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Abstract: Video surveillance on the offshore booster station and around the coast is a effective way
to monitor floating macroalgae. Previous studies on floating algae detection are mainly based on
traditional image segmentation methods. However, these algorithms cannot effectively solve the
problem of extracting Ulva prolifra and Sargassum at different sizes and views. Recently, instance
segmentation methods have achieved great success in computer vision applications. In this paper,
based on the CenterMask network, a novel instance segmentation architecture named AlgaeMask is
proposed for floating algae detection from the surveillance videos. To address the feature extraction
ability of the network in the inter-dependencies for position and channel, we introduce a new OSA-V3
module with the dual-attention block, which consists of a position attention mechanism and channel
attention mechanism. Meanwhile, scale-equalizing pyramid convolution is introduced to solve
the problem of scale difference. Finally, we introduce the feature decoder module based on FCOS
head and segmentation head to obtain the segmentation area of floating algae in each bounding
box. The extensive experiment results show that the average precision of our AlgaeMask in the
tasks of mask segmentation and box detection can reach 44.22% and 48.13%, respectively, which has
15.09% and 8.24% improvement over CenterMask. In addition, the AlgaeMask can meet the real-time
requirements of floating algae detection.

Keywords: floating algae detection; Ulva prolifera; Sargassum; instance segmentation; video surveil-
lance

1. Introduction

In recent years, disaster events involving floating macroalgae have occurred frequently.
These events have caused deterioration of the marine ecological environment, as well as
serious economic damage to fisheries, marine transportation, and marine tourism in the
coastal areas of China [1,2]. The large-scale accumulation of floating algae on the sea surface
blocks sunlight and exhausts the oxygen in water during the process of extinction, which
seriously affects the survival of marine life. Floating macroalgae disasters in the coastal
areas of China mainly include green tides of Ulva prolifera and golden tides of Sargassum.
Ulva prolifera is bright or dark green and appears in the Yellow Sea, while Sargassum is
brownish-yellow or dark-brown and mainly blooms in the East China Sea [3,4].

It is necessary to detect the location and distribution range of these floating algae
(Ulva prolifera and Sargassum) accurately in the sea waters of China across a long period of
time. Real-time monitoring of floating algae could provide a reliable basis for the analysis,
prevention, and control of disasters to reduce economic and ecological costs. Therefore,
a lot of floating algae detection algorithms and methodologies have been researched
thus far [5–8].

Satellite remote sensing technology is one of the effective ways to capture the dis-
tribution of floating algae in the ocean due to its advantages of broad spatiotemporal
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coverage and frequent data acquisition [9–11]. Moderate Resolution Image Spectroradiome-
ter (MODIS) and Geostationary Ocean Color Imager (GOCI) data are commonly used in
related research. Xing et al. captured the spatiotemporal features of floating Sargassum in
the Yellow Sea to calculate their distribution and drifting path via high-spatial-resolution
satellite images [4]. Wang et al. proposed a novel method to quantify Sargassum distribution
and coverage by the MODIS alternative floating algae index (AFAI) over the Central West
Atlantic region [12]. Xu et al. conducted the comparison between MODIS survey data and
UAV images to verify the detection efficiency and accuracy for the green tides in the Yellow
Sea [13]. Shin et al. monitored Sargassum distribution on the coast of Jeju Island by GOCI-II
imagery captured in 2020 and adopted the GentleBoost model as the detection model [14].
For improving image quality, Cui et al. proposed a super-resolution detection model to re-
construct a high-resolution image of a region from GOCI images in order to distinguish the
floating macroalgae patches from the water area more precisely [15]. Liang et al. proposed
an extreme learning machine (ELM) method to detect floating macroalgae based on GOCI
data, which was insufficiently sensitive to determine the value of threshold for traditional
methods [16]. Qiu et al. used multi-layer perceptron (MLP) to monitor floating macroalgae
automatically, robust to different environmental conditions, from GOCI imagery in the
Yellow Sea [17].

Synthetic aperture radar (SAR) can image the earth in all weather conditions and in
high spatial resolution [18]. Shen et al. proposed an unsupervised recognition method
for green tide from RADARSAT-2 SAR images, paying attention to the polarimetric char-
acteristics of green macroalgae blooms in both amplitude and phase domains [19]. Ma
et al. integrated MODIS with SAR to jointly detect green tide accurately in the Yellow Sea
in 2021 and showed the spatiotemporal changes of the green tide in more detail than a
single data source [5].

For traditional image processing methods, image transformation and threshold seg-
mentation are adopted to achieve floating algae segmentation effectively. Obviously, the
image processing methods have the advantages of simple feature extraction, fast computing
speed, and low deployment cost. However, the traditional methods require artificial feature
design and predefined templates, and the process of parameter adjustment is very complex.
These methods are very sensitive to environment changes and difficult to apply in monitor-
ing floating algae accurately in practice. With the development of deep learning technology
in recent years, convolutional neural networks (CNNs) have been successfully applied in
the field of object recognition, image segmentation, video analysis, and so on, as they are
able to automatically extract useful and rich features. At present, a CNN-based method
has become one of the most popular methods in the field of floating algae detection [20].
Valentini et al. proposed a smartphone-camera-based Sargassum monitoring system in the
French Antilles. The work adopted a pre-trained MobileNet-V2 model for image patch
classification and the fully connected CRF to extract semantic segmentation in detail [21].
Arellano-Verdejo et al. designed the ERISNet model based on CNN and RNN to detect float-
ing and accumulated Sargassum for MODIS data along the Mexican Caribbean coastline [22].
Wan et al. introduced a novel Enteromorpha prolifera (EP) extraction framework from GOCI
images. Firstly, a strategy for the sample imbalance between EP and the background was
adopted. Then, the network based on 1D-CNN and Bi-LSTM was proposed to make use of
the spectral feature and context dependencies of each pixel [23]. For high-resolution aerial
images captured by UAV, Wang et al. introduced an Ulva prolifera region detection method,
using a superpixel segmentation algorithm to generate multi-scale patches and a binary
CNN model to determine whether the patches are Ulva prolifera or not [24].

Based on CNNs network, U-Net [25] proposes a symmetric structure composed of
encoders and decoders to complete the concatenation of low-level and high-level features,
and the overall network presents a U-shaped structure. The methods based on U-Net and
its related variants have achieved great success in the field of image segmentation [26].
Therefore, a lot of U-Net based methods have been applied to the field of floating algae
monitoring. Kim et al. introduced the U-Net framework to detect red tide surrounding
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the Korean peninsula, which consists of five U-shaped encoder and decoder layers to
capture the spectral features of red tide from GOCI images [27]. Guo et al. constructed an
automatic SAR image detection method for green algae in the Yellow Sea based on the deep
convolutional U-net architecture [28]. Cui et al. proposed the SRSe-Net to extract large-scale
green tides based on U-Net structure and a dense connection mechanism. SRSe-Net has
the ability to extract the green tides from the low-resolution MODIS image by the feature
mapping learned from the GF1-WFV image domain [29]. Gao et al. proposed the AlgaeNet
model based on U-Net to extract floating Ulva prolifera from MODIS and SAR images [30].

In the study of computer vision, object detection is the task to locate and classify
objects of interest in images. Semantic segmentation is a form of pixel-level prediction
to classify each pixel according to the same category, and it only segments targets in
different categories and cannot distinguish each individual target in the same category.
The instance segmentation methods cannot only locate the corresponding bounding box of
target in different categories, but also classify each object at pixel level in the same category.
Therefore, the meaning of ‘instance’ is that the network has the ability to distinguish each
individual target in the same category. It is more challenging for instance segmentation as
it includes the tasks of object detection and semantic segmentation [31]. The technology of
instance segmentation has been widely applied in the fields of autonomous driving, medical
image analysis, and video surveillance [32–34]. Mask R-CNN [35] is one of the most widely
applied instance segmentation algorithms today, developed from the object detection
network, Faster R-CNN [36]. Mask R-CNN adds a semantic segmentation branch for
predicting each region of interest (ROI) to the object classification and regression branches,
effectively detecting target objects and generating high-quality segmentation masks for
each instance. In the Mask R-CNN framework, the final output masks are determined by
the object classification branch’s highest confidence. However, these predicted masks are
not optimal as the correlation between the masks and the confidence is very low. To solve
the problem, Mask Scoring R-CNN [37] designed Mask IoU, a mask evaluation strategy, to
measure the distance between the real mask and the predicted mask. CenterMask [38] is an
anchor-free instance segmentation framework that can simultaneously achieve the target at
real-time speed and high accuracy. CenterMask introduced a new spatial attention-guided
mask (SAG-Mask) branch to FCOS [39], a one-stage object detection method. SAG-Mask
branch could obtain the object bounding boxes to predict segmentation masks on each
detected area. The existing floating macroalgae detection and segmentation algorithms
have poor portability, and have strict requirements on the observation environment, so it is
difficult to apply them in a large range and for a long time. Video surveillance on aboard
ships and around the coastline has the advantage of high-definition resolution, real-time
image transmission and low cost, so it can be regarded as a useful supplement to remote
sensing satellites and SAR, as shown in Figure 1.

In this paper, inspired by the successful application of CenterMask in the field of
image recognition and segmentation, we propose a new instance segmentation framework
named AlgaeMask for the purpose of floating algae detection, using the surveillance
images captured from the on-site imaging such aboard ships and around the coastline.
The AlgaeMask integrates the boundingbox detection and edge area segmentation of the
floating algae (Ulva prolifera and Sargassum) simultaneously into a unified architecture,
which is applied to practical scenarios effectively.
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Figure 1. Video surveillance on the ship (These texts not in English are generated from the cameras,
which means the date, the camera manufacturer logo and location names of each camera).

The main contributions of our proposed AlgaeMask can be summarized as follows:

(1) A new feature extraction module based on One-Shot Aggregation Version (OSA)
and dual-attention mechanism was proposed. By integrating the position attention
and channel attention in OSA architecture, the long-range position and contextual
information of floating algae can be effectively extracted.

(2) Considering the feature of floating algae at different scales, the multi-scale fusion
module is introduced to capture the inter-scale correlation of the feature pyramid,
which can effectively capture the invariant features of floating algae.

(3) We evaluate the performance of AlgaeMask and other instance segmentation methods
on different scenes. The results show that AlgaeMask can achieve state-of-the-art
performance in floating algae detection.

The rest of the paper is organized as follows. Section 2 describes AlgaeMask applied
in this paper in detail. Section 3 introduces our experimental results and analysis, in-
cluding the related dataset, evaluation metrics, qualitative and quantitative performance
comparisons, and ablation study. Finally, the conclusions are summarized in Section 4.

2. Methods

As shown in Figure 2, the AlgaeMask consists of a feature extraction module, multi-
scale fusion module, and feature decoder module. In the feature extraction module, based
on OSA-V2 in CenteMask, the OSA-V3 is proposed to capture the spatial and channel inter-
dependencies of floating algae features better by introducing the dual-attention mechanism.
In addition, we replace the OSA-V2 block with the original OSA block at Stage 1 and Stage
2. The multi-scale fusion module extracts the scale-invariance features of floating algae by
Scale-Equalizing Pyramid Convolution (SEPC) block and Feature Pyramid Network (FPN)
block. In the feature decoder module, the Fully Convolutional One-Stage Object Detection
(FCOS) head is used to detect the object bounding box at different scales by inputting the
output of the multi-scale fusion module. Finally, the segmentation head is performed to
obtain the segmentation area of objects in each bounding box.
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Figure 2. Framework of our proposed AlgaeMask.

2.1. Feature Extraction Module

The environment of floating algae detection is applied is complex and changeable.
Therefore, it is necessary for a feature extraction module to have the strong feature extraction
and anti-inference. Meanwhile, as the area monitored by one camera is limited, real-time
detection on multiple cameras is required for floating algae detection. To deal with this real
situation, minimum possible computation costs are desired for our detection model.

Compared to traditional backbone framework such as ResNet, DenseNet, or HRNet,
OSA is a computation and energy efficient backbone network, which can capture different
receptive fields efficiently. However, due to the lack of attention mechanism, OSA cannot
extract long dependencies during the feature extraction phase. In order to enhance the
performance of OSA, CenterMask proposes the OSA-V2 block which introduced a channel
attention block called effective squeeze-excitation (eSE) [38].

In the floating algae detection, we find that the eSE is only focused on the channel
dependencies and ignores the position dependencies between different targets. To handle
the insufficiency, we propose a new OSA-V3 block to improve detection accuracy by
introducing a dual-attention mechanism, which is composed of channel attention and
position attention. The channel attention block can extract the feature interdependency
between different channels. The position attention block has the ability to capture the
spatial location interdependency under the current scale to help the OSA-V3 block to
effectively limit the location of floating algae’s regions only above the sea surface and
reduce false detection. The architecture of the OSA-V3 block is shown in Figure 3. In the
detection of floating algae, it is necessary to input high-resolution images as the number
of small targets accounts for the highest proportion. However, the computation cost of
the attention mechanism mainly depends on the resolution of images. Therefore, different
from the architecture of CenterMask network, we only integrate the OSA-V3 block in Stage
3. In addition, we will also replace the OSA-V2 block with the original OSA block in Stage
1 and Stage 2. We will further discuss how using the origin OSA block in Stage 1 and Stage
2 can not only reduce the model complexity and computation cost, but also demonstrate
better performance than the OSA-V2 block.
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Figure 3. Architecture of OSA-V3 block.

(1) OSA Block

Given the input feature map f1 ∈ RC×H×W, we first use the convolutional operation
with kernel size 3 to get f2 ∼ f6 ∈ RC×H×W in turn. Then we perform the convolutional
operation with kernel size 1 on the concatenation result of f1 ∼ f6 to obtain the fusion
result of FOSA. The calculation of this process is as follows in (1) and (2):

fi = conv2d(fi−1), i = 2, 3, 4, 5, 6 (1)

FOSA = conv2d(cat(f1, f2, f3, f4, f5, f6)) (2)

where the conv2d is convolutional operation and cat denotes the concatenate operation on
channel dimension.

The output of OSA FOSA is fed into the position attention block and channel attention
block in parallel.

(2) Channel Attention Block

In channel attention block, firstly, we reshape the FOSA to f_Creshape ∈ RC×N, N =

H×W and transpose f_Creshape to f_Ctranspose ∈ RN×C.
Secondly, we perform a matrix multiplication between freshape and ftranspose to obtain

the channel attention map X ∈ RC×C.

Xji =
exp

(
f_Ci

reshape·f_Cj
transpose

)
∑C

i=1 exp
(

f_Ci
reshape·f_Cj

transpose

) (3)

where Xij represents the ith channel’s impact on the jth channel, exp is exponential operation.
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Thirdly, we multiply the attention map X and f_Creshape and reshape to RC×H×W and
then multiply with a scale parameter β to obtain the result f_Catt ∈ RC×H×W.

Finally, an element-wise sum operation is performed between f_Catt and FOSA to
obtain the channel attention result CE.

fCatt = β
C

∑
i=1

Xji·fC
i
reshape (4)

CE = f_Catt + FOSA (5)

(3) Position Attention Block

In position attention block, we first use the convolution operation to generate three
new feature maps f_PB ∈ RC×H×W, f_PC ∈ RC×H×W, and f_PD ∈ RC×H×W and reshape
f_PB, f_PC, and f_PD to RC×N, N = H×W, respectively.

Secondly, transpose the f_PB and RN×C, perform a matrix multiplication between f_PB
and f_PC, and use softmax operation to calculate the position attention map P ∈ RN×N.

Pji =
exp

(
f_Pi

B·f_Pj
C

)
∑C

i=1 exp
(

f_Pi
B·f_Pj

C

) (6)

where Pji represents the ith position’s impact on the jth position.
Thirdly, perform a matrix multiplication between f_PD and P. Then, reshape the

result to RC×H×W and multiply with a scale parameter α to obtain to obtain the result
f_Patt ∈ RC×H×W.

Finally, we perform an element-wise sum operation to obtain the final position atten-
tion result PE.

fPatt = α
C

∑
i=1

Pji·fP
i
D (7)

PE = f_Patt + FOSA (8)

After the calculation of the position and channel attention, we perform an element-
wise sum operation between PE and CE to obtain the total attention result SA. Then, we use
the residual connection between the input feature map and SA to obtain the output of the
feature extraction module.

SA = PE + CE (9)

OSA_V3out = f1 + SA (10)

2.2. Muti-Scale Fusion Module

By the investigation of floating algae detection applications, the Ulva prolifera and
Sargassum are always displayed in different sizes in the video due to the difference of
viewing angles, focal lengths, and distance of the cameras. Therefore, it is very important
for our model to be capable of extracting floating algae at different scales, as shown
in Figure 4.
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Figure 4. Samples of floating algae at different scales.

The feature pyramid network (FPN) is commonly adopted to deal with object de-
tection at different scales by the instance segmentation models such as Mask-RCNN and
CenterMask. However, FPN cannot utilize the inter-level correlation in the feature pyramid
efficiently. In this paper, we present a multi-scale fusion module (MSF) consisting of the
SEPC block and FPN block. The SEPC block can help the MSF module to improve the
ability of the scale-invariant feature extraction for floating algae in both spatial and scale
dimension. The architecture of MSF module is shown as Figure 5.

Figure 5. Architecture of the multi-scale fusion module.

Comparing the extracted features in Figure 5, it is obvious that the SEPC block can
improve the ability of extracting the robust scale-invariant features of floating algae. By
introducing deformable convolution, the SEPC block can compromise the blurring effect of
features under different scales.

In the feature extraction module, we can get the feature map with different scales
¯ p1εRC1×H

8 ×
w
8 , p2εRC2× H

16×
w
16 , and p3εRC3× H

32×
w
32 . We will take the p2 as an example to
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illustrate the calculation process of SPEC block. The processes of p1 and p3 are same as p2
and the difference in calculation of p1 is only that we use the conv2d operation instead of
the Deform conv2d.

The calculation process of p2 can be summarized in (11)~(14).

pdown
1 = Deform2d(p1) ∈ RC× H

16×
w
16 (11)

pup
3 = UpSample

(
Deform2d

(
p3
))
∈ RC× H

16×
w
16 (12)

pdeform
2 = Deform2d(p2) ∈ RC× H

16×
w
16 (13)

pSPEC
2 = pdown

1 + pdeform
2 + pup

3 , pSPEC
2 ∈ RC× H

16×
w
16 (14)

where Deform2d represents the deformable convolutional operation, pdown
1 denotes the

output of Deform2d with stride 2 on p1, pup
3 represents the output of the up-sample

operation on p3, and the pdeform
2 is the result of Deform2d on p2.

Then, the output of SPEC block p1 ∼ p3 is used as the input of FPN to obtain the fea-

ture maps with different scales p1εRC1×H
8 ×

w
8 , p2εRC2× H

16×
w
16 , p3εRC3× H

32×
w
32 , p4εRC4× H

64×
w
64 ,

and p5εRC5× H
128×

w
128 . The calculations of the above process are formulated in (15)~(19).

p3 = conv2d(p3) (15)

p2 = UpSample(p3) + conv2d(p2) (16)

p1 = UpSample(p2) + conv2d(p2) (17)

p4 = conv2d(p3) (18)

p5 = conv2d(p4) (19)

2.3. Feature Decoder Module
2.3.1. Detection Block

The traditional detection networks will predict the class category, center point offset,
and scaling of width and height of these anchors by the use of the pre-defined anchor boxes.
However, the definition of anchor boxes depends on a lot of prior knowledge and may be
not reasonable.

In [39], an anchor free framework named fully convolutional one-stage (FCOS) object
detection is proposed. By directly predicting the distance up, down, left, and right of each
pixel, the FCOS network can not only greatly reduce the complexity of time and space in
the training phase, but it can also improve detection accuracy in the testing phase.

We take the outputs of FPN module P1 ∼ P5 as the inputs of FCOS head, consisting
of classification head and regression head. These two heads include convolution, group
normalization and ReLU operations, as shown in Figure 6.
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Figure 6. Overview of the detection block based on FCOS head.

In the classification head, the corresponding classification label will be predicted for
each position in current feature map. In this paper, our model will predict the following
three categories: Ulva prolifera, Sargassum, and disturbances. In order to reduce the interfer-
ence of irrelevant objects—such as ships, sea surface, or seabirds—in the environment we
define them as a category called ‘Disturbances’, shown as Figure 7.

Figure 7. Samples of the Disturbances category.

In the regression head, two sub-branches are defined to predict the four boundary
distance parameters and one center distance parameter. Assume that the coordinates of
a point on the original image is

(
ox, oy

)
, and the scale between the current feature map

and the original image is defined as si. Then, the relation between the regression branch
prediction and the original image position can be summarized in (20)~(23).

x_mini = ox − l× si (20)

y_mini = oy − t× si (21)

x_maxi = ox + r× si (22)

y_maxi = oy + b× si (23)
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where the x_mini, y_mini, x_maxi, and y_maxi are the coordinates of the upper and lower
left and right corners of the object bounding box. l, t, r, and b represent the distance to left,
upper, right, and bottom of object, respectively.

In the regression head, a parameter named as centerness ∈ (0, 1) will be predicted that
can measure the distance to the object center and the higher value means higher proximity
to the object center.

2.3.2. Segmentation Block

The Mask R-CNN network [35] uses the ROIAlign method to realize the alignment
of bounding boxes at different scales and it is improved in CenterMask to enhance the
detection accuracy of small targets. The calculation of ROIAlign in Mask R-CNN and
CenterMask are summarized as follows.

MaskRCNNROIAlign = bk0 + log2(

√
w× h
224

)c (24)

CenterMaskROIAlign = dkmax − log2
Finput

FRoI
e (25)

where the values of k0 and kmax are assigned as 4 and 5. The width and height of each
bounding box are denoted as w and h. Finput represents the pixel area of input image, and
FRoI represents the pixel area of bounding box. Without using the constant value 224 in
Mask R-CNN, CenterMask can assign the ROIAlign pooling scale adaptively by the ratio
calculation of Finput/FRoI, and thus can improve the detection accuracy of floating algaes
with different scales.

After the operation of ROIAlign block, we will get the feature maps with same reso-
lution under the inputs at different scales. Then, these feature maps will be fed into the
segmentation block to achieve the mask area in the ROI bounding boxes.

As shown in Figure 8, the ROI bounding box in feature maps p1 ∼ p5 with different
resolutions will be unified into a fixed size 14 × 14 after the ROIAlign operation. We fed
these ROI features into four convolution layers sequentially.

Figure 8. Flowchart of the segmentation block.
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Then, a 2 × 2 de-convolution operation is performed to upsample the feature map
to a resolution of 28 × 28. After that, a 1 × 1 convolution is used to predict the class-
specific output.

Considering floating algae detection is a multi-class instance segmentation task; how-
ever, the score of mask segmentation is shared with the box-level classification result in
FCOS head, hardly to measure the mask quality and completeness of instance segmentation.

We introduce the MaskIoU block in our segmentation pipeline to learn a score value
for each mask output instead of sharing the box classification confidence. The process of
the MaskIoU block can be summarized as follows.

(1) A convolutional operation is performed on the output of mask Outmask to get the
prediction mask feature map fpredict ∈ R1×28×28. fpredict is fed into a max-pooling
block to get a downsampling result fdown−predict ∈ R1×14×14.

(2) The input feature map finput ∈ R256×14×14 and fdown−predict are concatenated to obtain
the fusion result fconcat ∈ R257×14×14.

(3) Four convolution layers (kernel = 3 and stride = 1, and the stride of final convolution
is 2 for downsampling the feature map to 7 × 7) and two fully connected layers
(outputs with 1024 channels) are performed sequentially on fconcat to obtain the result
ffc ∈ R1024×1×1.

(4) Feed the ffc into task-specific fully connected layers to get the classification score of
the current mask fscore ∈ R1.

During the training phase, a binary operation with threshold 0.5 is performed on the
predicted mask Outmask to convert the two-dimensional probability image into the binary
image fbinay. Then, we use the L2 loss between the fbinay and the ground truth label image
to calculate the mask score loss. During the testing phase, we multiply the classification
score in FCOS classification head with the mask classification score in segmentation head
as the final object confidence value.

2.3.3. Loss Function

Our loss function consists of the following five parts.

losstotal = w1 × lossfcos_cls + w2 × lossfcos_center + w3 × lossfcos_box + w4 × lossseg_mask + w5 × lossseg_maskIOU (26)

where lossfcos_cls is the classification loss in FCOS classification head, lossfcos_center and
lossfcos_box are centerness loss and box regression loss in FCOS regression head, lossseg_mask
is the average binary cross-entropy loss of segmentation mask in segmentation head,
lossseg_maskIOU is the L2 loss in MaskIoU head. The w1 ∼ w5 represent the weight values
of each loss, and the values in this paper are 0.5, 1.0, 1.0, 1.0, and 0.5 respectively.

3. Experimental Results and Analysis
3.1. Dataset

According to the location of the floating algae outbreak area in the East China Sea over
these years, the data in this paper are collected from the surveillance video captured by
seven-way cameras in Nantong and Yancheng of the Jiangsu sea area, from 2020 to 2022.
These camera positions are shown in Table 1.
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Table 1. Camera position for surveillance adopted in our paper.

Camera Name Longitude (◦N) Latitude (◦E)

Binhai North District H2#400MW 34.490893 120.33805
SPIC Binhai South H3#300MW 34.314415 120.60239

Jiangsu Rudong H5# 32.709716 121.72382
Jiangsu Rudong H14# 32.811922 121.49177

Three Gorges New Energy Jiangsu Dafeng 300MW 33.390532 121.18879
Huaneng Jiangsu Dafeng 300MW 33.170058 121.41954

Dafeng Wharf 33.224975 120.86676

We construct our dataset from 3600 images with the resolution of 1920 × 1080 from
the videos mentioned above. The dataset is divided into three categories—Ulva prolifera,
Sargassum, and Disturbances. We adopt 3000 images as a training set and 600 images as a
testing set.

3.2. Evaluation Metrics

Considering the AlgaeMask is a type of instance segmentation network, we choose
the following metrics to evaluate our model: (1) the mask average precision (APmask); (2)
the box average precision (APbox); (3) the mask average recall (ARmask); (4) the box average
recall (ARbox). The average precision and average recall can be formulated in (27) and (28).

AP =
1
n

n

∑
i=1

Pi (27)

AR =
2
n

n

∑
i=1

Ri (28)

where the n represents the number of samples, Pi denotes the precision value of the ith

sample, and Ri represents the recall value of the ith sample. The calculations of Pi and Ri
are as follows

P =
TP

TP + FP
(29)

R =
TP

TP + FN
(30)

where TP, FP, and FN denote the number of true positives, false positives and false
negatives, respectively.

For segmentation evaluation, we compute the TP, FP, and FN by comparing the
predicted mask image with the ground truth label image. For bounding box evaluation, we
judge whether the IoU value between the predicted box and the label box is greater than
the IoUthreshold and compute the TP, FP, and FN. The IoU could be calculated in (31).

IoU =
area

(
boxpre

⋂
boxgt

)
area

(
boxpre

⋃
boxgt

) (31)

where boxpre and boxgt are corresponding to the predicted box and the ground truth
box, area

(
boxpre

⋂
boxgt

)
represents the area of intersection between boxpre and boxgt,

area
(
boxpre

⋃
boxgt

)
denotes the area of union between boxpre and boxgt.

In order to further evaluate the performance of different methods for targets with
different sizes, we also provide the following metrics: APS, APM, APL, ARS, ARM, and
ARL. We mentioned the larger value of the metrics and the better performance of the
network above. The meaning of these metrics are as follows:

• APS, ARS: the average precision or recall for small objects, which the pixel area of
object is less than 322.
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• APM, ARM: the average precision or recall for medium objects, which the pixel area
of object is between 322 and 962.

• APL, ARL: the average precision or recall for large objects, which the pixel area of
object is greater than 962.

3.3. Experimental Setups

The AlgaeMask is implemented in PyTorch V1.9.1(USA), Detectron2 V0.3(USA),
CUDA(USA), and cuDNN V11.4(USA) on four NVIDIA TITAN RTX GPU with 24GB
of memory respectively.

In the training phase, in order to enhance the anti-interference ability of the outdoor
detection environment, we adopt the data augmentation methods such as random cropping,
random brightness, random occlusion, and contrast variation. The batch size and iteration
are 8 and 60,000 respectively. The resolution of images captured by surveillance camera is
1920 × 1080, but we use a resolution of 960 × 512 for training and testing in this paper.

3.4. Evaluation of Model Performance

In this section, we will compare our proposed AlgaeMask with other instance seg-
mentation methods, including Mask R-CNN, Mask Scoring R-CNN, and CenterMask. The
performance comparison is presented in Tables 2 and 3. The results show that our proposed
network can reach the best performance on the precision dimension of box detection and
mask segmentation. Specifically, compared with Mask R-CNN, Mask Scoring R-CNN, and
CenterMask, our AlgaeMask model achieves 28.59%, 22.26%, and 15.13% improvement
on APmask and 43.96%, 37.52%, and 24.24% improvement on APbox in Table 2; 26.15%,
24.35%, and 15.65% improvement on ARmask and 32.59%, 25.68%, and 3.26% improvement
on ARbox in Table 3, respectively. Additionally, we also visualize the predictions under
different scenes in Figure 9.

Table 2. Comparison of experimental results on average precision (AP) by different methods.

Methods Backbone APmask APS
mask APM

mask APL
mask APbox APS

box APM
box APL

box

Mask R-CNN [35] ResNet-101 15.63 15.13 39.67 24.87 20.17 18.91 41.23 13.14
Mask Scoring R-CNN [37] ResNet-101 21.96 19.34 41.34 58.78 26.61 22.94 38.78 60.89

CenterMask [38] OSA-V2 29.13 15.67 49.67 67.89 39.89 34.74 60.52 64.97
AlgaeMask OSA+OSA-V3 44.22 36.35 60.54 71.21 48.13 60.27 65.36 68.67

Table 3. Comparison of experimental results on average recall (AR) by different methods.

Methods Backbone ARmask ARS
mask ARM

mask ARL
mask ARbox ARS

box ARM
box ARL

box

Mask R-CNN ResNet-101 25.17 21.81 42.39 31.73 37.88 34.82 52.34 35.15
Mask Scoring R-CNN ResNet-101 26.97 27.68 45.16 57.98 44.79 37.84 49.63 59.82

CenterMask OSA-V2 35.67 32.71 68.96 65.46 67.21 52.79 54.17 60.12
AlgaeMask OSA+OSA-V3 51.32 48.90 73.51 68.33 70.47 68.43 63.32 68.91
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Figure 9. Visualization of different models on testing samples. (a) Source image. (b) Ground truth. (c)
AlgaeMask model. (d) CenterMask model. (e) Mask Scoring R-CNN model. (f) Mask R-CNN model.
Light green color represents the category of Ulva prolifera, the yellow color represents the category of
Sargassum, and the pink color represents the category of Disturbances.
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In testing samples (1), (2), and (3), it is obvious that the networks without the SEPC
block—such as Mask R-CNN, Mask Scoring R-CNN, and CenterMask—more readily miss
detection. Meanwhile, by introducing the SEPC block to our AlgaeMask network, the
success rate has been greatly improved.

In testing samples (4), (5), and (6), we can find out that our proposed model has the
minimal false detection rate on these complex scenes. It means that by combing the channel
attention and position attention block in our feature extraction phase, the features of floating
algae and interference in the environment can be effectively distinguished, which can en-
hance the feature extraction ability and anti-interference ability of our AlgaeMask network.

Specific to objects in different sizes from Tables 2 and 3, the AlgaeMask can also exhibit
better performance on AP and AR in detecting the floating algae. In testing sample (2), a lot
of small Ulva prolifera are missed detection in CenterMask, Mask Scoring R-CNN and Mask
R-CNN. For medium algaes, except for our method, other models demonstrate a large
number of false detections in samples (1), (3), and (5). In sample (4), from the perspective
of segmentation accuracy and integrity of large algal blooms, our AlgaeMask can achieve
the best performance.

Additionally, the performance comparison of different networks for all categories are
shown in Tables 4 and 5. Generally, the Disturbances category obtains the best performance
in all categories and the Ulva prolifera category has the worst performance in all networks.
According to testing samples (2), (4), (5), and (6), due to the lack of position attention
mechanism and SEPC module, the CenterMask detects a lot of false land objects into Ulva
prolifera or Sargassum and misses a lot of obvious small Ulva prolifera, and Mask R-CNN and
Mask Scoring R-CNN also have the same problems. Therefore, compared with CenterMask
on AP, our proposed network achieves 14.06% and 16.35% improvement for the category
of Ulva prolifera and Sargassum respectively. Meanwhile, on the metric of AR, compared to
CenterMask, our proposed AlgaeMask also shows a 13.79% and 6.91% improvement.

Table 4. Comparison of experimental results on AP by different methods for each category.

Methods Backbone APUlva Prolifra
mask APSargassum

mask APDisturbances
mask APUlva Prolifra

box APSargassum
box APDisturbances

box

Mask R-CNN ResNet-101 9.89 18.71 18.29 11.54 22.19 26.78
Mask Scoring

R-CNN ResNet-101 14.23 22.49 29.16 16.47 33.51 29.85

CenterMask OSA-V2 17.21 26.43 43.75 24.47 42.56 52.64
AlgaeMask OSA+OSA-V3 31.27 42.78 58.61 38.26 49.47 56.66

Table 5. Comparison of experimental results on AR by different methods for each category.

Methods Backbone ARUlva Prolifra
mask ARSargassum

mask ARDisturbances
mask ARUlva Prolifra

box ARSargassum
box ARDisturbances

box

Mask R-CNN ResNet-101 9.14 18.92 47.45 28.62 30.49 54.53
Mask Scoring

R-CNN ResNet-101 12.14 28.31 40.46 22.14 34.67 77.56

CenterMask OSA-V2 17.37 38.54 51.1 48.29 57.14 96.2
AlgaeMask OSA+OSA-V3 41.83 43.67 68.46 51.68 63.79 95.94

3.5. Ablation Study

In order to evaluate the performance of the proposed AlgaeMask under different
factors and settings, the following ablation studies are conducted.

3.5.1. Impact of Input Resolution

During the training and testing phase, we conduct some experiments on our proposed
method with 480 × 256, 960 × 512, and 1920 × 1080 as the input resolution in Table 6.
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Table 6. Ablation study on the impact of input resolution on AP and AR.

Resolution APmask APbox ARmask ARbox Inference Time (ms)

480 × 256 32.83 35.47 17.34 26.81 96.8
960 × 512 44.22 48.13 51.32 70.47 142.7

1920 × 1080 42.13 42.86 60.39 78.12 380.6

With the increase in input resolution, the value of recall increases obviously because
the target floating algaes in small blooms account for the majority ratio in our dataset.
When the input resolution is increased from 480 × 256 to 960 × 512, our model could
achieve 11.39%, 12.66%, 33.98%, and 43.66% improvement on APmask, APbox, ARmask, and
ARbox respectively. It is obvious that the model performance is affected by the resolution
of input images greatly. However, the value of precision tends to increase firstly and then
decrease with the input resolution increases. When the input resolution is increased from
960 × 512 to 1920 × 1080, the AlgaeMask have 2.09% and 5.27% reduction in APmask and
APbox, and have 9.07% and 7.65% increase in the ARmask and ARbox.

This is mainly due to the increase in input resolution helping our model to strengthen
its ability to detect small floating algal blooms. However, use of high-resolution images
also introduces interference factors in complex environments, which will lead to an increase
in false detections. In addition, it will cost more GPU memory resources, and the inference
time with an input resolution of 960 × 512 is 2.6× faster than the resolution of 1920 × 1080.

As shown in Table 1, it is necessary for the application of AlgaeMask to process seven
channels of video simultaneously. Therefore, the resolution of 960 × 512 is adopted as the
input scale of the experiments in this paper, which could meet up the real-time requirements
of floating algae detection.

3.5.2. Impact of SEPC Block

In this subsection, we will discuss the impact of SEPC block in our AlgaeMask.
The results are as shown in Figure 10. For the Sargassum category, the network with

SEPC has 6.56% improvement on ARbox and 5.36% improvement on ARmask. For Ulva
prolifera category, the network with SEPC shows a 3.84% improvement on APbox and
4.35% improvement on APmask. It is clear that the network with SPEC can attain better
performance in all categories.

Figure 10. Box and segmentation results with/without SEPC block. (a) Box results of AP and AR
with/without SEPC block. (b) Segmentation results of AP and AR with/without SEPC block.
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In practical applications, the camera needs to be installed on the land or other supports,
and take pictures from different viewpoints. This leads to a large-scale changes in the image,
so that the floating algaes at long distance are usually small and blurry, while the floating
algaes at close range are big and clear.

Therefore, the SEPC block—effectively utilizing the invariant features of the floating
algaes at different sizes—is very important for our network.

3.5.3. Impact of Dual-Attention Block

In Figure 11, we show the impact of removing the dual-attention block on experimental
results. For the Ulva prolifera category, the network with the dual-attention block shows
a 16.09% and 13.93% improvement on APbox and APmask. For the Sargassum category, the
model with the dual-attention block shows a 13.13% improvement on APbox and a 11.52%
improvement on APmask.

Figure 11. Box and segmentation results with/without dual-attention block. (a) Box results of AP
and AR with/without dual-attention block. (b) Segmentation results of AP and AR with/without
dual-attention block.

In contrast with the SEPC block only considering the invariant-features of the floating
algae in same category, the dual-attention block can help to learn both the correlation of
features at different scales by the channel attention mechanism and the context of features at
different spatial positions by position attention mechanism. These abilities of our proposed
method are important as the surveillance environment is complex and diverse. By channel
attention mechanism, the features of Ulva prolifera or Sargassum can be extracted effectively
in our feature extraction phase. Via position attention mechanism, the similar targets that
do not float above the sea surface will be eliminated.

3.5.4. Impact of OSA Block

In this subsection, we will discuss the impact of using OSA and OSA-V2 in Stage 1
and Stage 2 of the feature extraction module.

Based on the CenterMask and AlgaeMask, we replace the OSA-V2 block with origi-
nal OSA block in Stage 1 and Stage 2 of CenterMask (OSA-V2) to generate the results
of CenterMask (OSA). Meanwhile, we replace the OSA block with OSA-V2 block in
Stage 1 and Stage 2 of our proposed AlgaeMask (OSA+OSA-V3) to generate the results of
AlgaeMask (OSA-V2).

In Table 7, it is obvious that the performance of CenterMask (OSA-V2) and AlgaeMask
(OSA-V2) on AP metric are worse than the CenterMask (OSA) and AlgaeMask (OSA+OSA-
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V3). Compared with AlgaeMask (OSA-V2) in small targets, AlgaeMask (OSA+OSA-V3)
shows a 2.17% and 1.25% increase in APS

mask and APS
box respectively.

Table 7. Ablation study on the impact of OSA block on AP.

Methods Backbone APmask APS
mask APM

mask APL
mask APbox APS

box APM
box APL

box

CenterMask OSA-V2 29.13 15.67 49.67 67.89 39.89 34.74 60.52 64.97
CenterMask OSA 30.17 18.23 49.36 67.94 41.22 38.43 59.17 63.85
AlgaeMask OSA-V2 42.87 34.18 60.19 69.41 47.63 59.02 65.79 67.41
AlgaeMask OSA+OSA-V3 44.22 36.35 60.54 71.21 48.13 60.27 65.36 68.67

In Figure 12, compared to CenterMask (OSA-V2), the false detection of small targets in
CenterMask (OSA) is decreased. Meanwhile, compared to our AlgaeMask (OSA+OSA-V3),
the false detection of small targets in AlgaeMask (OSA-V2) are increased.

Figure 12. Visualization of AlgaeMask (OSA+OSA-V3), AlgaeMask (OSA-V2), CenterMask (OSA-
V2), and CenterMask (OSA). The red solid box represents the main difference between the
compared networks.

In floating algae detection, tiny targets have the characteristics of less and simpler
feature information. Therefore, these features can be effectively extracted in the first few
layers. However, due to the average pooling operation in the eSE block, the features of
tiny algaes in different channels may interface with each other, leading to false detection.
Meanwhile, some algaes are present at large scale, the features of small algaes may be
missed or submerged, resulting in missing detection.

In summary, we choose the original OSA block instead of the OSA-V2 as the backbone
of AlgaeMask in Stage 1 and Stage 2 of the feature extraction module.

4. Conclusions

Floating algae detection plays an important role in marine environment monitoring.
This study is the first time an instance segmentation method has been applied in floating
algae detection. The dataset consisting of multiple marine scenes was built to compare
the performance of different instance segmentation networks. The detection precision and
time consumption under different input resolutions were also discussed to further verify
the actual application capability of our proposed network. In our work, we propose a new
instance segmentation framework named AlgaeMask for floating algae detection.
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A new feature extraction module based on OSA and a dual-attention mechanism
is proposed. The dual-attention block can integrate the position attention and channel
attention simultaneously to capture the long-range position and contextual information
of floating algae effectively. In floating algae detection, a strong correlation was found
between floating algae and interference factors in the environment. Therefore, it is very
important to ensure the network can learn the spatial position correlation of targets. The
dual-attention mechanism can meet our requirements very well. Meanwhile, to reduce the
computation cost of the attention block, we only applied the dual-attention block to the last
layer of the feature extraction module.

In addition, considering the features of floating algae at different distances from the
camera, a multi-scale fusion module was introduced to capture the inter-scale correlation of
the feature pyramid. In the feature decoder module, the FCOS head and segmentation head
were introduced to accurately obtain the segmentation area of the algae in every detection
bounding box. The extensive experiment results show that the AlgaeMask can achieve
better detection accuracy and at a lower time cost in all compared instance segmentation
methods to satisfy the real-time needs of floating algae detection.

Due to the limit amount of marine environment data, our model did not take the
interferences of bad weather, reflections, and shadows on the ocean surface into account.
For future studies, we will further analyze the performance of deep learning methods
under conditions of different complex marine scenes (e.g., rain, fog, and reflections) to
enhance the robustness of the floating algae detection network.
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