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Abstract: The observation path planning of an ocean mobile observation network is an important
part of the ocean mobile observation system. With the aim of developing a traditional algorithm
to solve the observation path of the mobile observation network, a complex objective function
needs to be constructed, and an improved deep reinforcement learning algorithm is proposed. The
improved deep reinforcement learning algorithm does not need to establish the objective function.
The agent samples the marine environment information by exploring and receiving feedback from
the environment. Focusing on the real-time dynamic variability of the marine environment, our
experiment shows that adding bidirectional recurrency to the Deep Q-network allows the Q-network
to better estimate the underlying system state. Compared with the results of existing algorithms, the
improved deep reinforcement learning algorithm can effectively improve the sampling efficiency of
the observation platform. To improve the prediction accuracy of the marine environment numerical
prediction system, we conduct sampling path experiments on a single platform, double platform, and
five platforms. The experimental results show that increasing the number of observation platforms
can effectively improve the prediction accuracy of the numerical prediction system, but when the
number of observation platforms exceeds 2, increasing the number of observation platforms will
not improve the prediction accuracy, and there is a certain degree of decline. In addition, in the
multi-platform experiment, the improved deep reinforcement learning algorithm is compared with
the unimproved algorithm, and the results show that the proposed algorithm is better than the
existing algorithm.

Keywords: deep reinforcement learning; marine environment observation; USV; path optimization;
LSTM

1. Introduction

The adaptive sampling technology of marine environment observation platforms is
an important part of the marine environment monitoring system. Marine environment
observation data play an important role in improving the prediction accuracy of the marine
environment numerical prediction system. Due to the limited coverage and high cost of
direct observation, it is unrealistic to carry out large-scale and long-term observation. The
limited observation resources have become the main obstacle restricting the development
of regional complex marine environment observation and prediction technology. A subject
of scientific importance is the use of a mobile observation platform to realize the adap-
tive sampling of sensitive data from the complex marine environment and improve the
prediction accuracy of marine environment monitoring and forecasting systems.

In the past few decades, path planning technology for marine environment observa-
tion has made great progress. Due to the complexity and time variability of the marine
environment and the diversity of unmanned survey vessels (USVs) used in underwater
road strength planning tasks, the adaptive sampling of the marine environment observation
platform needs more safe and efficient path planning technology to ensure the smooth
completion of the task.
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The ocean observation system plays an important role in understanding and managing
the ocean. Marine environment mobile platform observation technology is an important
part of marine observation systems [1]. Marine environmental information has the charac-
teristics of multiple sources, timeliness, massive data, and unequal spatial and temporal
scales. The effective collection of marine environmental information is an important issue
in marine environmental observation [2].

The validity of the sampling data from marine environment mobile platform observa-
tion systems has a great influence on the accuracy of marine environment field prediction.
Due to the limited ocean observation resources, in the actual sampling process, to improve
the sampling efficiency, factors such as the complex and diverse sources of marine environ-
mental information, random dynamics, and high-dimensional states need to be considered,
especially for the collection of regional information containing large dynamic changes and
uncertainties [3–8].

The traditional marine environment mobile observation network optimization plan,
based on the acquired marine element analysis and forecast field data, uses the measure-
ment attributes of the marine mobile observation platform, the collision avoidance and
overlap constraints between the mobile observation platform groups, etc., to construct
the deployment plan of the mobile observation network global cost function. A suitable
global optimization algorithm, such as the genetic algorithm, particle swarm algorithm,
ant colony algorithm, etc., is selected to solve the optimized observation path of the mobile
observation network, and to verify its effect on the improvement of marine environment
analysis and forecasting capabilities. The real-time observation information obtained by
the observation network updates the analysis and forecast information of marine environ-
mental elements, and the updated background field can re-plan a new mobile observation
network deployment plan [8–12]. The advantages of this scheme are that it is clear and the
technical route is easy to implement, but the disadvantages are that it needs to construct a
complex cost function, human subjective factors are large, it is difficult to find a reasonable
global optimization algorithm, and the planning results often cannot meet actual needs.

Therefore, how to build a marine environment mobile observation network based on
a limited marine environment observation platform to achieve the optimal observation
of the regional marine environment, and how to realize the adaptive path of the marine
environment observation platform based on the real-time marine environment observation
data obtained by the marine mobile observation platform optimization have become
important issues in the current development of regional marine environment observation
technology.

This paper uses the deep reinforcement learning algorithm for the design of a regional
marine environment observation network for the first time. Deep reinforcement learning is a
sequential decision algorithm. Aiming to address the drawbacks of traditional optimization
methods, the adaptive observation of the marine environment is regarded as a type of
sequential decision-making optimization problem. The regional marine environment
mobile observation platform receives instructions and takes the next step by acquiring
the current complex marine environment background information to realize the optimal
observation of the complex marine environment. Reinforcement learning algorithm is
a method of learning, prediction, and decision making. The optimal strategy is learned
through trial and error through the interaction between the agent and the environment.
The reinforcement learning algorithms have been widely used in path planning.

Reinforcement learning (RL), another research hotspot in the field of machine learning,
has been widely used in industrial manufacturing [13], simulation [14], robot control [15],
optimization and scheduling [16], and gaming [17], in addition to other fields. The basic
idea of RL is to learn the optimal strategy for accomplishing the goal by maximizing the
accumulated reward value obtained by the agent from the environment.

Chao et al. [18], using deep reinforcement learning for UAV path planning in dynamic
environments, applied the D3QN algorithm to predict the Q value of candidate actions,
and used greedy strategies and heuristic search rules for action selection, making it suitable
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for static performance under dynamic tasks. Wen et al. [19] used active SLAM technology,
the dueling deep reinforcement learning algorithm for path planning, and the FastSLAM
algorithm to locate and map the environment to realize the autonomous navigation of
robots in complex environments. Yao et al. [20] used reinforcement learning to improve
the artificial potential field method and solved the local stable point scene by combining
the improved black hole potential field and reinforcement learning. Li et al. [21] used deep
reinforcement learning to plan the UAV’s ground target tracking path. In this method, the
DDPG algorithm is improved, and a reward function based on the line of sight and artificial
potential field is constructed, so that the UAV can effectively maintain target tracking,
avoid obstacles, and reduce the failure rate. Jiang et al. [22] used deep reinforcement
learning to plan the path of asteroid jumping, and improved the DQN architecture to
determine the best action for jumping, combining three structural elements to improve the
performance of the DRL algorithm, making learning more efficient, and solving the path
planning problem. Wang et al. [23] adopted the hierarchical path planning method of Global
Guided Reinforcement Learning (G2RL) to plan the path of mobile robots in large dynamic
environments, with good versatility and scalability. Wei et al. [24] applied reinforcement
learning to information path planning (IPP), and developed a constrained exploration and
development strategy to deal with the information collection path planning problem of
mobile robots with sensing and navigation functions and to improve their work efficiency.
Shirel Josef et al. [25] applied DRL to the navigation of unmanned ground vehicles, used
zero-distance to local range perception to perform local navigation on unknown rugged
terrain, and used reward plasticity to provide dense reward signals. The simulated method
is able to navigate on surfaces with different levels of friction.

This article makes the following three contributions:

1. Using reinforcement learning, we build a marine environment. Traditional algorithms
need to construct a complex ocean environment cost function, while reinforcement
learning uses the characteristics of ocean environment elements to build the ocean
environment. In the marine environment created by the deep learning network, the
agent can learn by interacting with the environment to achieve its goals;

2. To cope with the partial observability of the observation environment, we use the
Dueling Double Deep Recurrent Q-network (D3RQN) algorithm to approximate the
optimal value function. Algorithms based on D3RQN can solve partially observable
problems through bidirectional recurrent neural networks. This method is more
robust than the Deep Q-network (DQN), Dueling Double Deep Q-network (D3QN),
and Deep Recurrent Q-network (DRQN) methods in the ways that the neural network
with a bidirectional layer can learn the pre-order environment state and the reverse
order environment state at the same time, and thus the sampling results obtained by
the platforms are closer to the true value;

3. Planning the observation path of the mobile observation network through deep re-
inforcement learning can improve the observation efficiency of marine environment
elements and the ability to analyze and forecast under the condition of limited observa-
tion resources. When the number of observation platforms exceeds 2, the assimilation
results will not be significantly improved.

The chapters of this article are arranged as follows: in Section 2, basic knowledge,
including the refined analysis and forecasting of the regional coupling environment, that is,
the acquisition model of the marine environment background field, the motion model of
the mobile observation platform, and the introduction of deep reinforcement learning algo-
rithms, is provided; in Section 3, we propose the self-adaptive optimization algorithm of
the regional marine environment mobile observation network based on deep reinforcement
learning, including data processing methods, environment construction, reward function
design, and neural network construction; in Section 4, we provide the simulation experi-
ment results and analysis, which proves the feasibility and effectiveness of the algorithm
used in regional marine environment observation; and in Section 5, we give the summary
and outlook.
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2. Method
2.1. Refined Analysis and Forecast of Regional Coupling Environment

Before proceeding with the design and research of the observation plan of the re-
gional ocean mobile observation network, it is first necessary to construct a regional cou-
pling/marine environment numerical forecast system to realize the analysis and forecast
of the coupling/marine environment elements. This article chooses to make correspond-
ing changes and adjustments based on a medium-complexity coupled circulation mode
(ICCM) [26]. This ICCM has energy conservation characteristics, so it has unique advan-
tages in simulating the process of the evolution of atmospheric, ocean, and land temperature.
Here, we select parts of the Northwest Pacific Ocean as the sea area to be measured and
take temperature changes as the research object to explore the intelligent optimization
design of the optimal observation plan of the regional ocean mobile observation network.
Based on the multi-level nested regional coupling model system, and using a coupled data
assimilation method that combines the optimal observation time window and a coupled
multi-parameter synchronization optimization method, determined by the sensitivity of
model parameters, a regional coupled environment analysis and forecasting system is
constructed. We realize the analysis and forecasting of the regional coupling/marine envi-
ronment, and output the analysis and forecast information of sea surface temperature for
the next 5 days.

2.2. Regional Marine Environment Mobile Observation Network Model

The regional marine environment mobile observation network is composed of un-
manned survey vessels (USVs), buoys, etc. [27]. The objects of observation are areas in the
ocean with large temperature differences under a certain time gradient. This article mainly
discusses the observation path planning for the sampling points of the unmanned survey
ship in the ocean. As shown in Figure 1, the USV should start from the selected starting
point (x1, y1), measure the area where the temperature difference in the ocean changes
greatly, and control the USV in real time based on unknown obstacles to avoid collisions.
The aim is to maximize the sampling of points with large temperature changes within
the range of the region under constrained conditions. The path from one point (xi, yi) to
another point (xi+1, yi+1) can be expressed by the following formula:{

xi+1 = xi + vit · cos (θ)

yi+1 = yi + vit · sin (θ)
(1)

where θ is the heading angle of the USV at the ith waypoint; vi is the speed of the USV at
the ith waypoint; and t is the time step.

The schematic diagram of the USV’s marine environment detection is shown in
Figure 1. The USV detects the surrounding marine environment in a certain direction.
The detection angle is α, the detection radius is R, and the detected temperature difference
in the sampling point is (∆Ti1, ∆Ti2, ∆Tim). The temperature difference is compared, and
the sampling point of the next point ∆Tij is selected as the largest temperature difference. d
represents the gradient function, and z and f represent the objective function. Therefore,
for this problem, the objective function is

max z = ∑ ∆Ti

s.t d = d(Ti)

0 ≤ vi ≤ vmax

θ1 ≤ θi ≤ θ2

i = 1, 2, ..., n

(2)
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Figure 1. A USV motion coordinate system.

2.3. Partially Observable Markov Decision Process

The Partially Observable Markov Decision Process (POMDP) is a generalized Markov
decision process [28]. The decision-making procedure of the POMDP simulation agent
assumes that the system dynamics are determined by the MDP, but the agent cannot directly
observe the state. On the contrary, it must infer the distribution of states based on the
observations of the whole and partial regions of the model. Formally, POMDP is a 7-tuple
process (S, A, T, R, Ω, O, γ), in which S, A, T, R, and Ω are the states, actions, conditional
transition probability, reward functions, and observations, respectively. O is the conditional
observation probability. γ is the discount factor. The agent is not receiving observations
at each step st, but is receiving observations at ot. The discount factor γ determines how
much of a direct reward is gained for greater distances. When γ = 0, the agent only cares
about which action would produce the largest expected instant reward; when γ = 1, the
agent is concerned with maximizing the expected sum of future rewards.

In our problem, the background field of the observation platform during the sampling
process changes with time. For a certain period, the observation platform is not sure which
state it is in. The observation platform first needs to determine what state it is in before it
can decide to sample. Therefore, our problem is a POMDP [29].

We assume that the state of the observation platform at each moment obeys the
O(o|s) distribution. After the observation platform observes the data o, the probability of
determining the state s is O(o|s). The observation platform will proceed to the next action
a according to the state it is in. P(s′)|s, a indicates the probability of reaching state s′ after
the observation platform performs action a. R(s, a) represents the reward for performing
the action. Our goal is to choose the action a of each step for the observation platform to
maximize the cumulative return value: E[∑∞

t=0 γtrt]. We take γ = 0.99, because we are
more concerned with the sum of the benefits of the future work of the observation platform.

2.4. Deep Q-Network

Reinforcement learning [30] is one of the paradigms and methodologies of machine
learning. It is used to describe and solve the problem of how the agent interacts with



J. Mar. Sci. Eng. 2023, 11, 208 6 of 18

the environment through learning. Such strategies aim to maximize returns or achieve
specific goals.

The common model of reinforcement learning is the standard Markov Decision Pro-
cess (MDP). According to given conditions, reinforcement learning can be divided into
model-based RL and model-free RL, as well as active RL and passive RL. The variants of
reinforcement learning include reverse reinforcement learning, hierarchical reinforcement
learning, and observable system reinforcement learning. The algorithms used to solve
reinforcement learning problems can be divided into two categories: strategy search algo-
rithms and value function algorithms. Deep learning models can be used in reinforcement
learning to form deep reinforcement learning.

Deep reinforcement learning (DRL) [31] combines the perception ability of deep
learning with the decision-making ability of reinforcement learning, which can be directly
controlled according to the input image. It is an artificial intelligence method that can be
considered closer to human thinking.

The main algorithm flow of DQN is to combine the neural network with the Q-network
algorithm, use the neural network’s powerful image representation ability, and use video
frame data as the state in reinforcement learning and as the input of the neural network
model; then, the neural network model outputs every value (Q value) corresponding to
each action, causing the action to be executed. As shown in Figure 2, we take the forecast
data obtained through ICCM and the observation platform as the environment, and the
proposed D3RQN as the algorithm model of the agent. Our task is to allow the agent to
obtain greater rewards in the interaction with the environment, that is, the observation
platform adopts more valuable samples.

The DQN algorithm uses a deep convolutional network with a weight parameter of θ
as the network model of the action value function. The action value function Q(s, a, θ) is
simulated by the convolutional neural network model Qπ(s, a), as follows:

Q(s, a, θ) = Qπ(s, a) (3)

We use the mean square error to define the objective function as the loss function of
the deep convolutional neural network, the formula for which is as follows:

L(s, a|θi) = (r + γmαxQ(s′, a′|θi)−Q(s, a|θi))
2 (4)

θi+1 = θi + α∆θ L(θi) (5)

where s′ and a′ are the state and action of the next period, respectively.
The DQN algorithm introduces three technologies to combine deep learning and

reinforcement learning: First, the objective function, which can be learned by deep learning,
is constructed based on the Q-network algorithm. Second, the target Q value is generated
based on the convolutional neural network, and the Q value of the next state is evaluated
based on the target Q value. Third, the empirical playback mechanism is introduced to
solve the problems of correlation and non-static distribution between the data. The DQN
algorithm uses the mean square error to define the objective function as the loss function of
the deep convolution neural network. The formula is as follows:

Li(θi) = [E(st ,at ,rt ,st+1)
D[(yi −Q(si, ai|θi))

2] (6)

where yDQN
i = rt + γmaxa′Q(st+1, a′; θ−s ) is the stale update target given by the target

network Q̂. Updates performed in this manner have been empirically shown to be tractable
and stable [32].

Hado van Hassell et al. [31] put forward the Double DQN algorithm (DDQN) by
combining the idea of DQN with itself. The literature gives a general explanation of
overestimation and the mathematical proof of the solution. Finally, the algorithm achieved
a super high score in an experiment on an Atari game. In the DDQN algorithm, the objective
function is as follows:
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yDDQN
i = rt + γQ

(
s′, arg max

a′
Q
(
s′, a′; θi

)
; θ−

)
(7)

In [33], Ziyu Wang et al. proposed a new neural network structure—the Dueling
Network. The input of the network is the same as the input of the DQN and DDQN
algorithms. However, the output of the Dueling DQN algorithm includes two branches,
namely, the state V-value (scalar) of the state and the dominant A-value (a vector with the
same dimension as the action space) of each action. In the Dueling Network, the Q-value is
designated as

Q(s, a; θ, α, β) = V(s; θ, β)+(
A(s, a; θ, α)− 1

|A|∑a′
A
(
s, a′; θ, α

)) (8)

where θ denotes the parameters of the volume layer, and α and β are the flow parameters
in the Dueling Network. V(s; θ, β) is the state-action value. A(s, a; θ, α) is the action
advantage value. 1

|A| ∑a′ A(s, a′; θ, α) is the average value of the sum of the output values
of the advantage function.

Dueling Double Deep Bidirectional Recurrency Q-Network

The experimental results of Matthew et al. [34] show that adding recurrency to Deep
Q-learning allows the Q-network to better estimate the underlying system state, narrowing
the gap between Q(o, a|θ) and Q(s, a|θ).

Wang et al. [35], by combining the advantages of the Dueling Network and DDQN
algorithm, proposed the Dueling Double Deep Q-network (D3QN) to learn the decision-
making strategy of typical UAVs. In that article, they used D3QN to realize the path
planning of data acquisition in multi-UAV scenarios.

Our experiments show that adding bidirectional recurrency to Deep Q-learning allows
the Q-network to better estimate the underlying system state, narrowing the gap between
Q(o, a|θ) and Q(s, a|θ). In other words, bidirectional recurrent deep Q-networks can better
approximate actual Q-values from the previous state sequence and the subsequent state
sequence of observations, leading to better policies in partially observed environments.
According to Formulas (6)–(8), the loss function used in this paper is as follows.

Since the problem of the adaptive observation of the marine environment is a POMDP
problem, this paper adds the bidirectional recurrent neural network to D3QN algorithm
to train state values. The bidirectional recurrent neural network can enable the intelligent
observation platform to more fully learn the complex information in the marine environ-
ment. Combining the idea of the Dueling Network algorithm, the S value trained by this
network and the dominant value are added as the next action value of the agent, as shown
in Figure 3.

L(θ, α, β) =

E

[
rt + γQ

(
s′, arg max

a′
Q
(
s′, a′; θi

)
; θ−

)
−Q(s, a; θ, α, β)

]
(9)
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Figure 2. Adaptive observation based on D3RQN.

Figure 3. Proposed D3RQN structure with bidirectional recurrency.

3. Design of a Mobile Observation Network for the Marine Environment Based on
Deep Bidirectional Recurrent Reinforcement Learning
3.1. Data Collection and Processing

We train the model to find areas where the temperature difference changes significantly
over time. The data predicted by the numerical model cannot be directly used for training.
To obtain better training results, we need to process the original data. The data obtained
by numerical prediction are irregular point data, while the convolutional neural network
can only process grid structure topology data. We usually use normalization methods for
data preprocessing. The purpose is to normalize the features of each dimension to the same
value interval and eliminate the correlation between different features to obtain the desired
result. RankGauss [36] is a variable processing method, similar to normalization (MinMax)
and standardization (Standardization), both allowing the model to better fit the data. The
effect of using RankGauss will also be better than normalization and standardization.
Through numerical forecasting, we predict 11 sets of data for 5 days.

The observation platform makes observations every six hours, and can observe a total
of 21 points in 5 days. First, we need to interpolate 11 sets of original data to obtain 21 sets
of new data. Then, we use RankGauss to preprocess 21 sets of data to obtain the global
background field. Third, we process 21 sets of data according to the time gradient to obtain
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20 sets of data, and preprocess the time gradient field by the RankGauss method. Figure 4
shows the data processing method, the original data, the time gradient data, and the data
processed by RankGauss. Due to space limitations, this paper show four pieces of data for
each type of processing.
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Figure 4. Data processing.

3.2. State Space and Action Space

To achieve the purpose of sampling in the regional marine environment, the observa-
tion platform needs to obtain at least three pieces of information, i.e., the status information
of the observation platform itself, the relationship between the observation platform and
the environment, and the number of observation platforms sampled. First, the observation
platform needs to confirm the position of the background field where it is. Since the back-
ground field is dynamic, as explained in Section 2.3, the observation platform also needs
to confirm its own background field. We use a set of parameters O = [o1, o2, · · · , o21] to
confirm the background field where the observation platform is located. After confirming
the background field, we then confirm the position (x, y) of the observation platform in
the current background field. It is then necessary to confirm the relationship between the
observation platform and the surrounding environment. By confirming the speed and
direction of the observation platform, we can determine the location of the observation
platform and perform sampling. We use a vector [α, v] to represent the distance and di-
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rection between the current position of the observation platform and the next sampling
point. Deep reinforcement learning to solve sequential decision-making problems generally
requires the action space of the agent to be discrete. The direction angle of the observation
platform is set as a discrete action, and we set ξ = [−45◦,−30◦, −15◦, 0◦, 15◦, 30◦, 45◦]. The
speed is constant, v = 5. Lastly, we use the vectors T = [T1, T2, · · · , T8] to represent the
relationship between the observation platform and the sampling points. According to the
data processing in Section 3.1, we divide the sampling points into eight parts according to
their size, so we use vectors T = [T1, T2, · · · , T8] to represent the sampling quality of the
observation platform.

3.3. Reward Function

The reward function is a signal used to evaluate whether the action taken by the agent
in the environment is good or bad. For the observation platform sampling in the complex
and dynamic marine environment, because we need to evaluate the sampling quality, we
design a sparse reward. When the observation platform reaches a sampling point, it returns
a reward until all sampling is completed, with the goal to maximize all samples.

The design of the reward function in this article involves many factors. The reward
function mainly consists of three parts in the marine environmental information gradient:
observation platform measurement attribute constraints, observation platform obstacle
avoidance constraints, and the collision constraint between observation platforms.

First, we consider the reward function of the time gradient for marine environmen-
tal elements. The background field data are preprocessed according to the temperature
gradient change characteristics of the area to be observed. Section 3.1 introduces the data
preprocessing method. According to the data processing results, the goal is for the observa-
tion platform to collect more effective information. This paper measures the effectiveness
of the observation platform for marine environment observation information collection
by defining observation efficiency. The observation efficiency is represented by the letter
η, which means the extent to which the observation data obtained by the observation
platform in a fixed time can improve the marine environment data assimilation, analysis,
and prediction capabilities. The reward function is as follows:

rgrad =



5 · η η > 3
4 · η 3 ≥ η > 2
3 · η 2 ≥ η > 1
2 · η 1 ≥ η > 0

η 0 ≥ η > −1
0 −1 ≥ η > −2

−1 · η −2 ≥ η > −1
−2 · η η ≥ −2

(10)

Secondly, the measurement attributes of the observation platform mainly include the
cruising range, measurement range, and time interval. The reward function is as follows:

rmeas =

{
−50 tinter 6= 6
−50 ξrange /∈ ξ

(11)

Finally, the obstacle avoidance constraint reward function mainly considers the colli-
sion between an obstacle in the marine environment and the observation platform. The
reward function is as follows:

robst =

{
−50 x > 50 or x < 0 or y > 50
−50 x = y = 1

(12)

In summary, our reward function can be expressed by the following formula:

r = rgrad + rmeas + robst (13)
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4. Experiment and Analysis

In this section, we present the experimental parameter settings and the sampling
results of the observation platform, and discuss the results.

4.1. Experimental Settings

To verify the effectiveness of the proposed method, we designed a barrier environment
and a barrier-free environment, respectively. Single-platform, dual-platform, and five-
platform sampling experiments were carried out in two environments. For each experiment,
the algorithms D3RQN, DRQN, D3QN, and DQN are used.

The parameter settings of the algorithm are shown in Table 1.

Table 1. Main hyperparameter settings of the algorithm.

Hyperparameter Value

minibatch size 64
episodes 10,000

replay memory size 20,000
memory warmup size 200

discount factor 0.99
action repeat 1
learning rate 0.0005

min squared gradient 0.01
initial exploration 1
final exploration 0.1

α 0.005
tau 0.003

To verify the validity of the sampling results, we perform data assimilation on the
sampling results. The data assimilation system parameter settings are shown in Table 2.

Table 2. Parameter settings of the data assimilation system.

Parameter Value

observation area Long:124◦ E–129◦ E;
Lat:16◦ N–21◦ N

resolution ratio 1/10◦

time interval 6 h
experiment days 5 days

experiment season spring; summer; autumn; winter
number of groups 100

4.2. Observation Platform Sampling Results and Analysis

To order to verify the effectiveness of our algorithm, we conducted experiments
in a barrier-free environment and a barrier environment. In each environment, we car-
ried out single-platform, dual-platform and five-platform observation path experiments.
Figures 5–7 show the experimental results for the single platform, dual platforms, and five
platforms, respectively.

Figure 5 shows the comparison of the experimental results of a single observation
platform. In the comparison chart of the average reward function of a single mobile
observation platform, the average reward value of the D3RQN algorithm is better than
that of the other three algorithms. In the barrier-free environment, the D3RQN algorithm
exhibits much exploration fluctuation at the beginning, but in the 300th to 3500th rounds,
the DRQN algorithm is in the lead. When the number of rounds exceeds 4000, the D3RQN
algorithm is in the lead until the end of training. However, the D3QN and DQN algorithms
have low exploration efficiency and are at a disadvantage in the training process. In the
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barrier environment, after more than 1000 training iterations, the average reward of the
D3RQN algorithm is always in the best position of the four algorithms.

(a) barrier-free environments

(b) barrier environments

Figure 5. Comparison of the experimental results of a single observation platform. (a,b) Comparison
of the reward functions of DQN, D3QN, DRQN, and D3RQN running in barrier and barrier-free
environments, respectively.

Figure 6 shows the results of the dual platforms. In the comparison chart showing the
average reward function of the dual mobile observation platform, the D3RQN algorithm
is in the leading position among the four algorithms. In an barrier-free environment, the
DRQN algorithm is superior in the first 1000 rounds of training. However, after more than
1000 rounds, the D3RQN algorithm is superior to the DRQ algorithm until the end of the
training. When the number of rounds exceeds 4000, the D3RQN algorithm is in the lead
until the end of training. The D3QN and DQN algorithms have low exploration efficiency
and are at a disadvantage in the training process. Among them, DQN is always in the most
inferior position. In a barrier environment, the D3RQN algorithm is in the most inferior
state before 1500 rounds. When the number of rounds exceeds 1500, the DRQN and DQN
algorithms succeed, and the D3QN algorithm succeeds for 2500 rounds, maintaining its
advantages until the end of the training.
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(a) barrier-free environments

(b) barrier environments

Figure 6. Comparison of the experimental results of dual observation platforms. (a,b) Comparison
of the reward functions of DQN, D3QN, DRQN, and D3RQN running in barrier and barrier-free
environments, respectively.

Figure 7 shows the comparison of the experimental results for five observation plat-
forms. In the comparison chart showing the average reward function of the five observation
platforms, the D3RQN algorithm is always in a dominant state in both environments. In
an obstacle-free environment, the DRQN algorithm enters into a stable exploratory ob-
servation state for 1500 rounds until the end of the training. With obstacles, the D3RQN
algorithm is in a relatively stable exploratory observation state after 2500 rounds.

Through the comparative analysis of the reward functions of the four algorithms in
two environments, with the increase in the number of observation platforms, the D3RQN
algorithm can maintain a stable exploratory observation state in the four algorithms. The
DQN algorithm is always at the worst observation level. To sum up, the D3RQN algorithm
with a cyclic convolution network can enable the observation platform to effectively observe
the uncertain marine environment and obtain more effective observation information
and data.
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(a) barrier-free environments

(b) barrier environments

Figure 7. Comparison of the experimental results of five observation platforms. (a,b) Comparison
of the reward functions of DQN, DRQN, D3QN, and D3RQN running in barrier and barrier-free
environments, respectively.

4.3. Assimilation Results and Analysis

To verify the influence of the sampling results of the observation platform on the
quality of the forecast initialization, we assimilated the sampling results of the three
algorithms on the three platforms. Figure 8 shows the sampling path of the observation
platform based on the D3RQN algorithm. It can be seen from the figure that the observation
platform can effectively avoid obstacles to sample places with large temperature differences.

We assimilate the environmental information collected by different algorithms in
different environments. The results are shown in Tables 3–6, and Figure 9.

It can be seen from Tables 3–6, and Figure 9 that the RMSE of the assimilation results
after the observation path planning of the mobile ocean observation platform is better than
the RMSE of the background field data. The assimilation results based on the D3RQN
algorithm are better than those of the DRQN, D3QN, and DQN algorithms. It can also
be seen from Tables 3–6, and Figure 9 that the assimilation results of the dual platform
are better than the assimilation results of the single platform, but are not better than
the assimilation results of the five platforms. This result shows that the quality of the
assimilation results will increase with the increase in the number of samples. When the



J. Mar. Sci. Eng. 2023, 11, 208 15 of 18

number of samples increases to a certain level, the quality of the assimilation results will
not increase further.
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Figure 8. Observation platform sampling path.

Table 3. Spring: RMSE comparison of sampling and assimilation results of the observation path
between a single platform and multiple platforms, RMSEraw = 0.21733.

Platform D3RQN DRQN D3QN DQN Random

single 0.17258 0.17409 0.17784 0.17439 0.18681
singleobs 0.16775 0.16895 0.17042 0.17025 0.18360

dual 0.15901 0.15923 0.16750 0.15948 0.18324
dualobs 0.15963 0.16055 0.16236 0.16155 0.18913

f ive 0.16209 0.16264 0.16738 0.16508 0.18398
f iveobs 0.16502 0.16517 0.16860 0.16567 0.18305
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Table 4. Summer: RMSE comparison of sampling and assimilation results of the observation path
between a single platform and multiple platforms, RMSEraw = 0.21733.

Platform D3RQN DRQN D3QN DQN Random

single 0.17980 0.18005 0.18539 0.18201 0.18681
singleobs 0.17327 0.17832 0.17796 0.17851 0.18360

dual 0.16496 0.16558 0.16966 0.17673 0.18324
dualobs 0.16852 0.16889 0.17797 0.17182 0.18913

f ive 0.17289 0.17291 0.17729 0.17367 0.18398
f iveobs 0.16838 0.16950 0.16901 0.17277 0.18305

Table 5. Autumn: RMSE comparison of sampling and assimilation results of the observation path
between a single platform and multiple platforms.

Platform D3RQN DRQN D3QN DQN Random

single 0.17746 0.17928 0.18513 0.17938 0.18681
singleobs 0.17041 0.17151 0.17368 0.17273 0.18360

dual 0.16129 0.16182 0.16273 0.16183 0.18324
dualobs 0.16242 0.16653 0.16904 0.16728 0.18913

f ive 0.16571 0.17023 0.17142 0.17213 0.18398
f iveobs 0.16649 0.16683 0.16790 0.16793 0.18305

Table 6. Winter: RMSE comparison of sampling and assimilation results of the observation path
between a single platform and multiple platforms, RMSEraw = 0.21733.

Platform D3RQN DRQN D3QN DQN Random

single 0.16539 0.16875 0.16774 0.16952 0.18681
singleobs 0.16698 0.17685 0.16928 0.17775 0.18360

dual 0.15142 0.15664 0.17062 0.15804 0.18913
dualobs 0.15636 0.15689 0.16629 0.15815 0.18324

f ive 0.15656 0.15788 0.16744 0.16217 0.18398
f iveobs 0.16341 0.16433 0.17071 0.16482 0.18305
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Figure 9. RMSE comparison chart of different algorithms in four seasons.

5. Conclusions and Future Work

This research proposes a method for planning the observation paths of ocean mobile
observation networks based on improved deep reinforcement learning algorithms. First, for
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the huge marine environment, we establish a partially observable Markov decision model,
and develop a deep reinforcement learning framework for this complex and unknown
environment. Due to the time-varying nature of the background field, the sampling process
of the observation platform is affected by both the previous background field and the
subsequent background field. In this regard, we add the bidirectional convolution network
to the D3QN algorithm, and use the predictive ability of the bidirectional convolution
network to make the observations of the previous state sequence and the subsequent state
sequence close to the actual Q value, so as to improve the selection strategy for agents in
the dynamic environment field. The simulation results show that our method can collect
more marine environmental information than the DQN, D3QN, and DRQN algorithms. In
addition, to improve the analysis accuracy of coupled environment elements and the quality
of forecast initialization, we conducted observation experiments on a single platform, dual
platform, and five platforms, and assimilated the experimental results. The assimilation
results not only show that our observation program can improve the forecast quality, but
also show that when the number of observation platforms reaches a certain number, adding
more observation platforms will not improve the assimilation effect.

There is still much work to do in the future. First, we need to further study the effect of
the proposed method in the continuous action space. Second, in addition to the temperature
of the marine environment, we need to establish if there are other factors that play a role in
improving the quality of marine forecast initialization.
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