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Abstract: Turbulence related to flow oscillations near the seabed, in the wave bottom boundary layer
(WBBL), is the phenomenon responsible for the suspension and transport of sediments. The vertical
distribution of turbulent eddy viscosity within the WBBL is a key parameter that determines the
vertical distribution of suspended sediments. For practical coastal engineering applications, the most
used method to parameterize turbulence consists in specifying the shape of the one-dimensional-
vertical (1DV) profile of eddy viscosity. Different empirical models have been proposed for the vertical
variation of eddy viscosity in the WBBL. In this study, we consider the exponential-type profile,
which was validated and calibrated by direct numerical simulation (DNS) and experimental data
for turbulent channel and open-channel flows, respectively. This model is generalized to the WBBL,
and the period-averaged eddy viscosity is calibrated by a two-equation baseline (BSL) k-ωmodel for
different conditions. This model, together with a β-function (where β is the inverse of the turbulent
Schmidt number), is used in modeling suspended sediment concentration (SSC) profiles over wave
ripples, where field and laboratory measurements of SSC show two kinds of concentration profiles
depending on grain particles size. Our study shows that the convection–diffusion equation, for SSC in
WBBLs over sand ripples with an upward convection term, reverts to the classical advection–diffusion
equation (ADE) with an “apparent” sediment diffusivity ε∗s = α εs related to the sediment diffusivity
εs by an additional parameter α associated with the convective sediment entrainment process over
sand ripples, which is defined by two equations. In the first, α depends on the relative importance of
upward convection related to coherent vortex shedding and downward settling of sediments. When
the convective transfer is very small, above low-steepness ripples, α ≈ 1. In the second, α depends
on the relative importance of coherent vortex shedding and random turbulence. When random
turbulence is more important than coherent vortex shedding, α ≈ 1, and “apparent” sediment
diffusivity reverts to the classical sediment diffusivity ε∗s ≈ εs. Comparisons with experimental data
show that the proposed method allows a good description of both SSC for fine and coarse sand and
“apparent” sediment diffusivity ε∗s .

Keywords: analytical model; eddy viscosity; turbulence; wave bottom boundary layer (WBBL);
suspended sediments; concentrations; wave ripples; sediment diffusivity; vortex shedding; oscilla-
tory flow

1. Introduction

Flows in the marine environment are complex with three-dimensional wave–current
interactions, including irregular and breaking waves. The description of sediment transport
in this environment becomes very complex. Near the seabed, flow oscillations are due
to nearshore surface wave motions, hence the concept of the wave bottom boundary
layer (WBBL) [1–9]. This layer plays an important role in the suspension and transport
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of sediments above the seabed. Knowledge of the phenomena of erosion, entrainment,
deposition, and resuspension of particles is linked to the description of the processes
occurring in the WBBL. The oscillatory boundary layer associated with waves does not
have enough time to develop before the flow is reversed. The thickness of this boundary
layer remains in the order of a few centimeters, unlike the thickness of the current boundary
layers, which are in the order of meters [5]. The bottom shear stress associated with waves
generally dominates that associated with currents. The result is that the force acting on the
sediments at the bottom is generally dominated by the wave. This phenomenon is explained
by the fact that the oscillatory movement of the wave stirs up the bottom sediments, making
them transportable by the currents. Very close to the bottom, the turbulence comes mainly
from the oscillatory flow, and the predicted sediment concentrations are not different if the
current is included or not [10].

The study of the WBBL is still the subject of much research [11–23]. Turbulence is the
phenomenon responsible for the suspension of sediments. Different turbulence models
have been used to solve the momentum and/or sediment concentration equations [24–26],
and many possibilities have been proposed for parameterizing turbulence [5,27,28]. The
simplest methods to parameterize the turbulence consist in specifying the shape of the
one-dimensional-vertical profile of eddy viscosity, which is called “specific” or “speci-
fied” eddy viscosity models [29]. Different assumptions have been made about the verti-
cal variation of eddy viscosity in the WBBL, and empirical models have been proposed
(Figure 1) [1–3,30–32]. Another eddy viscosity profile is the well-known parabolic profile
for open-channel flows [33] based on log-law velocities, which was used for turbulent
wave boundary layers by replacing the water depth with the wave boundary layer thick-
ness [5] (lower part of Myrhaug profile [3] in Figure 1). Another formulation given by the
exponential-type profile, which was first proposed empirically for the planetary boundary
layers, was applied to turbulent wave boundary layers and calibrated by k-ε [34,35] and
k-ω [36] turbulence closure schemes.

Figure 1. Assumptions for the vertical variation of eddy viscosity in the bottom boundary layer,
(adapted with permission from [5]).
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Six models for wave bottom boundary layer flows were assessed and compared
to laboratory data [29]. The models were a laminar and five one-dimensional-vertical
eddy viscosity models given, respectively, by two specific eddy viscosity models—linear
and parabolic—and three turbulence closure models—k-one equation, k–ε, and k–ω two-
equation turbulence closure models. The results show that, for velocity profiles, the linear
model was more accurate, and the least accurate was the k–ε models, while for bed shear
stress and TKE, the k–ω model shows the best results [29]. However, other specific eddy
viscosity models can provide a link to the k-equation and therefore to the turbulence closure
schemes [37].

From the different specific eddy viscosity models for the WBBL, two profiles show
particular interest in engineering applications: the parabolic-uniform profile [3,7,38,39] and
the exponential-type or exponential–linear profile [34–36,40–42]. These two eddy viscosity
profiles were analyzed and assessed [36] through (1) investigation of eddy viscosity in
steady fully developed plane-channel flow, and (2) comparisons with numerical results
of the two-equation baseline (BSL) k-ω model [11,43]. These studies show that these two
profiles are able to describe the eddy viscosity distribution in the wave bottom boundary
layer but for different wave conditions given by the roughness parameter am/ks, where
am is the wave orbital amplitude and ks the equivalent roughness. The study concluded
that the exponential-type profile is adequate for am/ks < 500, while the parabolic-uniform
profile is more suitable for am/ks ≥ 500 [36].

The vertical distribution of turbulent eddy viscosity within the WBBL generated by
waves in shallow waters is a key parameter and the main quantity that determines the
vertical distribution of suspended sediments [5–7]. In coastal zones, sediment transport
modeling is important for the predictions of coastline evolution and seabed changes [44–48].
In the coastal engineering approach, the net total coastal sediment transport (averaged
over the wave period) is obtained as the sum of the net bed load and net suspended load
transport rates. For suspended load, the net sand transport is defined as the sum of the
net current-related and the net wave-related transport components. The wave-related
suspended sediment transport is defined as the transport of suspended sediments by
the oscillatory flows. The prediction of wave-related suspended transport components
is based on the widely and well-known gradient diffusion model. The resolution of the
related classical one-dimensional vertical (1DV) advection–diffusion equation (ADE) needs
sediment diffusivity εs and settling velocity of sediments ωs. The diffusivity of sediments
εs is related to the diffusivity of momentum, i.e., the eddy viscosity νt, by a coefficient
β = εs/νt (i.e., the inverse of the turbulent Schmidt number).

Four models of sediment transport were compared to observations made in wave
and current flows above plane beds [49]. The results show that the “STP” model, based
on a vertical distribution of eddy viscosity given by a parabolic shape [27], seems to give
interesting results similar to that of a more complex model, namely the k-L type second-
order closure model [50]. On the other hand, the results from the Reynolds stress model [51]
based on a simplified two-phase flow approach do not improve the predictions of other
simpler models [49].

In oscillatory flows, cycle-mean sediment diffusivity above ripples is significantly
greater than the cycle-mean eddy viscosity, i.e., β > 1 [6,52–54]. The value of β was
suggested empirically as a constant equal to four (β = 4) for rippled beds [6] and the near-
bed sediment diffusivity a constant equal to εs = 0.061ksU0. Another empirical sediment
diffusivity formulation involves a three-layer distribution [38] (Figure 2).
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For suspended sediments in oscillatory flows over sand ripples, field and laboratory
data show, for time-averaged concentration profiles in semi-log plots, a contrast between
upward convex profiles for fine sand and upward concave profiles for coarse sand [55–58].
Careful examination of experimental data for coarse sand shows a near-bed upward convex
profile beneath the main upward concave profile [42,54].

The above review shows that:

- The different comparative studies show that even if more complex models contain
more information about turbulence, they do not always provide the best results
compared to simpler models. Therefore, complexity does not systematically imply
superiority, in particular in coastal engineering practice, where simple models are
often preferred for practical applications.

- Different assumptions were made about the vertical variation of eddy viscosity and
sediment diffusivity in the WBBL, and empirical models were proposed. It is important
to know which one is the best and to find the link with turbulence closure schemes.

- Even if the vertical distribution of sediment diffusivity (Figure 2) seems similar to
the three-layer distribution of eddy viscosity of Kajiura (Figure 1), it is very different
from the other eddy viscosity profiles, especially the two that show interest, namely,
the parabolic-uniform and exponential-type profiles [36], taking into account their
close link to results from turbulence closure schemes. In addition, the discontinuous
three-layer distribution is mainly the result of an empirical approach, while theoretical
models provide analytical continuous solutions without discontinuities as in the three-
layer profile. It is important to find the link between eddy viscosity and sediment
diffusivity profiles.

The aim of this study is to:

- Provide a unique explanation/interpretation for the different eddy viscosity and
sediment diffusivity data for the WBBL.

- Replace former different empirical profiles of eddy viscosity/sediment diffusivity
with a unique analytical/theoretical model. Following our former study [36], the
one-dimensional-vertical profile of eddy viscosity will be investigated based on new
results obtained from an analytical study of eddy viscosity in steady fully devel-
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oped plane-channel and open-channel flows [59–61]. The selected analytical model,
namely, the exponential-type profile, is first validated by direct numerical simulation
(DNS) and experimental data of steady plane-channel and open-channel flows, re-
spectively [60,61]. It will be generalized to the WBBL, assessed, and calibrated by
comparisons with numerical results of the two-equation baseline (BSL) k-ω model.
A new calibration of the period-averaged eddy viscosity for oscillatory flows for
different wave conditions through the parameter am/ks will be proposed.

- Use the proposed analytical eddy viscosity model in the computation of suspended
sediment concentration profiles in oscillatory flow over sand ripples.

Two models of suspended sediment concentrations are presented: the classical advection–
diffusion equation based on the gradient diffusion model and the convection–diffusion
equation for suspended sediments in oscillatory flows over sand ripples with an upward
convection term. Both models need the sediment diffusivity, which is related to the
proposed exponential-type profile of eddy viscosity and the turbulent Schmidt number.
Profiles for suspended sediment concentration and sediment diffusivity will be presented.

2. Eddy Viscosity Formulation

Among the different eddy viscosity profiles, the well-known parabolic eddy viscosity
profile, which is largely used for open-channel flows [33], was adapted to turbulent wave
boundary layers [5] by replacing the water depth with the wave boundary layer thickness.
Following this example, we will first show the interest of the exponential-type eddy
viscosity profile in turbulent channel and open-channel flows, then we will generalize
this analytical model to turbulent wave boundary layers.

2.1. Eddy Viscosity Formulation for Steady Channel and Open-Channel Flows

More theoretical analytical eddy viscosity models are based on the concepts of velocity
and length scales [62–66], which are related to the exponentially decreasing turbulent
kinetic energy (TKE) function, and mixing length, namely, the exponential-type profile of
eddy viscosity [59–61], given by

νt(y) = u∗ye−
y++0.34Re∗−11.5

0.46Re∗−5.98 , (1)

where y is the vertical distance from the bed/bottom and in wall units, y+ = yu∗/ν,
Re∗ = hu∗/ν is the friction Reynolds number, u∗ is the friction or shear velocity, ν is the
kinetic viscosity, and h is the half channel height or the flow depth.

This Re∗-dependent eddy viscosity (Equation (1)) was validated through computation
of velocity profiles and comparisons to direct numerical simulation (DNS) and experi-
mental data of both velocities and eddy viscosity (Figure 3) [59–61]. It is possible to write
Equation (1) in the following form

νt a(ξ) = Cα ξe−C1ξ (2)

where ξ = y/h, νt a = νt/(u∗ h) and the two coefficients Cα and C1 are given by Cα =

e−
0.34Re∗−11.5
0.46Re∗−5.98 and C1 = Re∗

0.46Re∗−5.98 . For large values of Re∗ (Re∗ > 2000), the model (Equa-
tion (1)) becomes Re∗-independent, and the two coefficients Cα = α1κ and C1 reach asymp-
totic values equal, respectively to Cα = 0.477 and C1 = 2.17 [61].
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Figure 3. Eddy viscosity profiles in turbulent channel flows for different friction Reynolds numbers
νt
+ = νt/ν; red solid lines: Equation (1); dotted and dashed lines: DNS data [60].

With an additional correction to account for the damping effect of turbulence near the
free surface, we used [61] a damping function in order to decrease turbulent viscosity near
the free surface as

νt a(ξ) = Cα ξe−C1ξ
(

1 − e−B f (1−ξ)
)

(3)

Figure 4 shows the eddy viscosity profiles given by Equation (2) (red solid line) and
Equation (3) (red dashed line) and comparisons with parabolic and wake-modified profiles.
The profile of Equation (3) is similar to the wake-modified profile with a wake parameter
Π = 2 (used for open-channel flows [33]). Equations (2) and (3) provide identical results for
ξ < 0.4, and therefore Equation (2) could be used for sediment transport modeling.

2.2. Eddy Viscosity Formulation for Oscillatory Flows

In this study, we consider a sinusoidal oscillatory flow, where the free stream velocity
is given by

U(t) = Um sin(σ t)

where Um is the maximum value of the free stream velocity (or the velocity at wave
crest) and σ = 2π/T is the angular frequency. The different flow conditions are given by
the roughness parameter am/ks, where ks is Nikuradse’s equivalent sand roughness and
am = Um/σ is the orbital amplitude of fluid just above the boundary layer or near-bed
semi-excursion.

2.2.1. Analytical Eddy Viscosity Model

Equation (2) of eddy viscosity was validated for steady plane-channel and open-
channel flows. However, for use in wave boundary layers, we need to assess this equation
for the case of oscillatory flows. For oscillatory flows, Equation (2) is written in the following
dimensionless form

νt a(ξ) =
νt

Um am
= Cα ξe−C1ξ (4)
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where ξ = y/yh and yh is the distance from the wall to the axis of symmetry for oscillatory
water tunnel experiments.
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The profile given by Equation (4) was used for turbulent wave boundary layers [34–36,42,56,57]
and calibrated by k-ε [34,35] and k-ω [36] turbulence closure schemes. Equation (4) was
also used indirectly in [56] for the validation of a finite-mixing-length theory, which needs
vertical profiles of mixing velocity and mixing length. Theses profiles were given by mixing
length increases linearly and mixing velocity decreases exponentially with ξ, and therefore
the shape of Equation (4).

The value of the eddy viscosity should vanish outside the bottom boundary layer.
This is possible by using the damping function (of Equation (3)) as for damping effect near
the free surface in open-channel flows. Therefore, it is possible to write Equation (4) in the
following form

νt a(ξ) =
νt

Um am
= Cα ξe−C1ξ

(
1 − e−B f (1−ξ)

)
(5)

However, since both Equations (4) and (5) provide identical results for ξ < 0.4 (as for
open-channel flows, Figure 4), Equation (4) could be used for sediment transport modeling.

2.2.2. Baseline (BSL) k-ωModel

Equation (4) is analyzed by the baseline (BSL) k-ω model [43], which allows accurate
prediction of velocity profiles in WBBLs [11]. The BSL k–ω model is a two-equation
model that gives results similar to the k–ω model of [67] in the inner boundary layer
(Equations (6)–(8)) but changes gradually to the k–ε model [68] towards the outer boundary
layer and the free stream velocity. The blending between the two regions is achieved
by a blending function F1, changing gradually from one to zero in the desired region.
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Equations of turbulent kinetic energy k, specific dissipationω, and eddy viscosity are given,
respectively, by:

∂k
∂t

=
∂

∂y

(
(ν + νtσkω)

∂k
∂y

)
+ νt

(
∂u
∂y

)2
− β∗ωk (6)

∂ω

∂t
=

∂

∂y

(
(ν + νtσω)

∂ω

∂y

)
+ γ

(
∂u
∂y

)2
− βω2 + 2(1 − F1)σω2

1
ω

∂k
∂y

∂ω

∂y
(7)

νt =
k
ω

(8)

The constants of the model are given by σkω = 0.5, β∗ = 0.09, σω = 0.5, γ = 0.553,
β = 0.075 [11].

2.2.3. Boundary Conditions and Numerical Method

At the bed, the no-slip condition is assumed, thus the velocities and turbulent kinetic
energy are u = k = 0, and at the axis of symmetry (outside boundary layer), the gradients
of velocity, turbulent kinetic energy, and specific dissipation rate are equal to zero, i.e., at
y = h, ∂u/∂y = ∂k/∂y = ∂ω/∂y = 0, and the velocity at the outside boundary layer is
equal to the free stream velocity (u = U). The wall boundary condition of Wilcox (1988) is
used to express the effect of roughness in the present model [11].

The nonlinear governing equations were solved using a Crank–Nicolson type implicit
finite-difference scheme. The grid spacing increases exponentially in order to achieve better
accuracy near the wall. In space 100 and in time 7200 steps per wave cycle were used. The
convergence was achieved through two stages based, respectively, on the dimensionless
values of u, k, and ω and on the maximum wall shear stress in a wave cycle. For both the
stages, the convergence limit was set to 1 × 10−6. The instantaneous value of νt can be
obtained numerically from Equations (6)–(8) [11].

2.2.4. Results and Calibration of the Analytical Eddy Viscosity Model

Figure 5 presents the temporal and spatial variation of dimensionless eddy viscosity for
a sinusoidal wave. Figure 6 shows the comparison between period-averaged eddy viscosity
obtained from the BSL k-ω model (symbols) and analytical profile of Equation (4) (curves).
Even if the eddy viscosity is highly time-dependent (Figure 5), the period-averaged dimen-
sionless eddy viscosity (Figure 6) has a shape that is well described by the exponential-type
analytical profile given by Equation (4) for two flow conditions given by the roughness
parameter am/ks equal to 100 and 300, respectively. For am/ks = 100, Equation (6) allows
a good description of the period-averaged dimensionless eddy viscosity (Figure 6) for
ξ < 0.6. However, for am/ks = 300, data are well described over the entire height.

In our former study [36], the two parameters were calibrated by the BSL k-ωmodel
up to am/ks = 500. The values were

α = 0.2(am/ks)
−0.97 (9)

with Cα = ακ
Cα = 0.082 (am/ks)

−0.97 (10)

and
C1 = 29.7(am/ks)

−0.52 (11)

In order to allow more accurate equations, a second calibration is proposed based on
comparisons of Equation (4) with data from BSL k-ωmodel for more flow conditions up to
am/ks = 5000 (Figure 7).
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Figure 5. Temporal and spatial variation of dimensionless eddy viscosity for a sinusoidal wave
obtained by the BSL k-ω model. Flow conditions: Um = U0 = 3.63 m/s; am = 1.73 m; T = 3 s;
ks = 1.5 cm; Re = 437000.
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5000.

The calibration based on data from the BSL k-ω model for flow conditions up to
am/ks = 5000 allows finding that C1 becomes constant equal to 1.5 for am/ks = 500
(Figure 8). For Cα, data are well described by the following equation (Figure 9)

Cα = 0.127 (am/ks)
−1.061 (12)
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Figure 9. Parameter Cα as a function of am/ks, curve: Equation (12), symbols: data from the BSL
k-ωmodel.

Figure 10 shows that for high values of ks/am, a better calibration is given by the
following linear equation

Cα = 0.0928 (ks/am)− 4 × 10−6 (13)
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Equation (13) is compared to Equation (12) which is written in the following form
Cα = 0.127(ks/am)

1.061.

3. Mathematical Modeling of Suspended Sediment Concentrations

The study of the flow and transport of suspended sediments in the WBBL over
sand ripples is complex and needs two-dimensional or three-dimensional space models.
However, the use of these models is often too time consuming. For practical coastal
engineering applications, it is preferable to use one-dimensional-vertical (1DV) models,
where the parameters depend on one space variable, namely, the vertical distance from
the bottom y (Equations (4)–(8)), with adequate methods to parameterize the involved
phenomena. In the previous section, we introduced a shape of the 1DV profile of the vertical
distribution of turbulent eddy viscosity within the WBBL. However, in vortex ripples in
the coastal area, in addition to the diffusive process, there is another coherent phenomenon
related to vortex formation and shedding at flow reversal above ripples. Instead of the
classical 1DV advection–diffusion equation (ADE), a combined 1DV convection–diffusion
formulation is used with an additional term related to the convective mechanism.

3.1. Classical Advection–Diffusion Equation Based on the Gradient Diffusion Model

In equilibrium conditions, the concentration of suspended sediment results from the
balance between an upward mixing flux qm and a downward settling flux qs = c(y) ωs as
qm − c(y) ωs = 0, where ωs is the particle settling velocity and y the vertical distance from
the bed. The gradient diffusion model assumes that the mixing flux is proportional to the
concentration gradient qm = −εs(dc/dy), where εs is the sediment diffusivity and allows
writing the classical 1-DV advection–diffusion equation (ADE) as

εs
dc
dy

+ ωsc = 0 (14)
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3.2. Convection–Diffusion Equation with Upward Convection Term

For suspended sediments in the WBBL over sand ripples, both diffusive and convective
mechanisms, related, respectively, to εsdc/dy and vortex formation and shedding, are
involved in the entrainment processes of the suspended sediments [6]. ADE (Equation
(14)) is unable to predict this process of vortex formation and shedding above ripples since
sediment diffusivity εs describes only the disorganized diffusive process.

It is possible to adapt Equation (14) by adding an additional term related to the
convective mechanism associated with vortex shedding at flow reversal above ripples. The
steady-state ADE for the combined convection–diffusion formulation is given by [6]

εs
dc
dy

+ ωsc + Fconv = 0, (15)

The respective terms in (15) represent upward diffusion, which represents a pure
disorganized “diffusive” process (given by gradient diffusion model Fdi f f = εs(dc/dy)),
downward settling, and upward convection Fconv, which describes the coherent convective
sediment entrainment process. Above ripples, in a ripple-averaged sense, in the lower
bed/bottom part of the wave boundary layer, the convective term can dominate the upward
sediment flux. However, above this bed/bottom part, the vortices lose their coherence, and
the gradient diffusion becomes dominant.

The upward convection term Fconv was given by different formulations: Fconv =
−ωsc0F(y), where F(y) is a function describing the probability of a particle reaching
height y. above the bed [6]. Fconv = − vwcw, where vw and cw are periodic components,
respectively, of vertical velocity and concentrations and the overbar denotes time averaging.

Both ordinary differential equations (ODEs) (Equations (14) and (15)) need the sedi-
ment diffusivity, which is the key parameter in suspended sediment concentration model-
ing. In Section 4, we will show that Equation (15) reverts to the classical ADE (Equation (14))
with an “apparent” sediment diffusivity.

3.3. Sediment Diffusivity and the Turbulent Schmidt Number

The diffusivity of sediments εs is related to the diffusivity of momentum, i.e., the eddy
viscosity νt, by a coefficient β. The sediment diffusivity is therefore given by

εs = β νt (16)

where β is the inverse of the turbulent Schmidt number.
Different studies were conducted toward developing equations for the turbulent

Schmidt number or β-factor for both steady and oscillatory flows [42,69–75].
The method based on the finite-mixing-length model [56] allows writing the sediment

diffusivity as

εs = wmlm

1 +
l2
m

24

d3C
dy3

dC
dy

+ · · ·

 (17)

With an eddy viscosity given by the product between a mixing velocity and a mixing
length νt = wmlm and the assumption of an exponential decreasing concentration profile
given by c = cbe−Aξ , Equations (8) and (9) provide an equation for β(y) as [42]

β(y) = 1 +
lm2

24
A2 (18)

With the linear mixing length equation (lm = λ y) and λ = 1 [56], (18) reverts to

β(y) = 1 +
A2

24
y2 (19)
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Equation (19) is similar to that proposed in [42]. Another empirical equation for β(y)
was proposed as [42]

β(y) = βb fb(y) = βbeCbξ (20)

where Cb is a coefficient. This equation presents the interest that it allows sediment
diffusivity to keep the same form as Equation (4), and it will involve changing the value of
the coefficient C1.

The depth-averaged β-factor is obtained by integrating β(y) over the water column as

βave =
1
h

∫ h

0
β(y)dy =

∫ 1

0
β(ξ)dξ, (21)

Using Equation (19), integration of Equation (21) gives the depth-averaged β-factor as

βave = 1 +
A2

72
, (22)

with A = 5.853 + 6.401 ω
u∗

[73], βave is given by [74]

βave = 1, 47 + 1.03
(

ω

u∗

)
+ 0, 57

(
ω

u∗

)2
(23)

while with a linear function given by A = 11 ω
u∗

, βave is given by [74]

βave = 1 + 1.68
(

ω

u∗

)2
(24)

Equation (24) shows the interest that it is similar to a former empirical equation

βave = 1 + 2
(

ω
u∗

)2
[69].

In WBBLs above ripples, cycle-mean sediment diffusivity is significantly greater than
the cycle-mean eddy viscosity (β > 1). The empirical distribution of sediment diffusivity
given in Figure 2 is explained nowadays as follows: The near-bed constant region is due
to coherent vortex formation and shedding related to flow separation on the lee side of
the steep ripple crest. In the following layer, the linearly increasing profile for sediment
diffusivity is related to the random turbulent processes and gradient diffusion. Indeed, the
vortices lose their coherence in this layer.

4. Suspended Sediments in WBBLs over Sand Ripples
4.1. Convection–Diffusion Model and the Classical Advection–Diffusion Equation

The convection–diffusion model for time-averaged concentrations (over the wave
period) is given by Equation (15). There are two ways to write Equation (15) in the form of
the ADE (Equation (14)). The first allows writing(

1
1 + Fconv

ωsc

)
εs

dc
dy

+ ωsc = 0, (25)

while the second gives (
1 +

Fconv

Fdi f f

)
εs

dc
dy

+ ωsc = 0 (26)

For both cases, the ADE is given by

ε∗s
dc
dy

+ ωsc = 0 (27)
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Equation (27) contains a modified or apparent sediment diffusivity ε∗s instead of εs,
given by

ε∗s = αεs (28)

Parameter α is related to the convective sediment entrainment process associated with
the process of vortex shedding above ripples. Parameter α could be expressed by two
different expressions.

In the first expression related to Equation (25), α is given by

α =
1

1 + Fconv
ωsc

(29)

Equation (29) shows that α depends on the relative importance of upward convection
Fconv related to coherent vortex shedding and downward settling of sediments ωsc. When
the convective transfer is very small, for example, above low-steepness ripples, α becomes
nearly equal to 1 (α ≈ 1), and therefore ε∗s ≈ εs. The upward convection Fconv were given
by different expressions/authors. With Fconv = −ωsc0F(y) [6,52,53], α becomes equal to
α = 1/(1 − (c0/c)F(y)), while with Fconv = − vwcw [53], α = 1/(1 − ( vwcw/ωsc)), which
seems related to the condition ( vwcw/ωsc) < 0.2 [45].

The second expression for α related to Equation (26) is given by

α = 1 +
Fconv

εs
dc
dy

= 1 +
Fconv

Fdi f f
(30)

In Equation (30), α depends on the relative importance of terms Fconv and Fdi f f =
εs(dc/dy), which are related, respectively, to coherent vortex shedding and random turbu-
lence. When the coherent vortex shedding phenomenon is more important than random
turbulence (Fconv > Fdi f f ), α becomes greater than 1 (α > 1). At the opposite, when random
turbulence is more important than coherent vortex shedding (Fconv � Fdi f f ), α becomes
nearly equal to 1 (α ≈ 1), and therefore ε∗s ≈ εs.

An empirical function for α was proposed as [42]

α = 1 + D e−
y
hs (31)

where D and hs are two parameters. The coefficient D is given by the product D = DR DG,
where DR and DG are related, respectively, to the ripple shape and grain size. Above low-
steepness ripples convective transfer is very small, DR becomes equal to 0, and α becomes
equal to 1. For fine sediments, DG becomes nearly equal to 0, and therefore α ≈ 1. Time-
averaged concentration profiles are obtained from the resolution of Equation (27), with an
apparent sediment diffusivity ε∗s given by Equation (28), Equation (31) for α, Equation (4)
for the eddy viscosity, and Equation (20) for β. The proposed model is validated by
two experimental data of oscillatory flows over sand ripples. The first are concentration
profiles for fine and coarse sediments, while the second are sediment diffusivity profiles for
medium sands.

4.2. Fine and Coarse Sediments over Wave Ripples in the Same Flow (Data from [55])
4.2.1. Experimental Conditions

In these experiments [55], suspended sediments are due to sinusoidal waves over
rippled beds. Natural beach sand was used with median grain diameter d50 = 0.19 mm.
The flow parameters are: wave period T = 1.51 s, mean wave height H = 13 cm, maximum
near-bed flow velocity Um = 27.8 cm/s, near-bed flow semi-excursion am = 6.68 cm, and
mean depth of flow h = 30 cm. The ripples that were produced were highly uniform and
regular, with a mean ripple height of ηr = 1.1 cm, a mean ripple length of λr = 7.8 cm,
and therefore a mean ripple steepness of ηr/λr = 0.14. The equivalent roughness is given
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by ks = 25ηr(ηr/λr). Measured concentrations were obtained by sieving suction samples
from different elevations above the ripple crest [55].

4.2.2. Results

Figure 11 shows time-averaged concentration profiles, in semi-log plots, for fine and
coarse sediments over sand ripples. Experimental data (symbols) show two different
profiles for fine sand (o) and coarse sand (x): an upward convex concentration profile for
fine sand (o) and a main upward concave profile with a near-bed upward convex profile
for coarse sand (x).
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Equation (32).

SSC profiles (curves in Figure 11) are obtained from the numerical resolution of
Equation (27) by using MATLAB. The apparent sediment diffusivity ε∗s is obtained from
Equations (4), (20), (28) and (31) as

ε∗s = Asye−
y

Bs

(
1 + D e−

y
hs

)
(32)

where y is the height above the ripple crest. For fine sand, the concentration profile (dashed
line) is obtained with As = 0.025 m/s, Bs = 0.022 m, a constant settling velocity ωs0= 0.65
cm/s, and α ≈ 1 (since, in Equation (31), DG ≈ 0). The concentration profile (dashed line)
shows good agreement with experimental data (o).

For coarse sand, we take into account the effect of apparent sediment diffusivity. The
solid line is computed using ωs0 = 6.1 cm/s, As = 0.017 m/s, and Bs = 0.75 m (which
correspond to Cα = 0.0538, C1 = 22.38, βb = 5.1, and Cb = 22), with D = 403 and
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hs = 0.002 m. The concentration profile allows an accurate description of coarse sand (x)
data (solid line in Figure 11).

This result for coarse sand was possible by using:

- The β-function (Equation (20)), which was validated by the finite-mixing-length model
and allows the description of the main upward concave profile for coarse sediments

- The additional parameter α, which allows the description of the near-bed upward con-
vex profile. This parameter is related to the convective sediment entrainment process.

The profiles for fine and coarse sand (Figure 11) are interpreted by a relation between
the second derivative of the logarithm of concentration and the derivative of the product
between sediment diffusivity and α. It is possible to write from Equation (27) [42]

d2ln(c)
dy2 =

ωs

ε∗s 2
dε∗s
dy

(33)

Equation (33) provides, in semi-log plots, a link between upward concavity/convexity
of concentration profiles and increasing/decreasing ε∗s . Increasing ε∗s allows an upward
concave concentration profile, while decreasing ε∗s allows an upward convex concentration
profile. Equation (33) was adapted for concentration profiles in Cartesian coordinates for
steady open-channel flows [71].

4.3. Sediment Diffusivity Profile for Medium Sediments over Ripples with Steep Slopes (Data
from [53])

We consider experimental data of near-bed sediment diffusivity over sand ripples
under waves [53]. For medium sand, the ripples had relatively steep slopes. In the
study [53], the form of the sediment diffusivity profiles was found to be constant with
height above the bed to a height equal approximately to the equivalent roughness of the
bed ks. Above this level, the sediment diffusivity εs increased linearly with height. An
explanation was provided for these two layers as follows [53]:

- The constant sediment diffusivity profile is a vortex layer; the constant value of
sediment diffusivity close to the bed was related to coherent vortex shedding. Steep
ripples involve flow separation on the lee side of ripple crest and vortex formation.

- In the layer where the sediment diffusivity increased linearly with height, the vortices
lose their coherence, and gradient diffusion becomes dominant. Random turbulent
processes explain the observed linear form for εs.

In Equation (32), y is the height above the ripple crest. However, concentration profiles
in [55] were referenced to the undisturbed bed. Since y is the height above the undisturbed
bed, we write Equation (32) as

ε∗s
U0ks

= As
(ỹ − y0)

ks
e−

(ỹ−y0)
Bs

(
1 + D e−

(ỹ−y0)
hs

)
(34)

where ỹ is the height above the undisturbed bed, and y0 is the distance between the
undisturbed bed level and ripple crest. Equation (34) contains two different contributions
given, respectively, by parameters β (i.e., the inverse of the turbulent Schmidt number) and
α (related to convective transfer) [54].

Figure 12 shows the mean measured normalized ε∗s (symbols) over medium sand bed
and comparison with the proposed analytical profile (Equation (34)). Comparison with
experimental data [53] (symbols) shows good agreement, and the shape is similar to the
lower part (the two near-bed layers of sediment diffusivity, i.e., constant and linear) of the
empirical profile [38] given in Figure 2.
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5. Conclusions

For the shape of the one-dimensional-vertical (1 DV) eddy viscosity profile, instead
of the well-known parabolic profile, we consider the exponential-type analytical model.
In this study, the exponential-type analytical model was generalized to the WBBLm and
the period-averaged eddy viscosity was calibrated by a two-equation baseline (BSL) k-ω
model for different flow conditions up to am/ks = 5000.

The exponential-type analytical model was used in modeling suspended sediment
concentration (SSC) profiles in oscillatory flows over sand ripples. In addition to the
diffusive process, there is another coherent phenomenon related to vortex formation and
shedding at flow reversal above ripples. Instead of the classical 1 DV advection–diffusion
equation (ADE), a combined 1 DV convection–diffusion formulation was used with an
additional term related to the convective mechanism.

Our study shows that the convection–diffusion equation reverts to the ADE with
an “apparent” sediment diffusivity ε∗s = α εs related to sediment diffusivity εs by an
additional parameter α associated with the convective sediment entrainment process over
sand ripples. The additional parameter α was defined by two equations. In the first,
α depends on the relative importance of upward convection related to coherent vortex
shedding and downward settling of sediments. When the convective transfer is very small,
above low-steepness ripples, α ≈ 1. In the second, α depends on the relative importance
of coherent vortex shedding and random turbulence. When the coherent vortex shedding
phenomenon is more important than random turbulence, α > 1. At the opposite, when
random turbulence is more important than coherent vortex shedding, α ≈ 1, and “apparent”
sediment diffusivity reverts to the classical sediment diffusivity ε∗s ≈ εs.

SSC profiles are obtained from the numerical resolution of the advection–diffusion
equation (ADE) with the “apparent” sediment diffusivity ε∗s . The “apparent” sediment
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diffusivity ε∗s is obtained by using the exponential-type analytical model, a β-function, and
the function for the parameter α. Comparisons with experimental data of SSC show that
the proposed method allows a good description of both concentration profiles for fine and
coarse sediments. The shape of the “apparent” sediment diffusivity ε∗s profile was confirmed
by experimental data and supports the two near-bed layers of sediment diffusivity (i.e.,
constant and linear) of the former empirical three-layer vertical distribution [38].
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