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Abstract: In this study, we process four new multichannel reflection seismic profiles acquired in
2015 and 2016 in the continent–ocean transition zone (COT) of the northern South China Sea (SCS).
We apply a multi-domain, progressive, and seabed-controlled denoising technique and obtain a
good denoising effect. Combining velocity analysis in the multi-round time domain and forward
modeling, we analyze the types and characteristics of multiples in the study area and formulate
an effective demultiple technique to attenuate strong seabed multiples, diffracted multiples from
rough seafloor, and other multiples from deep reflectors. The processing results show that the sea
surface-related multiple elimination technique predicts the sea surface-related multiples accurately
by data convolution, and has a good effect in attenuating seabed multiples. Diffracted multiple
attenuation method extracts high-frequency and high-energy diffracted multiples, and suppresses
multiples by the energy ratios of multiples to primary events. To attenuate deep multiples, we select
predictive deconvolution to attenuate periodic deep multiples after many trials and detailed analysis.
The combination of these different techniques in sequence proves to be quite effective in attenuating
different seismic multiples in the COT. The imaged crustal structures near the COT often show strong
magmatism and/or basement uplifting. The faulted and thinned continental crust adjacent to the
COT corresponds to the lowest free-air gravity anomalies. Gravity anomalies often increase from the
COT to the oceanic crust. An exception is to the northeast of the SCS, where the relatively wide COT
shows very high gravity anomalies, likely induced by mantle upwelling and serpentinization.

Keywords: South China Sea; continent–ocean transition; seismic exploration; data processing;
multiple attenuation; gravity anomaly

1. Introduction

The rift-to-drift transition and accretion of oceanic crust are important to the plate
tectonic cycle. The South China Sea (SCS) is one of the largest marginal seas of the western
Pacific. It underwent nearly a complex cycle from continental breakup to seafloor spreading
and subduction [1], and therefore represents an ideal place to study the lithospheric breakup
and oceanic accretion. The tectonic deformation characteristics in the continent–ocean
transition zone (COT) are key to understanding the rift-to-drift process [2].

Offshore oil accounts for ~34% of the world’s total oil resources [3], and the explo-
ration trend is now in transition from deep water (400–1500 m) to ultra-deep water plays
(>1500 m) [4]. Reflection seismic exploration in the COT of the SCS is of great significance to
deep-water gas and oil exploration and to the study of lithospheric structures and tectonic
rifting of the SCS. The transition zone has been drilled recently by three International Ocean
Discovery Program (IODP) expeditions (#349, 367, and 368/368X) [5,6].

In the COT of the northern SCS, low-velocity Cenozoic strata cover sets of high-velocity
carbonate and igneous rocks and/or Mesozoic sedimentary rocks, generating quite strong
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impedance contrasts [7,8]. These contrasts have a strong shielding effect on seismic wave
propagation and generate strong sea surface-related multiples. Diffractions as a result of
variation of seabed topography, coupled with the vibration, free surface multiples, and
refraction multiples, cause a variety of strong energy disturbances on primary events,
loss of frequency component of the signals, and reduction of seismic resolution. Multiple
attenuation is critical in marine seismic data processing to improve the quality of the
seismic data.

At present, multiple attenuation methods can be classified into two types, wave
equation method and filter method [9–11]. No single method can be applicable to all types
of multiple or completely suppress each type of multiple. In this research, we characterize
the multiples in the COT of the northern SCS and propose a combination of demultiple
techniques to improve seismic resolution and signal-to-noise ratio.

2. Materials and Methods
2.1. Geological Setting and Data

The SCS is located in the conjunction zone of the Pacific, Eurasian, and India-Australia
plates, with an area of about 3.5 million km2. The South China continental margin entered a
stage of rifting and extension during the Late Cretaceous (~100 Ma) [12]. Seafloor spreading
in the SCS basin continued from the late Oligocene to the middle Miocene [1,13,14] and
formed three subbasins (Northwest, Southwest, and East subbasins) (Figure 1). Extensive
magmatic activities occurred during and after the seafloor spreading stage.
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Figure 1. Bathymetry and tectonic units of the South China Sea. The green line marks the continent-
ocean boundary (COB) [15]. MCS2, MCS3, MCS4, and MCS2016 are the seismic profiles used in this
research. The red dots show the 5 drill sites of Ocean Drilling Program (ODP) Leg 184, the yellow
dots show the 5 drill sites of Integrated Ocean Discovery Program (IODP) Expedition 349, and the
brown and green dots are the drill sites of IODP Expeditions 367 and 368, respectively.

The SCS has a broad prospect in gas and oil exploration and production. Reservoirs
in the petroliferous sedimentary basins in the northern margin of the SCS are mainly of
clastic rocks, and different hydrocarbon traps are well developed. The COT separates the
continental crust from the distinct oceanic crust (Figures 1 and 2) [16–18]. In the continental
margin of the northern SCS, magmatic rocks in the upper crust and high-velocity layers in
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the lower crust were developed [19–21]. Deep reflection seismic profiles show that basin
boundary faults can cut into the lower crust [22].
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Figure 2. Raw stacked sections of lines MCS2016 (a), MCS2 (b), MCS3 (c), and MCS4 (d). Different
types of multiples (seabed multiples, diffracted multiples, etc.) and noise (random noise, surge noise,
and acquisition interference) are marked with arrows.

The new seismic data of this research came from joint geophysical surveys funded
by the National Natural Science Foundation of China in 2015 and 2016. The aims of these
surveys were to investigate deep structures and rifting dynamics in the continental margin
of the northern SCS and conduct marine geophysical surveys. We deployed the R/V
“Shiyan 2” of the South China Sea Institute of Oceanology, Chinese Academy of Sciences,
to acquire multi-channel reflection seismic (MCS), single-channel reflection seismic (SCS),
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ocean bottom seismic (OBS), and ocean bottom electromagnetic (OBEM) data (Figure 1;
Table 1). We carried out systematic processing including surge and noise attenuation,
several rounds of time domain velocity analysis, different types of multiple attenuation,
and pre-stack time migration.

Table 1. Reflection seismic data acquisition parameters.

Survey lines MCS2016 MCS2 MCS3 MCS4

Cable length (m) 1500 1500 1500 1500
Channel number 120 120 120 120
Trace interval (m) 12.5 12.5 12.5 12.5
Minimum offset (m) 150 145 145 145
Maximum offset (m) 1638 1633 1633 1633
Shot interval (m) 200 50 50 50
CDP interval (m) 6.25 6.25 6.25 6.25
Sampling interval (ms) 2 2 2 2
Record length (s) 14 12 12 12
Cable depth (mbsl) 12 12 12 12
Airgun depth (m) 10 10 10 10
Length of survey line (km) 321 200 63 142
Total number of shots 1572 3944 1200 2814
Total number of CDP 50,392 31,664 9712 22,624
Fold 4 15 15 15
Year of acquisition 2016 2015 2015 2015

MCS2016 data source: Joint geophysical surveys funded by National Natural Science Foundation of China in 2016.
MCS2, MCS3, and MCS4 data source: Joint geophysical surveys funded by National Natural Science Foundation
of China in 2015.

2.2. Reflection Seismic Data Processing

Multiples are clearly evident on the raw stacked sections of MCS2016, MCS2, MCS3,
and MCS4 (Figure 2a–d). Strong first-order seabed and basement multiples are easily
recognizable. Second- and even third-order multiples that interfere with primary events
can also be seen on seismic profiles (Figure 2a,b). There are diffracted multiples in the
area of rough seabed (Figure 2b). Low-frequency surge noise and random noise are also
common, including artificial interference in acquisition (Figure 2a,c,d).

Considering the noise from the study area, we formulate the following strategy of
noise attenuation with velocity analysis in the multi-round time domain (Figure 3).

1. Prestack noise attenuation: Suppress surge noise, random noise, and strong seabed
multiples by a multi-domain noise suppression technique.

2. Multiple attenuation: Select a combination of effective demultiple techniques to atten-
uate strong seabed and diffracted multiples, including sea surface-related multiple
attenuation technique, diffracted multiple attenuation, and predictive deconvolution.

3. True amplitude processing: Perform relative amplitude retention and amplitude
quality control at each step of the processing.

4. Detailed velocity analysis: Build a reasonable initial migration velocity model by
detailed velocity analysis in the multi-round time domain and pre-stack time migra-
tion (PSTM).
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3. Results
3.1. Surge and Random Noise Attenuation

Common noise in marine seismic data can be divided into two categories: low-
frequency surge noise and random noise. Surge noise appears during data acquisition
in a rough sea condition and/or if the cable depth is shallow. Surge noise shows in low-
frequency vertical bands on shot gathers [23]. The random noise can be further divided into
two subcategories: environmental noise including the noise from other scientific research
vessels [24,25], and the regular or irregular residual noise in processing, both of which
must be attenuated before velocity analysis. We can see the surge noise and random noise
from the raw shot gathers of MCS2 and MCS2016 (Figure 4), and the frequency of the surge
noise is quite low (0–10 Hz) by analyzing the spectrum of MCS2 (Figure 5).
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Figure 5. Spectral analysis of line MCS2.

The traces are transformed into the frequency domain, and the random noises are at-
tenuated by a signal preservation f-x projection filter, which separates the predictable signal
in the f-x domain from non-predictable noise for all component frequencies. The signal is
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preserved after filtering, while optimizing the attenuation of random noise. Surge noises are
attenuated by the frequency-dependent noise attenuation technique, which attenuates high-
amplitude surge noises in decomposed frequency bands and uses frequency-dependent
and time-variant threshold values of amplitude samples. Surge noises are detected and at-
tenuated in different time windows and different frequency ranges, to prevent signals from
being identified as noise. These techniques are carried out on different traces repeatedly in
order to attenuate noise better.

Stacked sections of MCS3 and MCS2016 before and after noise attenuation (Figure 6)
show that the low-frequency surge noise, random noise, and the noise from data acquisition
are well attenuated and the effective energy is enhanced.
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We design a combination of different techniques to attenuate sea surface-related
multiple, diffracted multiple, and deep multiple, and the results of the velocity analysis in
the time domain during the four rounds can be all included.

3.2. Multiple Attenuation
3.2.1. Sea Surface Related Multiple Attenuation

In recent years, sea surface-related multiple attenuation technique has become quite
successful in multiple attenuation of marine reflection seismic data. It can be divided into
two steps, multiple prediction of raw seismic data and multiple subtraction; the predicted
multiple must be matched (in amplitude and phase) with the true multiple by least-squares
subtraction [26]. The sea surface is the shallowest downward reflection interface that causes
multiple [27]. Seabed multiple takes up most of the energy. Seabed multiple is centered
around the 10 s in two-way travel time (TWTT) in our seismic profiles (Figure 2a,b,d).
Figure 4a shows a strong periodicity of multiple in near-offset channels in the shot gathers,
but no obvious periodicity of multiple at large offsets.

Sea surface-related multiple attenuation cannot completely eliminate multiples and
there is always residual multiple energy on the stacked sections (e.g., Figure 7b,d), especially
for our data of very low fold (4 or 15; Table 1).

The biggest advantage of this method is that it can predict all sea surface-related
multiples from the data only without any a priori information of underground medium [28].
The precision of multiple prediction in large offsets by this technique is usually limited by
the boundary problem of convolution for the seismic data, which are divided into blocks
(different time windows) and processed in batches (multiple prediction first, and then
multiple attenuation).

A multiple model is calculated by match-filtering in each time window, and the main
matching parameters are filter length, calculation window, and adjacent trace numbers,
which will directly influence processing results [29]. Multiple attenuation is not effective
if the filter length is too short, but primary events will be attenuated if the filter length is
too long. A filter length of 40 ms is selected after many trials and detailed analysis. The
purpose of time windowing is to protect the adjacent primary events when attenuating
multiples. The stacked seismic sections are divided into two time windows; the first is
above the seabed multiple and the second is the remainder of the stacked sections, which
includes sea bed multiples. Multiple attenuation is done in the second time window only.
If the adjacent trace number is too large and the distant traces are matched, the demultiple
effect will also drop. So, an adjacent trace number of 5 is selected. The residual energy
of seismic data should be minimum after multiple attenuation, and we apply adaptive
subtraction according to this principle with a seabed control method to protect the primary
events above the depth of twice the seabed depth in TWTT. Stacked sections of MCS2
and MCS4 before and after sea surface-related multiple attenuation show effective seabed
multiple attenuation while keeping the primary events (Figure 7).
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3.2.2. Diffracted Multiple Attenuation

It is a single trace technique designed to attenuate diffracted multiples. Multiple sup-
pression is achieved by limiting sample amplitudes within a defined frequency bandwidth.
It is usually applied to CMP gathers after conventional demultiple processes to remove
diffracted multiple. The method works when there is a difference in the frequency and
amplitude between primary and multiple events.

Diffracted multiple attenuation is a key but difficult point. Strong diffracted multiples
mix with the primary signal (Figure 2a) and are common in areas with a rough seabed.
Diffracted multiples show large randomness in shot gathers for their large variation of
propagation paths due to the uncertainty of reflection points [30], and they interfere with
primary events. Based on the difference between the primary wave and multiple, we
attenuate diffracted multiples by the denoising method from frequency splitting [31].
This method usually attenuates residual diffracted multiples after conventional multiple
attenuation and has good effects on multiples of different frequencies and amplitudes [32].
At first, we tried a filter to attenuate diffracted multiples on the whole stack sections based
on the fact that the diffracted multiple has higher energy and frequency than primary
reflections. We found that the primary events were also attenuated at the same time and the
result was not satisfactory. We then attenuated diffracted multiples by a horizon-controlling
method, which avoids the area without diffracted multiple, and extracted high-frequency
and high-energy diffracted multiples (Figure 8).

3.2.3. Deep Multiple Attenuation

Most of the multiple energy is attenuated after sea surface-related multiple attenuation
and diffracted multiple attenuation, but still, some of the periodic deep multiples remain
(Figure 9).

We found that high-resolution Radon transform and Tau-p transform are not applicable
to our low-fold data; the fold of MCS2, MCS3, and MCS4 is 15 and the fold of MCS2016 is 4
(Table 1). The low fold requires heavy interpolation and iterations, which introduce aliasing
and lower the computation efficiency [33,34]. After many trials, we selected predictive
deconvolution, which works well in attenuating periodic deep multiple [35].

Predictive length and operator length will largely determine the multiple attenuation
effect and computation efficiency in predictive deconvolution. Predictive length is the
zero-offset moveout of multiples and is related to the period of the multiple. Distant traces
with autocorrelation of multiple energy cannot be included if the predictive length is long,
and more multiple energy will be retained if the predictive length is closer to distant traces
with autocorrelation of sub-maximum [36]. The predictive length in this research is 35 ms.
Operator length is the length of the prediction filter operator. Multiples will not be well
attenuated and false energy could emerge if the operator length is too short, but heavy
computation will be required if the operator length is too long [37]. The operator length in
this research is chosen to be 280 ms.

Stacked sections of MCS2 and MCS4 before and after periodic deep multiple attenua-
tion show a good effect of attenuating periodic deep multiple by predictive deconvolution
(Figure 10).
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3.3. Pre-Stack Time Migration

After multiple attenuation and velocity analysis, Kirchhoff pre-stack time migration is
applied in the processing for its high calculation efficiency and simple principle, particularly
in the area with little variation of lateral velocity [38].

Stacked sections of MCS4 and MCS2 after Kirchhoff pre-stack time migration show a
greatly increased signal-to-noise ratio (Figure 11). Primary events are more obvious, and
horizons and faults are clearer and more accurate.
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Figure 11. Stacked sections before and after Kirchhoff pre-stack time migration of line MCS4 (a,b)
and line MCS2 (c,d).

4. Discussion of Structures in the Continent–Ocean Transition Zone

In seismic profile MCS2016, the extremely thinned continental domain is mainly
characterized by normal faults and post-rift volcanoes (100–220 km in Figure 12), and
some basement normal faults form graben-like structures overlain by thick sediments. The
extremely thinned continental domain also corresponds to a zone of low gravity anomalies,
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indicating a relatively low density of the thick sediments in the depression (Figure 12).
The continent–ocean transition zone (COT) of about 35 km wide shows normal faulting,
magmatic edifices, and interestingly high gravity anomalies, indicating strong mantle
uplifting here. The developed normal faults may allow water to penetrate down to the
uppermost mantle and cause partial serpentinization, as indicated by high seismic velocity
anomalies revealed by an OBS survey along the same transect [21]. Noticeable magnetic
anomaly belts already develop within the COT (Figure 12).
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Figure 12. (a) Free-air gravity and magnetic anomalies along profile MCS2016. (b) Seismic interpreta-
tion of line MCS2016 (after Kirchhoff pre-stack time migration). (c) Velocity structure of OBS survey
along the same transect [21]. Tg—basement; Tom—Oligocene–Miocene boundary. Intersection with
profile MSC4 is marked. Red lines are interpreted as faults or graben-like structures. Red triangles
are interpreted as volcanoes. The location of magnetic lineation C12 [14] is marked in a pink arrow.

The east–west trending seismic profile MCS4 is located mostly within the COT, and
in its eastern end profile, MCS4 almost intersects with MSC2016 (Figures 1 and 13). The
attenuated continental domain is again characterized by low gravity anomalies and has
a fluctuating basement with normal faulting. A thick faulted and tilted syn-rifting pre-
Miocene sequence can be seen within the thinned continental domain, and it terminates
towards the COT. The COT shows high-amplitude reflections from the top basement, quite
different from the continental domain. Gravity anomalies within the COT are mostly positive.
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Figure 13. (a) Free-air gravity and magnetic anomalies along profile MCS4. (b) Seismic interpretation
of line MCS4 (after Kirchhoff pre-stack time migration). Tg—basement. Intersections between profiles
MSC3 and MCS2016 are marked. Red lines are interpreted as faults.

Seismic profile MCS3 intersects at its northwestern end with MCS4 (Figures 1, 13 and 14).
As seen in other profiles, the continental domain shows a faulted and undulating basement
and very low gravity anomalies. The COT and oceanic crust show high-amplitude reflec-
tions from the top basement without large faults. Compared to profile MCS2016, the COT
along profile MCS3 appears narrower, and does not show positive gravity anomalies. From
the COT southeastwards to the oceanic crust, the basement shallows up, corresponding
to increasing free-air gravity anomaly. Again, noticeable magnetic anomaly belts can be
observed within the COT (Figure 14).

Further west, seismic profile MCS2 across the Northwest Subbasin shows faulted
and thinned lower continental slopes with very low gravity anomalies (Figure 15). The
data quality is not ideal due to the low fold number of 15, but the pre-Miocene syn-rifting
sequence can be identified with the low gravity zone. Post-breakup deep marine sediments
deposited onlap to the syn-rifting sequence. The COT shows a discontinuity in the Moho
reflections [15] and is characterized by either intruded volcanoes or basement uplifting
(Figure 15). From the COT to the oceanic lithosphere, the gravity anomaly increases steadily.
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Figure 14. (a) Free-air gravity and magnetic anomalies along profile MCS3. (b) Seismic interpretation
of line MCS3 (after Kirchhoff pre-stack time migration). Tg—basement. Intersection between profiles
MSC4 is marked. Red lines are interpreted as faults. The locations of magnetic lineations C11 and
C11r are marked in pink [14] and green arrows [1].
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5. Conclusions

In this study, we analyze and characterize the types of multiple in the continent–ocean
transition zone (COT) of the northern South China Sea (SCS) and apply different multiple
attenuation methods.

Multistage sea surface-related multiples with strong energy are commonly found,
which are periodic in near-offset traces. The diffracted multiples are commonly found
in areas with complex submarine topography and large variations in the water depth.
The multi-domain, progressive, and seabed-controlled denoising technique is effective in
attenuating the surge and random noise in this research. In addition, an effective multiple
attenuation scheme is established, and we apply sea surface-related multiple attenuation,
diffracted multiple attenuation, and predictive deconvolution in sequence in attenuating
different multiples. Sea surface-related multiple attenuation is good at attenuating seabed
multiples while keeping the primary events, and predictive deconvolution can attenuate
deep periodic multiples, especially in our case of low-fold seismic data. This combination
of demultiple techniques may also be applicable to seismic data acquired from other
continent–ocean transition zones and continental margins, especially if the seismic data are
of low fold.

From interpretations of newly processed seismic profiles, we conclude that the ex-
tremely thinned and faulted continental crust adjacent to the COT has the lowest free-air
gravity anomalies in the study area, and the gravity anomalies often increase steadily from
the transitional crust to the oceanic crust. To the northeast margin of the SCS, however,
the COT appears wider and shows very high gravity anomalies along profile MCS2016,
which indicate possible upper mantle upwelling and serpentinization. The imaged crustal
structures near the COT often show strong magmatism and/or basement uplifting and
large lateral heterogeneity.
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