull form and hull form obtained by
dimensionality reduction optimization.



J. Mar. Sci. Eng. 2023, 11, 230 23 of 26

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 24 of 28 
 

 

 
Figure 26. Comparison of wave disturbances of original hull form and hull form obtained by di-
mensionality reduction optimization. 

 
Figure 27. Comparison of wave disturbances of hull forms obtained by direct and dimensionality 
reduction optimizations. 

Figure 27. Comparison of wave disturbances of hull forms obtained by direct and dimensionality
reduction optimizations.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 25 of 28 
 

 

 
Figure 28. Comparison of transverse cross sections of longitudinal waves at y/lpp = 0.12. 

Table 12. Comparison of optimization results. 

 
Number of Itera-
tions for Conver-

gence 

WMR Coefficient Cw 
(Variation %) 

WMR Rw 
(Variation %) 

Time Consump-
tion of Optimiza-

tion 
Original hull form  6.83 × 10−4 4.647 N  
Direct optimiza-

tion 
3000 4.98 × 10−4 

(−28.25%) 
3.328 N 

(−28.38%) 
15 h 

Dimensionality re-
duction optimiza-

tion 
1000 

4.98 × 10−4 
(−27.07%) 

3.394 N 
(−26.96%) 5 h 

Table 13. Comparison of hydrostatic parameters. 

 Volume of Displacement ∇  
(Variation %) 

LCB Lcb (Variation %)  Wetted Surface Area Swet 
(Variation %) 

Original hull form 0.550 m3 3.293 m 4.904 m2 

Direct optimization 0.553 m3 
(+0.55%) 

3.286 m 
(−0.21%) 

4.903 m2 
(−0.2%) 

Dimensionality re-
duction optimization 

0.554 m3 
(+0.73%) 

3.283 m 
(−0.30%) 

4.920 m2 
(+0.33%) 

Figure 28. Comparison of transverse cross sections of longitudinal waves at y/lpp = 0.12.



J. Mar. Sci. Eng. 2023, 11, 230 24 of 26

Table 12. Comparison of optimization results.

Number of Iterations
for Convergence

WMR Coefficient Cw
(Variation %)

WMR Rw
(Variation %)

Time Consumption of
Optimization

Original hull form 6.83 × 10−4 4.647 N

Direct optimization 3000 4.98 × 10−4

(−28.25%)
3.328 N

(−28.38%) 15 h

Dimensionality
reduction optimization 1000 4.98 × 10−4

(−27.07%)
3.394 N

(−26.96%) 5 h

Table 13. Comparison of hydrostatic parameters of three hull forms.

Volume of Displacement ∇
(Variation %) LCB Lcb (Variation %) Wetted Surface Area Swet

(Variation %)

Original hull form 0.550 m3 3.293 m 4.904 m2

Direct optimization 0.553 m3

(+0.55%)
3.286 m

(−0.21%)
4.903 m2

(−0.2%)
Dimensionality

reduction optimization
0.554 m3

(+0.73%)
3.283 m

(−0.30%)
4.920 m2

(+0.33%)

Both optimizations were performed using a computer equipped with a 6-core 12-
thread i7-8700 CPU, 16 G memory, and 64-bit operating system. The direct optimization
converged after approximately 3000 iterations, consuming 15 h. The dimensionality reduc-
tion optimization reduced the number of design variables from 10 to 6 and converged after
1000 iterations, consuming 5 h, representing a 75% time saving. This suggests that the K–L
transform–based hull form reconstruction method effectively reduces the number of design
variables, considerably reduces the time consumption of optimization, and improves the
efficiency of optimization while yielding results that differ insignificantly from those by the
direct optimization.

6. Conclusions

This study derived the equations for a K–L transform–based hull form reconstruction
method and optimized the DTMB 5415 hull form by dimensionality reduction and direct
optimizations. The following can be concluded from the results. The dimensionality
reduction reduced the number of design variables, markedly reduced the number of
iterations at optimization convergence, and significantly reduced the computation time
compared with the direct optimization. The results yielded by the dimensionality reduction
and direct optimizations differed insignificantly. This suggests that the K–L transform–
based dimensionality reduction method reduces the time consumption and improves the
optimization efficiency while retaining the variability of the design space. This proves the
feasibility of the developed hull form optimization method combining the dimensionality
reduction method and SHIPMDO-WUT.

During the study, several aspects could not be investigated thoroughly due to time
constraints, and these are summarized as follows:

(1) The K–L transform is a linear dimensionality reduction method and assumes the
presence of a linear relationship between data. Thus, its dimensionality reduction
performance could be limited on nonlinear data. This study did not investigate the
application of nonlinear dimensionality reduction methods, which will be tested in
the future.

(2) To reduce the computation time, the sample data used in the dimensionality reduction
optimization performed in this study only included the geometric information of the
hull and excluded its physical information. The consideration of physical information
requires a detailed computation of the ship performance in the early stage, and the
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physical information of a new hull form can be directly obtained by dimensionality
reduction reconstruction. This is a major direction for future research.

Author Contributions: Conceptualization: C.W., H.C. and Z.L.; methodology: C.W., H.C. and Z.L.;
software: B.F., C.Z. and X.C.; validation: C.W. and H.C.; formal analysis: C.W., H.C. and Z.L.; data
curation: C.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
numbers 51979211, 52271327, 52271330), Key Research and Development Plan of Hubei Province
(2021BID008), and 111 Project (BP0820028).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in this article (tables
and figures).

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

Lwl m the waterline length
Lcb m the longitudinal center of buoyancy
Bwl m the maximum waterplane width
T m
Cb / the block coefficient
Cm / the fullest cross-section area
∇ m3 the volume of displacement
Swet m2 the wetted surface area
Fr / Froude number
Rw N the wave-making resistance
Cw / the wave-making resistance coefficient
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