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Abstract: It is claimed that oceanic hydrothermal vents (HVs), particularly the shallow water ones,
offer particular advantages to better understand the effects of future climate and other global change
on oceanic biota. Marine hydrothermal vents (HVs) are extreme oceanic environments that are
similar to projected climate changes of the earth system ocean (e.g., changes of circulation patterns,
elevated temperature, low pH, increased turbidity, increased bioavailability of toxic compounds.
Studies on hydrothermal vent organisms may fill knowledge gaps of environmental and evolutionary
adaptations to this extreme oceanic environment. In the present contribution we evaluate whether
hydrothermal vents can be used as natural laboratories for a better understanding of zooplankton
ecology under a global change scenario.
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1. Introduction

Zooplankton provides an important functional component of trophic webs and bio-
geochemical cycling [1]. Zooplankton mediates energy and matter translocation between
the pelagic and benthic realm through diurnal migration and passive sinking of particulate
organic matter [2]. The spatial distribution and abundance of zooplankton are affected
by the transport of water masses as well as by different physical, chemical and biological
effects of global change. Global change affects the earth systems including land, oceans,
atmosphere, the poles, biogeochemical cycles, biosphere including human populations and
society. Global changes of the last 2 centennials caused the change of climate, atmospheric
ozone depletion, desertification on land, acidification of aqueous environments including
the oceans, pollution in general, species extinctions and distributional range changes, and
other large-scale biotic shifts (UN—Oceans, URL). In the oceans, global climate forcing fac-
tors provide changes at large spatial scale and regional hydrodynamic circulation patterns
across different time scales. In addition, factors such as movement of tectonic plates, vol-
canic activity causing tsunamis, and biological processes including anthropogenic activities
were linked to changed scenarios of the earth system [3–7].

Hydrothermal vents (HVs) caused by suboceanic volcanic activity have several char-
acteristics in common with characteristics summarized as global change (e.g., elevated CO2
and temperature, low oxygen and pH, elevated trace metal availability, sulfate compounds
and turbidity). Ever increased levels of CO2 and other gases forming acids in the aqueous
phase provide ocean acidification with pH reductions in oceanic waters with consequences
on oceanic biota [8]. Decrease pH and Eh levels characteristic for CO2 vents increases the
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bioavailability and dissolution and/or desorption of metalloids and trace metals [9]. This
keeps trace elements (Fe, Cd, Co, Mn, Cu, V and Cr) in solution and bioavailable.

HVs areas are characterized by turbid waters containing elevated trace metal contents.
This is comparable to coastal waters with intertidal areas or coral fringe reefs that are at
risk by above factors due to anthropogenic activity such as mining, industrial emissions,
construction work and natural phenomena, such as heavy rain flushing, landslides which
increasingly threaten the coastal waters of a future ocean.

It was suggested to use HVs as templates or natural laboratories that allow research on
marine organisms in the highly adverse physicochemical conditions of HVs compared to
areas without HVs. HV biota could provide insights in the evolutionary, ecological, genetic,
behavioral, physiological and molecular adaptations to extreme marine environments that
could be compared with their next phylogenetic relatives away from HV sites [10].

The effects of HVs on marine zooplankton were rarely studied [11]. In the few reports
on zooplankton, however, oceanic venting areas have favorable effects on the composition
of primary producers (phytoplankton) and the composition of zooplankton that are related
to the distribution and abundances of higher trophic levels [12,13]. For their ease of access
and allowing revisits, experimental approaches in a cost-saving mode, and linking chemo-
and photosynthetic energy pathways, particularly shallow HVs are expected to provide
suitable natural laboratories. This holds for studies of environmental extremes, biotic
adaptations, and allowing the prediction of responses to a future ocean and its living and
non-living resources [10].

We question here whether HVs can provide templates for a ‘Future ocean scenario’ for
zooplankton as well. The goals of our contribution are to: (1) survey existing knowledge
about zooplankton at HVs; (2) relate this to global change phenomena; (3) evaluate whether
the ‘HVs as natural laboratory for global change’ concept is suitable for questions related
to zooplankton ecology.

2. Zooplankton Research near Hydrothermal Vents

According to [14] studying the shallow HVs at Kueishan Island, Taiwan, taxon diver-
sity and densities of mesozooplankton were increased (for abundance three times higher)
at the HV side. This occurred to most zooplankton groups, among others to dinoflagellates,
appendicularians, pteropods and copepods (providing the highest number of 34 species).
It was reported earlier that HVs increased the assemblage composition and biomass of
zooplankton especially at shallow depths in Matupi Harbor (Papua New Guinea) [15,16].
Skebo et al. [13] link the high abundance of copepods in waters adjacent to hydrothermal
vents with patchy distributions caused by the avoidance of harsh environments close to
the HVs and by the avoidance of jellyfish by swarming behavior. This positive effect may
also be caused by hydrothermal fluids that enrich nutrients for algae and increase primary
productivity [15] from chemosynthesis and photosynthesis at shallow depths [16]. Such
elevated primary productivity would then support elevated densities of zooplankton in
HV areas.

Cage experiments resulted in high mortality (>95%) of planktonic copepods that were
translocated to HVs at depths of 1–13 m above the seafloor next to HVs of KST island [17].
The mortality value was three times higher than that at distant control sites which were
not affected by HV plumes (with 20–30% mortality). There are several reports on the
trophic position of HV zooplankton. Hung et al. [18] explained the relatively low C/N
ratios of the precipitating particulate organic matter from the HV field of Kueishan Island
with a high zooplankton contribution. A food web study by Wu et al. [19] applying δ13C
and δ15N analysis revealed that the water-column-derived fraction of dead zooplankton
provides important energy supplements to carnivores and scavengers like the HV crab
Xenograpsus testudinatus. Further isotopic niche analysis through this study demonstrated
that the contribution of 200 dead zooplankter as a food source to vent crabs living in the
center and periphery varied from >34% to ≤18%. The results of Chang et al. [2] based on
isotope analyses showed that photosynthetic and chemosynthetic producers contributed
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nearly equally to carbon fixation that is fueling the HV system at Kueishantao. In their
study, the authors found both zooplankton and HV crabs acted as important trophic
mediators between water column and sea bottom. The results of another isotope study by
Wang et al. [20] partially contradicted the above findings in that trophic provisions at the
shallow-water HVs of Kueishan Island were mainly provided by phototrophic production
(microalgal contribution: 26–54%), then by zooplankton (19–34%) and to a minor extend by
chemosynthetic production (14–26%).

3. Variable Hydrographic Effects of HV Effluent Temperature, pH and Chemistry
Affecting Zooplankton

The sea floor of HV fields provides a rather heterogeneous environment. HV fluids
can reach temperatures of about 116 ◦C in shallow vents like at Kueishan Island [21] with
demarcated thermoclines. Vent fluids and surrounding waters with contrasting chemical
and physical characteristics often show strong gradients. HV effluents affect the chemistry
to a larger extent at the surface than at the bottom, providing differences of physical and
chemical characteristics along the water column axis. Observations that zooplankter at the
surface are killed by HV effluents and produce “marine snow” composed of sedimenting
plankton carcasses and diverse microbiota including HV bacteria [22].

HV fluid emissions are often unstable and sudden outbreaks of HVs vent fluids are
commonly providing vents with large hydrological variability [23]. It is expected that
HV biota developed adaptations to tolerate such fluctuating environmental conditions,
particularly if they are zooplankter drifting in the water column above HVs. This might
provide a limitation to our expectation to use HVs as examples for the more gradual
alterations during global changes for decades to come. Variations of other environmentally
effective parameters within HV systems are expected as well.

4. Conclusions

We conclude that HVs are particularly useful as “natural laboratories” to approach
consequences of global change and global climate change for resident biota that had
sufficient time to evolutionary and individually adapt to such extreme environments.
However, there is no evidence for an endemic zooplankton assemblage as yet, also not
from the better investigated shallow water HV situations. The scarce information available
indicates that zooplankton is transported to HV areas and is negatively affected by toxic
HV plumes and may die there after such an abrupt environmental transition. This way
they provide a high input of allochthonous biomass to the respective HV system. There is a
substantial knowledge gap about many issues regarding the fate of zooplankton in HVs as
outlined below.

Rather generally, the effects of multiple stressors are difficult to disentangle. This holds
for examples for basic phenomena related to simultaneously acidified and warming oceans.
The interaction of just these two stressors may differ with taxon, populations, gender
and ontogenetic stages. Organisms associated with HVs were shown to have adaptations
regarding their reproduction, morphology and behavior. HV biota were also shown to
have evolved molecular adaptations to an extreme environment and specialized receptors
to find or avoid HVs and their effluents in order to aggregate there or to avoid the HV
environment altogether. Such adaptations need to be studied also with zooplankton at HVs
since there is a particular knowledge gap here.

The ease of access to shallow-water HV systems -offers scientists the rare opportunity
to design meaningful in situ and laboratory experiments. Hydrographic regime changes of
the physical and chemical background of zooplankton can instantly be monitored. Fast
responses are more difficult to capture in HVs of the deep sea.

The following issues among others related to zooplankton in HV areas are of particular
interest: (1) Are there any endemic zooplankton assemblages in HVs? (2) Is zooplankton
aggregating or trapped in a toxic environment? (3) Are there taxon-specific differences
within patchy distributions? (4) Are the measured higher zooplankton densities near vents
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caused by dead zooplankton that settles at HV sites? (5) How are the ratios of dead versus
alive zooplankton? (5) What are the ultimate mechanisms of toxicity causing mortality
among zooplankton at HVs? (6) What are particular mechanisms or adaptations to avoid
toxicity effects? (7) To what extent are dead versus alive zooplankter vertically segregated
in the water column or are they advectively transported?
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