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Abstract: To improve the navigation safety of inland river ships and enrich the methods of environ-
mental perception, this paper studies the recognition and depth estimation of inland river ships based
on binocular stereo vision (BSV). In the stage of ship recognition, considering the computational
pressure brought by the huge network parameters of the classic YOLOv4 model, the MobileNetV1
network was proposed as the feature extraction module of the YOLOv4 model. The results indicate
that the mAP value of the MobileNetV1-YOLOv4 model reaches 89.25%, the weight size of the back-
bone network was only 47.6 M, which greatly reduced the amount of computation while ensuring the
recognition accuracy. In the stage of depth estimation, this paper proposes a feature point detection
and matching algorithm based on the ORB algorithm at sub-pixel level, that is, firstly, the FSRCNN
algorithm was used to perform super-resolution reconstruction of the original image, to further
increase the density of image feature points and detection accuracy, which was more conducive to
the calculation of the image parallax value. The ships’ depth estimation results indicate that when
the distance to the target is about 300 m, the depth estimation error is less than 3%, which meets the
depth estimation needs of inland ships. The ship target recognition and depth estimation technology
based on BSV proposed in this paper makes up for the shortcomings of the existing environmental
perception methods, improves the navigation safety of ships to a certain extent, and greatly promotes
the development of intelligent ships in the future.

Keywords: navigation safety; environmental perception; binocular stereo vision; MobileNetV1-YOLOv4;
FSRCNN; ORB

1. Introduction

With the deepening of economic globalization in the 21st century, water transportation,
as an important mode of transportation; it carries nearly 90% of the freight volume of
global bulk trade, which greatly promotes the development of the world and regional
economies [1]. At present, our country’s shipping industry has also made significant
progress, and the number of marine (especially inland river) ships is increasing yearly,
which not only promotes the national economic development, but also leads to the rising
trend of ship traffic accidents. Therefore, it is a key issue to improve the safety of ship
navigation in ports or waters with high and complex traffic density [2,3]. Vessel Traffic
Service (VTS) [4] can effectively supervise the navigation situation of ships and reduce
the occurrence of marine traffic accidents to a certain extent. However, the inland river
environment is complex and changeable, and the density of ships in the waterway is
high, which greatly limits the role of VTS. The key to the safe navigation of ships lies in
the effective perception of the surrounding navigation environment, and the drivers can
make timely and correct decisions based on the obtained information. Ship Automatic
Identification System (AIS) [5] is currently the primary environmental perception means
in the shipping industry. However, because some ships do not keep the AIS in normal
working state as required, and do not enter the accurate information of the ship in the
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equipment according to the regulations, this affects the navigation safety of ships to a
certain extent. Therefore, how to make up for the deficiency of the existing perception
means and further improve the maritime supervision capability has become an important
issue in the field of ship safety.

At present, intelligent shipping [6,7] has gradually become a new development trend.
Countries around the world are conducting research on the direction of intelligent water
transportation, using various sensors, communication equipment, and other methods to
intelligently perceive and receive information about ship data, navigation environment,
ports, and wharves. Then big data, machine learning, image processing, pattern recognition
and other methods are adopted for effective information processing to conduct analysis,
evaluation and decision-making, and to improve the safety of ship navigation [8,9]. As an
interdisciplinary subject, computer vision (CV) [10] further promoted the development of
intelligent shipping.

As a branch of CV, binocular stereo vision (BSV) [11] technology is gradually becom-
ing mature, which is mainly composed of binocular camera calibration [12], image stereo
matching [13], and depth calculation. By simulating human eyes, the two cameras shoot
the same target scene at the same time and directly process the surrounding environment
information, and then realize the recognition and distance measurement of the target in
the three-dimensional scene by the principle of triangulation [14]. The technology has a
simple structure, high flexibility and reliability, and is widely used in 3D image reconstruc-
tion [15], robot navigation [16], and quality inspection of industrial products [17]. The
University of Washington and Microsoft installed BSV technology on the Mars Reconnais-
sance Orbiter [11]. By taking images of celestial bodies at different positions and using
coordinate transformation to restore the three-dimensional coordinates of space points,
a relatively accurate celestial landscape can be obtained. Ma [18] combined UAV with
BSV perception technology to build an automatic detection system for transmission lines,
which realized automatic real-time detection of transmission line components with good
robustness and accuracy. Zhang [19] established a target distance measurement model
based on deep learning and BSV, obtained the internal and external parameters of the
camera through calibration, used the Faster R-CNN algorithm to identify the target, and
brought the obtained feature points into the BSV model, then obtained the depth informa-
tion of the target object. However, this model only realizes the recognition and ranging
of a single target, and the applicability is weak. Ding [20] proposed a reliable and stable
moving target localization method based on BSV. First, the O-DHS algorithm was used
to separate the recognized target from the complex background, and the S-DM algorithm
was used to perform depth analysis on the extracted feature points, finally calculated
the distance and three-dimensional information through coordinate transformation. This
method has high positioning accuracy and recognition accuracy, but the algorithm takes
a long time to execute, and the effect is unsatisfactory in complex environments. Based
on the principle of BSV, Li [21] established a non-contact displacement measurement sys-
tem, which uses template matching to extract the image coordinates of the measurement
points, and recovers its spatial position information through Euclidean 3D reconstruction.
This greatly improved the practicability of the measurement system, but the algorithm is
sensitive to the size of the template matching, which affects the calculation of the position
information to a certain extent. Liu [22] focused on the camera calibration of BSV and
proposed an online calibration method based on dual parallel cylindrical targets and linear
laser projectors. This method does not require feature points or contour information of
the target image, and the camera calibration process can be completed by obtaining the
laser strip of the target image, but the algorithm has a high computational cost and the
universality is weak. Reference [23] proposed a high-speed stereo matching algorithm
suitable for ultra-high-resolution binocular images, which uses small-sized images to match
close-range targets, and large-sized images to match distant targets. The disparity map
of left and right images was obtained by combining the results of hierarchical matching,
the matching cost is calculated by the image pyramid strategy, which greatly shortens
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the time consumption in the matching process, however its matching accuracy must be
further improved.

In order to further improve the safety of ship navigation and overcome the short-
comings of the existing navigation environment perception methods, based on the above
research, this paper applies BSV technology to the recognition and depth estimation of
inland ships. By loading the ships with “eyes”, the technology perceives the navigation
environment with visual information, and enables the ships to make timely and effec-
tive decisions through information interaction, so as to the purpose of safe navigation of
ships. This work is primarily divided into two stages: ship recognition and depth estima-
tion. In the ship target recognition stage, based on the classic YOLOv4 network model,
considering the computational pressure brought by the huge network parameters of the
model, a lightweight network is proposed to complete the recognition task, that is, the
MobileNetV1 network is used to replace the feature extraction network CSPDarknet53 of
the YOLOv4 model. Then this paper establishes the MobileNetV1-YOLOv4 ship target
recognition model which greatly reduces the amount of computation while ensuring the
recognition accuracy. In the stage of depth estimation, the BSV depth estimation model is
first established, and then the FSRCNN network is used to reconstruct the original image
pairs with super-resolution to further enhance the ship feature information, then the ORB
algorithm is adopted to detect ship feature at the sub-pixel level, the parallax value between
the image pairs is obtained by stereo feature match, finally the depth information of the
ship is obtained through the principle of triangulation and coordinate transformation.

2. BSV Depth Estimation Model

The BSV depth estimation technology perceives the depth of the surrounding environ-
ment through an anthropomorphic method, and obtains the three-dimensional information
of the target in the real world. According to the principle of triangulation, two parallel
and coplanar cameras are used to capture the same scene from different angles, and the
depth information is recovered by calculating the parallax value between the image pairs.
As shown in Figure 1, the optical center positions of the left and right cameras are Ol and
Or respectively; Ol − XlYlZl and Or − XrYrZr are the left and right camera coordinate sys-
tems; b is the horizontal distance between the optical centers, called the baseline distance;
The focal length of the camera is f ; For the three-dimensional space point P(X, Y, Z), its
projection point coordinates in the imaging coordinate system of the left and right cameras
are p(xl , yl) and p(xr, yr) respectively.

Figure 1. The stereo model of BSV.
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Project the above stereo model to the XOZ plane, as shown in Figure 2.

Figure 2. Projection plane of BSV model.

According to the triangle similarity principle:
z
f = x

xl
z
f = x−b

xr
z
f = y

yl
= y

yr

(1)

Then, we can get: 
z = f×b

xl−xr
= f×b

d
x = xl×z

f

f = yl×z
f or f = yr×z

f

(2)

In formula (2), xl − xr is called parallax d, which represents the offset of point P at the
projection point corresponding to the left and right camera planes; Z is the depth value of
point P; According to formula (2), when the parameters f and b are determined, the depth
Z of the target point can be obtained only by solving the difference between the x or y
coordinates of the target point in the pixel coordinate system of the left and right cameras.

Therefore, in order to obtain the depth information of the target point P, it is necessary
to calculate the projection point coordinates p(xl , yl) and p(xr, yr) of the point on the left
and right camera imaging planes, and the three-dimensional information of the point can
be obtained by converting between coordinate systems.

3. Camera Calibration Model

In the BSV ranging technology, in order to obtain the three-dimensional information
of the target, the geometric model of the camera imaging must be established, that is, the
internal and external parameters of the camera. The process of solving the parameters
is called camera calibration [24], and the accuracy and stability of the calibration results
will also have a certain impact on the ranging results. The imaging process of the camera
adopts the pinhole imaging model [12], the principle of which is portrayed in Figure 3.
When shooting with a camera, the light reflected by the object is projected on the imaging
plane through the camera lens, indicating that the points in the three-dimensional space
are projected on the two-dimensional image through coordinate transformation. This
process primarily involves the transformation between four coordinate systems: World
Coordinate System, Camera Coordinate System, Image Coordinate System, and Pixel
Coordinate System.
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Figure 3. Camera imaging model.

According to the principle of pinhole imaging, in Figure 3, assuming a point
Pw(Xw, Yw, Zw) in the three-dimensional world coordinate system, its projection coordinate
in the camera coordinate system is Pc(Xc, Yc, Zc), the coordinate in the image coordinate
system is P(x, y), and the coordinate in the pixel coordinate system is P(u, v), Oc is the
position of the optical center of the cameras, and OcZc is the optical axis of the cameras.
Then the relationship between Pw(Xw, Yw, Zw) and the pixel coordinate P(u, v) is:

Zc

 u
v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 1


 f 0 0 0

0 f 0 0
0 0 f 0

( R T
→
0 1

)
Xw
Yw
Zw
1


=

 fx 0 u0 0
0 fy v0 0
0 0 1 0

( R T
→
0 1

)
Xw
Yw
Zw
1


(3)

Then K =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

, which is called the internal parameter matrix of the

cameras; the above formula can be simplified to:

Zc

 u
v
1

 = K

(
R T
→
0 1

)
Xw
Yw
Zw
1

 (4)

In formulas (3) and (4), fx = f
dx

, fy = f
dy

, dx, and dy respectively represent the physical
size of each pixel in the x and y directions of the image plane, u0 and v0 represent the
coordinates of the image center point, R is the rotation matrix, and T is the translation

vector; the two constitute the external parameter matrix

(
R T
→
0 1

)
of the camera, and the

external parameter and internal parameter matrix of the camera could be obtained by the
camera calibration.
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4. MobileNetV1-YOLOv4 Model
4.1. YOLOv4 Model

YOLO (you only look once) is a one-stage target detection algorithm proposed by
Redmon et al. in 2016 [25]. This algorithm converts the classification problem of traditional
target detection into a regression problem, then the position and probability of the target
can be predicted through the input image, and the end-to-end target detection algorithm
is realized. This paper builds a ship target recognition model based on the YOLOv4 [26]
model, whose network structure is mainly composed of backbone, neck, and head, as
portrayed in Figure 4.

Figure 4. YOLOv4 network structure.

The YOLOv4 network adopts CSPDarknet53 as the backbone network for feature
extraction. Additionally, it combines the cross stage partial network (CSP) [27] and residual
network [28], which effectively solves the problem of duplication of gradient informa-
tion in the Darknet53 network, and can extract higher-level feature information while
reducing the model parameters, the feature extraction capability of backbone network is
further enhanced.

The neck module is primarily composed of Spatial Pyramid (SPP) [29] and Path
Aggregation Network (PANet) [30]. SPP adopts three pooling layers of different scales:
5× 5, 9× 9, and 13× 13. After max-pooled of the input features, the extent of the receptive
field can be greatly increased, thereby eliminating the effects of inconsistencies in the scale
of the input image and producing a fixed-length output. The PANet network is used as
a feature fusion module, which adds a bottom-up path based on the Feature Pyramid
Network (FPN) to improve the model’s ability to extract features at different levels. Finally,
the head module is used to detect the target and output feature maps of three different
sizes: 13× 13, 26× 26, and 52× 52.

4.2. MobileNetV1 Model

MobileNet [31] is an efficient and lightweight network specially proposed for mobile
and embedded devices. Based on the depthwise separable convolution method, it will
decompose the standard convolution into depth wise convolution and the point convolution
with the convolution kernel size of 1× 1, the depth convolution convolves each channel of
the input image, while the point convolution is used to combine the channel convolution
output. This convolution method can effectively reduce the amount of computation and
reduce the scale of the model. The flow of standard convolution and depthwise separable
convolution is portrayed in Figure 5.
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Figure 5. Standard convolution and depthwise separable convolution.

Suppose that the size of the input image is Dk × Dk, the input channel is M, the
number of convolution kernels is N, and the size of the convolution kernel is DF × DF,
then the output feature map size is Dc × Dc, and the output channel is N.

In the standard convolution operation, the number of parameters to be calculated is:

params1 = DF × DF ×M× N (5)

The calculation of the parameters of the depthwise separable convolution is divided
into two parts; one part is the depth convolution parameter, and the other part is the point
convolution parameter, where the size of the point convolution kernel is 1× 1. Therefore,
the number of parameters that need to be calculated is:

params2 = DF × DF ×M + M× N (6)

Then, the ratio of the two is:

params2
params1

=
DF × DF ×M + M× N

DF × DF ×M× N
=

1
N

+
1

D2
F

(7)

According to Equation (7), the number of network parameters can be reduced to
a certain extent by setting convolution kernels with different sizes. The MobileNetv1
network is based on the depth-wise separable convolution module, as indicated in Figure 6.
A convolution kernel of size 3× 3 is used to perform depth-wise convolution and extract
feature information. A BN layer and a ReLU layer are connected between the depth-wise
convolution and the point convolution. After the point convolution, the feature information
is output through a BN layer and a ReLU layer, and the number of parameters is relatively
reduced by eight to nine times, and the convolution effect is equivalent to that of the
standard convolution. Reference [31] presents the basic architecture of the MobileNetv1
network, which has 28 layers. The first layer is standard convolution with the size of 3× 3,
then 13 depthwise separable convolution modules are built. Before the fully connected
layer, an average pooling layer is used to reduce the spatial resolution to 1, and finally the
softmax layer is used to output the probability of each class that needs to be identified.
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Figure 6. Depthwise separable convolution module.

4.3. MobileNetV1-YOLOv4 Model Structure

Considering that the classical YOLOv4 network structure is too large, and the number
of parameters calculated is also very large, the trained network model has a large scale
and is not suitable for target detection on devices with insufficient computing power and
memory. In this paper, the backbone network Darknet53 is replaced by MobileNetV1; that
is, the three different scale feature layers extracted by MobileNetv1 are connected directly
with the SPP and PANet modules of the classical YOLOv4 model to build the MobilenetV1-
YOLOv4 target detection model, which greatly reduces the number of parameters and
computation of the model. The MobilenetV1-YOLOv4 network structure is portrayed in
Figure 7.
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Figure 7. Mobilenetv1-YOLOv4 model structure.

5. Ship Feature Detection and Matching
5.1. FSRCNN Network

The FSRCNN [32] network model consists of five parts: feature extraction, reduction,
mapping, expanding, and deconvolution, of which the first four parts are the convolution
layer, and the last part is the deconvolution layer. The specific operation process of the
network is portrayed in Figure 8.

The FSRCNN network directly uses the original low-resolution image as input and
uses a parametric rectified linear unit (PReLU) as the activation function. PReLU is por-
trayed in Equation (8). The FSRCNN network firstly adopts d convolution kernels of size
3× 3 for feature extraction, then uses s convolution kernels of size 1× 1 to shrink the
extracted features, then uses m convolutions of size 3× 3 for concatenation as the map-
ping layer, and d convolution kernel of size 1× 1 is used for expansion, and at the end
of the network, a convolution kernel of size 9× 9 is used for deconvolution to obtain a
high-resolution image.

f (xi) =

{
xi, xi > 0
aixi, xi ≤ 0

(8)
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Figure 8. FSRCNN model operation.

The mean square error is adopted as the loss function during training of the FSRCNN
network, as portrayed in Equation (9):

loss = min
θ

1
n∑n

i=1

∣∣∣∣∣∣F(Yi
s ; θ)− Xi

∣∣∣|22 (9)

where, Yi
s and Xi are the i-th pair of super-resolution images and low-resolution images in

the training data, respectively. F(Yi
s ; θ) is the network output, and θ is the hyperparameter

of the network.

5.2. ORB Algorithm

The ORB (Oriented Fast and Rotated BRIEF) [33] algorithm could be used to quickly
create feature vectors for key feature points of the image, thereby identifying the corre-
sponding target in the image. Its primary feature is that the detection speed is fast, and it
is not restricted by noise and image rotation transformation. The algorithm is primarily
divided into three steps:

5.2.1. Feature Points Extraction

The ORB algorithm firstly adopts the FAST (Features from Accelerated Segment
Test) [34] algorithm to find the significant feature points in the image. Its primary idea is
that if a pixel in the image differs greatly from enough pixels in its neighborhood area, the
pixel may be feature points. The specific operations of the algorithm are as follows:

Select a certain pixel point P in the image to be detected, as portrayed in Figure 9. The
pixel value of the pixel point is IP, and then a circle is determined with P as the center and a
radius of 3. At this time, there are 16 pixels on the determined circle, which are respectively
expressed as: P1, P2, P3, . . . , P16.

a. Determine a threshold: t
b. Calculate the difference between all pixel values on the determined circle and the

pixel value of point P. If there are N consecutive points that satisfy Equation (10),
then this point could be taken as a candidate point, where Ix represents a certain point
of 16 pixels on the circle, according to experience, generally set N = 12. Generally,
in order to reduce the amount of calculation and speed up the efficiency of feature
points search, the pixel points 1, 9, 5, and 13 are detected for each pixel point. If at
least three of the four points satisfy the Formula (10), then the point is a candidate
detection point. {

Ix − Ip > t
Ix − Ip < −t

(10)
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Figure 9. FAST feature point detection.

After candidate point detection, multiple feature points are generally detected, and
these feature points are likely to be adjacent to each other. To solve this problem, maximum
value suppression can be used to delete redundant candidate points.

5.2.2. Build BRIEF Feature Descriptors

The ORB algorithm adopts BRIEF (binary robust independent elementary features) [35]
to create binary descriptors for the detected key feature points, whose description feature
vectors only contain 0 and 1, thereby speeding up the establishment of feature descriptors.
The specific steps are as follows:

a. In order to further reduce the sensitivity of feature points to noise, Gaussian filtering
is first performed on the detected image.

b. BRIEF takes the candidate feature point P as the center point, selects a region with
size S× S, randomly selects two points Px and Py in this region, then compares the
pixel sizes of the two points, and performs the following assignments:

τ(p; x, y) =
{

1, px < py
0, px ≥ py

(11)

where, px and py are the pixel values of random points x(u1, v1) and y(u2, v2) in the
region, respectively.

c. Randomly select n pixel pairs in the region S× S, and binary assignment is performed
by the formula (12). This encoding process is the description of the feature points in
the image, that is, the feature descriptor. The value of n is usually 128, 258, or 512.
while the image features can be described by n-bit binary vectors, namely:

fn(p) := ∑
1≤i≤n

2i−1τ(p; xi, yi) (12)

The ORB algorithm has the characteristic of rotation invariance, and adopts the main
direction of the key feature points to rotate the Brief descriptor.

5.2.3. Match the Feature Points

Calculate the Hamming distance between the feature descriptors in the image pair;
that is, calculate the similarity between the feature points. If it is less than the given
threshold, the two feature points are matched.

6. Experiments and Analysis
6.1. Experiments Environment and Equipment

The experiment was performed on the Windows 10 system, with i7-11800H 2.30 GHz
processor, the GPU was NVIDIA GeForce RTX3060Ti, and the experimental software used
Matlab2021b, pycharm2018.3.7, TensorFlow deep learning framework, and OpenCV library.
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Among them, Matlab2021b is mainly used to calibrate the binocular camera, and then
obtain the corresponding internal and external parameter matrices. And others are used
for target recognition, feature point detection, and matching and ranging tasks.

The experimental site is the Nan’anzui Park in Wuhan City, Hubei Province, as indi-
cated in Figure 10a. The ship image data was collected by the Huaxia industrial gun-type
camera, and the camera parameters are portrayed in Table 1. The horizontal rotation and
pitch angle could be adjusted through the camera bottom holder, and the adjustable range
of horizontal distance between the binocular cameras is [0.3 m, 1.5 m], as indicated in
Figure 10b.

Figure 10. Experiments site (a) and equipment (b).

Table 1. Camera Parameters.

Parameter Information

Sensor type 1/2.8′ ′ Progressive Scan CMOS
Electronic shutter DC Drive

Focal length 5.5–180mm
Aperture F1.5–F4.0

Horizontal field of view 2.3–60.5◦

Video compression standard H.265/H.264/MJPEG
Main stream resolution 50 HZ:25 fps (1920 × 1080, 1280 × 960, 1280 × 720)

Interface type NIC interface

6.2. Camera Calibration Analysis

Camera calibration is the basic work of BSV ranging technology, and the precision of
the calibration results is closely related to the ranging effect. In the process of equipment
construction, the structural parameters of the camera, the environment and other factors
have a certain impact on the calibration results [36]. In the experiment, the horizontal
distance between the cameras was set to 50 cm, and the camera was kept level with the
river surface. In order to increase the flexibility and operability of the experiment, this
paper adopts the calibration method of Zhang [37] for camera calibration experiments. This
calibration method is integrated into the MATLAB toolbox Stereo Camera Calibration and
is combined with the internal parameter model and distortion model proposed by Heikkil
and Silven [38]. It is a commonly used camera calibration method with high precision
at present.

In the experiment, a black-and-white checkerboard calibration board of size 16× 9
was first made, with each grid was 60 mm. The calibration board was photographed from
different angles with a binocular camera, 30 sets of calibration board images were taken,
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and 18 sets of images were selected after screening. The calibration results are portrayed in
Table 2.

Table 2. Camera calibration results.

Parameter Left Camera Right Camera

Internal parameter matrix
1292 0 611

0 1294 375
0 0 1

 1286 0 643
0 1289 368
0 0 1


Extrinsic parameter matrix R =

 1 0.0161 −0.0033
−0.0161 1 0.0109
0.0033 −0.0109 1

 T = [−498 3.949 − 2.898]

Distortion coefficient matrix [−0.299 0.164 0 0 0] [−0.281 0.079 0 0 0]

In Table 2, it can be observed from the internal parameter matrix that the focal length of
camera is approximately the same, and the rotation matrix is similar to the identity matrix,
indicating that the two cameras are essentially in a parallel state. The reprojection error of
the camera is indicated in Figure 11. The maximum calibration error is 0.40 pixels, and the
average error is 0.24 pixels, both of which are less than 1 pixel, reaching the standard for
experimental use [36]. The obtained parameters can be used for stereo correction processing
of the images.

Figure 11. Reprojection error of camera calibration.

6.3. Ship Target Recognition Analysis
6.3.1. Ship Images Collection and Labeling

In the experiment, a total of 2000 images of inland river ships were collected by
binocular stereo camera with a resolution of 1280× 720, including container ship, passenger
ship, and ore carrier. Before the ship image is input into MobileV1-YOLOv4 network, certain
annotation operations need to be performed on the image. In this paper, the LabelImg tool
is used to label the ship target, and the annotation results include the position information
of the ship target box, that is, the coordinate value of the target, category information, etc.
Part of the ship image data and the annotation process are portrayed in Figure 12.
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Figure 12. Ship image and annotation process.

6.3.2. Model Evaluation Index

The evaluation index [26] of target detection in deep learning is the basis to measure the
quality of detection results. In this paper, the precision of the detection results (precision),
the recall rate (recall), the category evaluation accuracy rate mAP (mean average precision)
and F1-score are comprehensively considered. The mathematical expressions of each index
are portrayed in Equations (13)–(16):

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

mAP =
1

classes

classes

∑
i=1

1∫
0

P(R)d(R) (15)
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F1 =
2

1
Precision + 1

Recall
= 2· Precision·Recall

Precision + Recall
(16)

where TP (True Positives) represents the number of positive samples detected as positive
samples; FN (False Negatives) represents the number of positive samples detected as
negative samples; FP (False Positives) represents the number of negative samples detected
as positive samples, mAP represents the average area under the curve of multiple samples,
which is used as a measure of detection accuracy in target detection. classes is the detection
category, where classes = 3, F1 represents the summed average of precision and recall.

6.3.3. Ship Target Recognition

In the part of target recognition, the K-means algorithm is firstly adopted to obtain
the prior anchor boxes, and each scale generates three anchor boxes with different sizes,
therefore 9 anchor boxes are generated here, and the size of each anchor box is provided in
Table 3.

Table 3. The anchor boxes of MobileV1-YOLOv4.

(17, 6) (18, 8) (19, 12)
(28, 10) (29, 14) (51, 9)
(44, 16) (71, 19) (118, 27)

In this paper, considering comprehensively the shooting target scenes of diversity,
firstly, the Mosaic technology is adopted to preprocess the ship images through randomly
cropping and stitching the collected ship images from multiple angles, which further
enriches the data samples. In the experiment, the data set is randomly divided into training
set and test set according to the ratio of 9:1. In order to verify the effectiveness of the
improved YOLOv4 algorithm, the classic YOLOv4 algorithm is used for comparative
experiments. Considering the influence of the hyperparameters of the neural network on
the overall performance of the model, according to the previous experience, this paper
continuously fine-tunes the hyperparameters of the model, and after many experiments,
the key parameters of the model are set as follows: learning_rate = 0.001, batch_size = 4,
optimizer = SGD, epoch = 300. The loss curve trained by the MobileV1-YOLOv4 network
is portrayed in Figure 13. It can be observed that after 300 epochs of training, about 4.8 h,
the loss value decreases continuously and finally converged to 0.1, and a better training
model is obtained.

Figure 13. The loss curve trained of MobileV1-YOLOv4 model.
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The test set data is input into the trained model, and the model recognition results are
portrayed in Figure 14. The Mobilv1-yolov4 model can accurately recognize different types
of ship targets with high accuracy.

Figure 14. The ship recognition of MobileV1-YOLOv4 model.

In the quantitative evaluation stage of model performance, in order to better com-
pare the advantages and disadvantages of the two models, both are performed on the
Python platform, and the key parameters of the model are set as: learning_rate = 0.001,
batch_size = 4, optimizer = SGD, epoch = 300. The six indicators including Precision,
Recall, mAP, FPS, and Backbone_weights are used for evaluation and analysis. The experi-
mental comparison results of the two models are portrayed in Table 4.

Table 4. Comparison of different models.

Model Classes Input_size Score_threhold Precision/% Recall/% mAP/% Backbone_weight/M FPS F1-Score

YOLOv4
Ore carrier

416 × 416 0.5
91.23 86.21

90.70 244 26.11
0.89

Container
ship 100.00 100.00 1

Passenger
ship 87.10 75.00 0.81

MobilevV1-
YOLOv4

Ore carrier
416 × 416 0.5

87.95 84.91
89.25 47.6 66.23

0.86
Container

Ship 100.00 100.00 1

Passenger
ship 89.29 69.44 0.78

Table 4 portrays the comparative experimental results of the two models. The two
models have different advantages and disadvantages under different indicators. Under the
same input dimension, the YOLOv4 model and the MobileV1-YOLOv4 model both portray
strong advantages in the recognition results of the three types of ship. For the container ship,
the two indicators of precision and recall both reach 100%, while the recognition effect of
ore carrier and passenger ship is slightly lower. This is because there is more container ship
in the scene, which is more conducive to model training, and the ore carrier and passenger
ship are fewer, which affects the recognition results to a certain extent. Generally, the mAP
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value of both reaches about 90%. F1-score is a comprehensive evaluation index to measure
precision and recall; it is evident from the experimental results that the F1-score values of
the two models are both high, that is, both precision and recall have reached a balance. For
the weight size of the backbone network, the weight of the MobileV1-YOLOv4 model is
only about 20% of that of the YOLOv4 model, which greatly relieves the computing and
memory pressure of the computer, and the FPS of the MobileV1-YOLOv4 model reaches
66.23, while that of Yolov4 model is only 26.11. Replacing the feature extraction module
of the classic YOLOv4 network with the MobileV1 network greatly reduces the network
parameters, improves the calculation speed, and has high real-time performance on the
basis of ensuring high recognition accuracy.

6.4. Ship Target Depth Estimation Analysis
6.4.1. Ship Features Detection and Matching

In practical applications, due to factors such as the environment and camera, when
using the matching algorithm based on grayscale correlation, the feature points in the
image are relatively sparse, which is not easy to detect and recognize with respect to feature
points, and it is difficult to obtain accurate image matching results. Thereby it is difficult to
perform parallax and will affect the depth estimation results. To solve these problems, this
paper proposes a sub-pixel feature point matching method based on region. Firstly, the ship
region is extracted through the ship target bounding box output by the mobilev1-yolov4
network, and then the FSRCNN network is adopted to super-resolution enhancement of
the ship region, and further increase the number of feature points, and finally the ORB
algorithm is used to detect and match ship feature points.

In this paper, the general data set ImageNet-91 is used to train the FSRCNN network,
and the data set Set14 made by us was used as the test set. In the training process of
FSRCNN network, the key parameters of the model are set as: learning_rate = 1× 10−5,
optimizer = Adam, epoch = 60K. The result after reconstruction by the FSRCNN network
is portrayed in Figure 15. After the super-resolution reconstruction of the ship image, the
edge feature information is enhanced, which makes the image clearer and achieves the
effect of denoising to a certain extent.

Figure 15. The result of ship by super-resolution reconstruction.

In order to further quantify the performance of the FSRCNN network, the peak signal
to noise ratio (PSNR) [32] was adopted for evaluation, and a comparative experiment is
conducted with the ESPCN [39] method. The experimental results of some pictures in the
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test set are portrayed in Table 5. It can be observed from Table 5 that the PSNR of the image
reconstructed by the FSRCNN method is higher, which means that the image quality is
better and the distortion is smaller; for images of different sizes, the reconstruction time
of the two methods is equivalent, and the reconstruction time of both methods shorter
is generally.

Table 5. The reconstruction results of test set images.

Test_picture Picture_size Model PSNR/dB Time/s

Test_pic1 456 × 72
FSRCNN 35.945062 0.045590
ESPCNN 34.582875 0.027407

Test_pic2 381 × 74
FSRCNN 35.562458 0.018695
ESPCNN 36.029904 0.016069

Test_pic3 193 × 43
FSRCNN 35.875411 0.006879
ESPCNN 35.246397 0.007040

Test_pic4 426 × 72
FSRCNN 38.673282 0.019900
ESPCNN 38.022336 0.016829

Test_pic5 540 × 70
FSRCNN 38.444051 0.027066
ESPCNN 37.565404 0.029988

Test_pic6 88 × 211
FSRCNN 36.462584 0.017341
ESPCNN 34.900440 0.012008

The ORB algorithm is used for feature point extraction and matching of the ship image
after super-resolution reconstruction. The algorithm performs down-sampling feature
extraction by constructing an image pyramid, and performs feature point detection on
each down sampled image based on the FAST algorithm. The feature point extraction and
matching result is portrayed in Figure 16. The ORB algorithm can obtain a better feature
point matching result. The matching pair contains a large amount of edge and contour
information of the image, and the distribution is more uniform, which is more conducive
to the calculation of parallax.

Figure 16. The result of ship feature matching by ORB.

6.4.2. Ship Target Depth Estimation

In the experiment, the ORB algorithm will detect multiple feature points and obtain
more disparity values. In this paper, the average disparity value of all feature points of
a single target is used to calculate the target depth. The results of depth estimation on
different type ships are portrayed in Figure 17.

In the experiment, a bulk cargo carrier was taken as an example for continuous depth
estimation, as portrayed in Figure 18, where the coordinate (0,0) is the position of the
camera. Most of the ships captured by the binocular camera are in the state of direct sailing,
and this ship is sailing roughly in a straight line. For the depth estimation of the bulk cargo
carrier, the calculated depth of the ship has little fluctuation, and maintains a stable state,
which is consistent with the sailing state of the ship.
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Figure 17. The results of depth estimation on different -type ships.

Figure 18. The depth estimation of bulk cargo carrier.

In order to further illustrate the effectiveness of the binocular depth estimation ex-
periment, the SNDWAY-1000A laser rangefinder is used for verification in this paper. The
distance measurement error of the device within 1000 m is ±0.5 m, and the error analysis is
performed with the distance measured by the rangefinder as the standard. The ranging
comparison results of different ships are portrayed in Table 6.

It can be observed from Table 4 that the BSV depth estimation technology proposed in
this paper can realize the ranging of ships at different distances. When the laser rangefinder
is used as the standard, there is a certain error in the depth calculated by this technology.
When the target depth is about 300 m, the error is less than ±2%. When the target depth is
greater than 300 m, the error increases. The increase of the target depth will further increase
the difficulty of detection and matching of feature points, which will affect the calculation
results of parallax. As a result, the error will increase to a certain extent, but overall, the
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error is within ±3%. In the process of navigation in inland river ships, the depth of about
300 m can satisfy the ships to make corresponding decisions. Therefore, the BSV technology
can meet the depth estimation requirements of inland ships and has important research
significance for the development of future intelligent ships.

Table 6. The depth estimation comparison results of different ships.

Ship_num BSV Depth
Estimation/m

Laser Depth
Estimation/m

Depth Estimation
Error/m Error Rate

Ship_1 105.10 103.80 +1.30 1.25%
Ship_2 122.13 124.50 −2.37 −1.90%
Ship_3 168.31 166.30 +2.01 1.21%
Ship_4 198.21 195.30 +2.91 1.49%
Ship_5 220.92 224.60 −3.68 −1.63%
Ship_6 245.35 248.50 −3.15 −1.27%
Ship_7 279.02 275.40 +3.62 1.31%
Ship_8 285.76 290.20 −4.44 −1.53%
Ship_9 311.26 305.80 +5.46 1.97%

Ship_10 348.08 355.30 −7.22 −2.03%

7. Discussion

With the deepening of economic globalization, water transportation has gradually
become one of the most important modes of transportation in international trade. At
present, the number, types and new routes of ships are increasing. Although the shipping
industry provides a thriving atmosphere, it also makes the channel congested and the load
increase, which affects the safety of ship navigation and seriously threaten the life and
property safety of ship personnel. From the analysis of the ship accident investigation
organization, human error is the primary cause of marine and inland river accidents. The
key to the safe navigation of ships lies in the perception of the surrounding navigation
environment and the effective use of various perception information for correct analysis
and decision-making. As a common navigation environment perception method, AIS
has certain limitations in the process of receiving and sending ship information. It also
restricts the ship’s maneuvering behavior and affects the safe navigation of the ship to a
certain extent.

Based on the above reason, this paper applies binocular stereo vision technology
to the recognition and depth estimation of inland ships; this technology makes up for
the deficiencies of the existing environmental perception methods to a certain extent,
however, this technology still has some limitations: firstly, in the stage of ships’ recognition,
deep learning relies on a large amount of data to continuously train to achieve higher
recognition accuracy. The inland river scenes photographed in this paper are relatively
simple, and there are fewer types of ships, which indirectly affects the overall recognition
performance of the model. Secondly, this paper uses the ORB algorithm to detect and
extract ship features points, however, in practical applications, environmental factors such
as weather and illumination affect the quality of the collected images, which makes the
depth estimation results of ship targets unsatisfactory. In view of these deficiencies, further
research will be performed in the next work.

8. Conclusions

Aiming at the insufficiency of the existing means of environmental perception in
the process of navigation of inland river ships, this paper applies binocular stereo vision
technology to the recognition and depth estimation of inland river ships. This work is
primarily divided into two stages: ship target recognition and depth estimation. In the
stage of ship recognition, based on the classic YOLO-V4 network model, considering
the computational pressure brought by the huge network parameters of the model, a
lightweight network is proposed to complete the recognition task; that is, the MobileNetV1
network will replace the feature extraction network CSPDarknet53 of the YOLOv4 model,
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the experiment result indicates that the mAP value of the MobileNetV1-YOLOv4 model
reaches 89.25%, and the weight size of the backbone network is only 20% of that of the
classic YOLOv4 network, which greatly reduces the amount of calculation while ensuring
the recognition accuracy. In the stage of ships’ depth estimation, a feature point detection
and matching algorithm based on sub-pixel level is proposed; that is, based on the ORB
algorithm, the FSRCNN network is used to perform super-resolution reconstruction of
the image pair to further enhance the ship feature information, which is more conducive
to calculation of image disparity values. Through the depth estimation experiments on
different type ships, when the depth to the target is about 300 m, the depth estimation
error is less than 3%, and the depth estimation accuracy is high. The binocular stereo
vision technology proposed in this paper further enriches the ship’s perception of the
navigation environment, improves the safety of inland waterway navigation, and has
important research significance for the development of intelligent ships in the future.
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