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Abstract: A regression-based approach was used to test the suitability of a range of parameters,
including total prokaryotic cell abundance and biomass, as lipopolysaccharide (LPS) content, and ex-
oenzymatic activities (leucine aminopeptidase, LAP, beta-glucosidase, ß-G, and alkaline phosphatase,
AP) as predictors of heterotrophic prokaryotic production (HPP) in the Ross Sea epipelagic waters. A
close association between HPP and protein hydrolysis mediated by enzymatic activity (LAP), and to
a lower significance level with the other variables, was recorded. Three multiple regression equations
were developed from two microbial datasets collected during middle austral summer periods. All
showed a good predictive ability for HPP, and this was further validated through a comparison
between the predicted and the observed HPP values. The obtained regression equations proved to
represent a promising example of empirical models for further predictive studies in the Ross Sea
where—through the incorporation of additional microbiological and environmental parameters—the
developed models could find a practical application to cover the entire austral summer period.

Keywords: microbial parameters; epipelagic layer; heterotrophic prokaryotic production; Antarctica;
Ross Sea

1. Introduction

In aquatic environments, the heterotrophic activity expressed by the microbial as-
semblage is a dominant energy pathway in the planktonic food web. Prokaryotes are the
major players in the production of new living biomass, as well as in the transformation
of particulate organic matter (POM) into dissolved organic matter (DOM) and in the min-
eralization of DOM to CO2 and inorganic nutrients [1]. By means of the bacterial carbon
production (now renamed as heterotrophic prokaryotic production (HPP), DOC was assim-
ilated by the prokaryotic assemblage with production of new biomass. The HPP process
has a primary importance in understanding the fluxes of carbon and energy in aquatic
ecosystems [2]. On the other hand, organic matter hydrolysis by exoenzymatic activities is
recognized as an important bottleneck for substrate utilization by microbial assemblage and
an important factor controlling the prokaryotic metabolism [3]. Consequently, estimates of
potential activity rates may provide important insights on the organic matter flux along
the microbial loop, as well as on the quality and quantity of organic polymers available to
heterotrophs [4]. The hydrolysis and utilization of complex organic substrates are crucial
steps in the use of macromolecules to sustain microbial growth rates [5]. Microorganisms
are recognized as major enzyme synthesizers [6–8]; the enzymes leucine aminopeptidase
(LAP), beta-glucosidase (ß-G), and alkaline phosphatase (AP) play a critical role in the
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decomposition of proteins, polysaccharides, and organic phosphates, respectively, and
modulate the flux of carbon from the biotic to the abiotic domains and the recycling of
nutrients [6,7]. Both the processes of organic matter decomposition through enzymatic
hydrolysis and the production of new prokaryotic biomass are under environmental control
and can influence the ecosystem functioning [6–8].

In cold marine environments, during the summer period, the occurrence of active
productive (both autotrophic and heterotrophic) processes frequently results in a close
association between the hydrolytic activities over the organic polymers, particularly protein
decomposition, and picoplankton biomass [9,10]. In extreme environments, the content
of lipopolysaccharides (LPS) [11] has been considered as a useful proxy for microbial
biomass detection owing to its easy and quick measurement [12,13]. LPS are structural
components of the outer membrane characteristic of all Gram-negative bacteria, therefore
LPS assay targets all the Gram-negative microorganisms, both heterotrophic and photo-
synthetic prokaryotes (e.g., sulfur and non-sulfur purple bacteria, green sulfur bacteria,
cyanobacteria), but not Archaea.

During the last four decades, in the framework of the Italian National Antarctic
Research Program (PNRA), field studies and experimental work have been carried out in
the Southern Ocean in order to explore its waters for physical, chemical, and microbiological
features. These studies have demonstrated the presence of active bacterial communities
with a high metabolic potential [14–20]. From a microbiological point of view, the coastal
areas of the Ross Sea, particularly Victoria Land, represent a very interesting “laboratory”
for the study of the water biogeochemistry in terms of carbon, nitrogen, and phosphorus
mobilization and recycling mediated by the microbial communities. Besides a complex
topography, during the austral summer period it is possible to find the coexistence of a
mosaic of habitats differently affected by iceberg disturbance, sea ice cover, light regime,
and primary production sources [21,22]. Furthermore, increased melting of sea ice is
expected to fuel surface waters with carbohydrate-rich organic polymers, stimulating the
activity of specific hydrolytic enzymes [10]. Antarctic coastal ecosystems have perhaps the
most extreme seasonality observed anywhere in the world’s oceans [23].

In the Terra Nova Bay (TNB) area, the distribution and composition of suspended
particulate matter occurring in the polynya affect the structure and variability of the
plankton community and its variability. The succession of blooms (Phaeocystis in early
December, small and micro-sized diatoms in early February) and changes in the biomass of
small heterotrophs determine important changes in the composition and fate of particulate
matter [16]. In a complex planktonic scenario, several processes may regulate the flux of
DOC and in turn the distribution patterns of the prokaryotic production, making a correct
estimate of the environmental state very difficult. The release of dissolved organic matter
(DOM) by coastal diatoms [24] or by planktonic grazers during their sloppy feeding [25], as
well as the DOM released during bacterial cell growth and decline [26,27], the phosphate
and soluble organic phosphorus compounds excreted by zooplankton [28], or the DOM
released during viral lysis [29,30], are some of them.

During austral summer periods, most of the research performed within the PNRA
over the last decades in the Ross Sea has focused on the upper layers of the water column
(200 m), resulting in the generation of time series of data concerning several microbial
parameters (prokaryotic abundance, exoenzymatic activities, HPP) and measurements.
During the summer season, productive processes are high at the most surface layers,
where nutrients, inorganic, and organic particles are released during sea ice melting, with
important consequences for all biological processes [31].

The present study aimed at evaluating the usefulness of prokaryotic parameters such
as exoenzymatic activities, cells abundance, and biomass in order to develop a predictive
model for epipelagic net HPP. For that purpose, the relationships among prokaryotic
parameters, the validity of each one, regression models, and HPP prediction across the
water columns of coastal stations in the Ross Sea were considered.
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2. Materials and Methods

The field datasets used in this study were obtained from two Italian surveys (2000 and
2004) carried out in coastal areas of the Ross Sea during the austral summer period.

2.1. Study Area and Samplings

Samplings were planned as a part of two projects, carried out in the frame of the XV
and XVIII Expeditions of the Italian National Program for Antarctic Research (PNRA). The
first dataset analyzed was from the Terra Nova Bay 2000 survey (TNB), performed from
22 January to 10 February, in an area near the Mario Zucchelli Italian Station (MZS) (Lat.
74◦41.616′ S, Long. 164◦06.702′ E) strongly influenced by the Terra Nova Bay polynya; from
this survey, two stations were selected, Portofino (PF, Lat. 74◦42.01′ S, Long. 164◦9.15′ E)
and Santa Maria Novella (SMN, Lat. 74◦43′ S, Long. 164◦13′ E). The second dataset
was from the Victoria Land Transect 2004 survey (VLT), performed on board the polar
R/V “Italica” (3–22 February), in coastal areas from Lat. 71◦15′ E to Long. 74◦50′ E. Four
stations were selected, stations A3: Lat. 71◦17′ S, Long.170◦14′ E; H1: Lat. 72◦19′ S, Long.
170◦13′ E; C2: Lat. 73◦29′ S, Long. 164◦45′ E; R2: Lat. 74◦54′ S, Long. 163◦54′ E. The
location of the sampling stations is shown in Figure 1. Detailed information about the
sampling station locations, water column characteristics, and microbiological analyses is
reported by Monticelli et al. [18] and Povero et al. [32]. Here, the microbiological topics are
briefly discussed.
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2.2. Heterotrophic Prokaryotic Production (HPP) Measurements

HPP was estimated using the 3H-leucine incorporation method [33] by the centrifuga-
tion micro-method of Smith and Azam [34] using 2 mL Eppendorf tubes, triplicate samples,
and two killed blanks. Net Prokaryotic carbon biomass production was calculated accord-
ing to Kirchman [35], assuming no intracellular isotope dilution, applying a theoretical
factor of 1.55 Kg C mol leucine−1 [36]. Values were expressed as ng C L−1h−1. Cell-specific



J. Mar. Sci. Eng. 2022, 10, 1812 4 of 18

activity (csa) was calculated dividing the HPP activity rates by the prokaryotic abundance
(cells L−1) and expressed as ag C cell−1h−1.

2.3. Extracellular Enzymatic Activity (EEA) Measurements

The potential extracellular enzymatic activity (EEA) rates were measured immediately
after sample collection, according to the Hoppe’s multi-concentration method [3], by
using methylumbelliferyl (MUF) substrates (MUF-phosphate and MUF-ß-Glucopyranoside,
Sigma Aldrich, St. Louis, MO, USA) for alkaline phosphatase (AP) and β-glucosidase (ß-G)
activities, respectively. L-leucine-4 Methyl-7-coumarinylamide (Leu-MCA) (Sigma Aldrich)
was the substrate used to measure leucine aminopeptidase activity (LAP). Details about
the used protocols are reported in Monticelli et al. [18]. Briefly, increasing concentrations of
fluorogenic substrates (standing stocks 5 mM) were added to 10 mL seawater samples to get
final concentrations of 10, 25, 50, 100, and 200 nM. Fluorometric readings were performed
with a Turner TD 700 fluorometer (Turner Designs, San Jose, CA, USA) using the filters 380–
440 nm (excitation–emission wavelengths) for LAP and 350–445 nm for ß-G and AP. After
immediate measurements of fluorescence after substrate addition (time 0), readings were
repeated 3 h after incubation at in situ temperature. Known MUF and MCA concentrations
(from 10 to 200 nM) were used to build a standard curve and convert the increase in
fluorescence into the hydrolysis velocity, reported as Vmax. Results were expressed as nM
of hydrolyzed substrate h−1, LAPcsa, ß-Gcsa, and APcsa as amol cell−1h−1.

2.4. Total Pico Plankton (TPP) Cell Counts

Eubacteria + Archaea direct counts were determined by epifluorescence microscopy
after staining with 4′,6-Diamidino−2-Phenylindole and Dihydrochloride (DAPI, 2% final
concentration, Merck Life, Milan, Italy) according to Porter and Feig [37].

2.5. Lipopolysaccharides (LPS) Quantitative Determinations

The determination of total (dissolved plus particulate) LPS as an indicator of Gram-
negative biomass was estimated according to Watson and Hobbie [38]. Subsamples (1 mL)
for LPS quantification were stored in pyrogen-free vials at−20 ◦C until analysis, performed
in Italy. The Quantitative Chromogenic LAL test (QCL-1000, Bio Whittaker, Inc., Walk-
ersville, MD, USA) was used for LPS determinations, following the producer instructions.
Each sample was gently mixed with the Limulus amebocyte lysate (LAL) and incubated at
37 ◦C for 10 min. The subsequent addition of the chromogenic reagent was followed by a
further incubation for 6 min; the reaction was stopped by adding 100 µL acetic acid (final
concentration 25%). The color change from white to yellow indicated the concentration
of LPS in the sample. The absorbance of the test tube was measured at 405 nm using a
microtiter ELX−808 spectrophotometer (Bio Whittaker, Inc.) equipped with an Automatic
Microplate Reader (for 96 microtiters) controlled by the specific software WIN-KQCL (Bio
Whittaker, Inc.). The LPS concentration in each sample was expressed as ng LPS L−1 and
LPScsa as ag cell−1.

2.6. Statistical Analysis

Descriptive statistics, normality tests, correlations, and regressions were performed
using the Minitab Statistical Software (Release 17 for Windows, State College, Pennsylva-
nia) [39]. In particular, in the regression study, the microbiological parameters TPP, LPS,
LAP, AP, and ß-G were considered as free predictors versus HPP (response). The adopted
principle was to achieve a predictive equation (multiple regression model) using the lowest
number of predictors associated with the highest coefficient of determination-CD (R-sq).
CD was adjusted according to the number of predictors in the model (R-sq adj) and R
square was predicted (R-sq pred) to indicate how well the model predicts responses for
new observations.

Other considered parameters were the optimal goodness of prediction according to
the Mallows’ Cp coefficient, where a small Cp value indicates a small variance, namely that
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the model is relatively precise in estimating the true regression coefficients and predicting
future responses; the standard error of coefficients (SE) and of the regression (S); the
variance inflation factor (VIF) indicates the extent to which multi-collinearity is present
in the regression analysis (VIF = 1: whether predictors are not correlated, 1 < VIF < 5:
whether they are moderately correlated, VIF > 5 to 10: whether predictors are highly
correlated, VIF > 10: indicate that multi-collinearity is inappropriately influencing the
regression results), and the prediction sum of squares (PRESS) to assess the predictive
ability of the model (in general, a smaller PRESS value supports the best model’s predictive
ability). To choose the best subsets of predictors, a level of significance p = 0.05 was used.
Post-regression tests using Mann–Whitney pairwise comparisons between the observed
and the predicted HPP values were carried out.

3. Results
3.1. Microbiological and Environmental Characteristics

The mean values and the ranges of microbiological parameters recorded during
each survey are summarized in Table 1. During the TNB survey in the post-bloom period
sampled in an area adjacent to the MZ Station, all hydrolytic activities, prokaryotic standing
stock, and biomass were relatively high, with mean values 1–2 orders of magnitude higher
than those measured in the VLT survey. The mean and extreme values of HPP were
significantly higher also. The maximum values of HPP (282.79 ng C L−1 h−1) and LAP
(733.05 nM h−1), and their mean values, were exceptionally high in Antarctic waters. Many
ice-covered stations were sampled during the VLT survey; under these conditions, the
photosynthetic production of biopolymers, as well as the hydrolytic activities and cell
standing stock, were low.

Table 1. Microbiological parameters observed in Terra Nova Bay (TNB) and Victoria Land Transect
(VLT) surveys, together with temperature values. T (temperature), HPP (heterotrophic prokaryotic
production), LAP (leucine aminopeptidase), AP (alkaline phosphatase), ß-G (ß-glucosidase), LPS
(lipopolysaccharide), and TPP (total picoplankton).

T HPP LAP AP ß-G LPS TPP

◦C ngC
L−1h−1 nM h−1 nM

h−1
nM
h−1

ng
L−1

×107

cells L−1

TNB mean −1.65 59.23 190.12 1.26 0.48 128.34 13.32
(0–100 m) s.d. 0.48 26.96 451.15 0.45 0.14 38.30 4.55

22 January–10
February 2000 max −0.89 282.79 733.05 6.73 1.85 357.87 13.90

min −1.99 4.4 28.63 0.03 0.41 61.15 5.40
n 84 84 81 54 48 83 78

VLT mean −1.26 11.67 6.44 0.054 0.064 70.81 6.06
(0–100 m) s.d. 0.50 2.44 1.97 0.003 0.027 3.13 4.37

3–21 February
2004 max −0.69 125.49 50.76 2.027 0.569 212.11 32.44

min −1.90 0.49 0.12 0.017 0.003 39.41 2.65
n 78 78 78 78 78 74 78

Prior the regression analysis the multiple correlations between the logarithmic-transformed
values of the microbiological parameters, particularly between HPP and other parameters,
Spearman’s rho correlation coefficients were calculated (Table 2). The highest correlation
was observed between Log 10 HPP and Log 10 LAP activity (0.848 and 0.853 in TNB and
VLT surveys, respectively, as reported in the matrices A and B), which was reflected in the
total dataset (matrix C, rho = 0.826) and in the csa values (matrix D, rho = 0.828).
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Table 2. Spearman’s rho correlation coefficients calculated between the log 10-transformed values of
heterotrophic prokaryotic production (HPP, as ngC L−1 h−1) and exoenzymatic activities (leucine
aminopeptidase-LAP, alkaline phosphatase-AP, ß-glucosidase-ß-G) (as nM h−1), total picoplankton-
TPP (as cells L−1), and lipopolysaccharide-LPS (as ng L−1). For the matrix D, the correlations
were calculated using the cell-specific activity (csa) values, reported as nmol cell−1 h−1 for enzyme
activities and as ag cell −1 for LPS.

Matrix A. TNB 2000 Survey Dataset Matrix B VLT 2004 Survey Dataset
HPP LAP β-G AP TPP HPP LAP β-G AP TPP

LAP 0.848 LAP 0.853
(•) * (•)

β-G 0.449 0.553 β-G 0.244 0.251
(0.002) (•) (0.049) (0.027)

AP 0.318 0.318 0.358 AP 0.472 0.367 0.259
(0.022) (0.022) (0.016) (•) (0.001) (0.022)

TPP 0.483 0.470 0.243 0.248 TPP 0.415 0.360 0.304 0.485
(•) (•) n.s. n.s. (•) (0.001) (0.007) (•)

LPS 0.531 0.533 0.439 0.288 0.138 LPS 0.389 0.335 0.329 0.528 0.691
(•) (•) (0.002) (0.038) n.s. (0.001) (0.004) (0.005) (•) (•)

Matrix C Overall Data (TNB + VLT Datasets) Matrix
D As Cell-Specific Activity

HPP LAP β-G AP TPP HPPcsa LAPcsa β-Gcsa APcsa

LAP 0.826 LAPcsa 0.828
(•) (•)

β-G 0.331 0.467 β-Gcsa 0.441 0.511
(•) (•) (•) (•)

AP 0.499 0.574 0.461 APcsa 0.542 0.582 0.470
(•) (•) (•) (•) (•) (•)

TPP 0.329 0.100 0.150 0.165 LPScsa 0.588 0.436 0.330 0.434
(•) n.s. n.s. n.s. (•) (•) (•) (•)

LPS 0.450 0.374 0.285 0.148 0.284
(•) (•) (0.002) n.s. (•)

* plevel:•, p < 0.001; n.s.: not significant; cell-specific activity was calculated by dividing enzyme activities and LPS
by TPP values.

From the total dataset (Table 2, matrix C), the level of relative correlation of HPP
with the other microbiological parameters was in the order LAP (0.826) > AP(0.499) > LPS
(0.450) > TPP(0.329)~ß-G (0.331). When considering cell-specific activity (matrix D) it was
in the order LAPcsa (0.828) > LPScsa (0.588) > APcsa (0.542) > ß-Gcsa (0.441), again showing
the highest correlation of HPPcsa with LAPcsa and increased correlations with LPScsa and
APcsa. LAPcsa was shown to be the best predictor parameter, followed by LPScsa and APcsa.
Cell-specific rates of hydrolytic activities revealed higher LAP values in the TNB area (mean
LAPcsa = 11.84 amolcell−1h−1) than in the VLT area (mean LAPcsa = 0.209 amol cell−1h−1);
LPScsa was also six times higher in TNB area than in VLT (mean = 9.26 ag cell−1).

3.2. Regression Analysis

A first hypothesis to be verified was if the predictive model, generated from the
dataset of the TNB survey 2000, was suitable for the dataset obtained from the VLT survey
2004. Unfortunately, this test was unsuccessful due to very high values of residuals (i.e.,
the differences between the observed and the predicted data). Actually, although both
surveys were performed in late summer periods, and the range of water depths was
the same (0–100 m), the sampled areas were different, as shown by the different ranges
of the values measured for the predictor parameters (Table 1). Furthermore, a possible
influence of autotrophic organisms, such as phytoplankton (as a potential producer of AP)
and cyanobacteria (as potential producers of LAP), both actively involved in the enzyme
synthesis within the photic zone, could partially explain this failure. Consequently, the
model produced from one dataset did not fit well within the range of the predictors’ values
of the other dataset and therefore it did not meet the general condition of being suitable
for the total dataset; for these reasons, a total dataset of predictors from both surveys was
necessarily built.

A second screening was carried out using all the predictors, which were significantly
correlated with HPP (Table 2, C, D). According to the highest correlation values observed
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among all the microbiological parameters, the predictive equation was built considering
only the heterotrophic activity in terms of csa.

From the total dataset (TDS), the best subsets of regression HPP (Y) versus LPS, ß-G,
AP, LPS, and TPP (variables-vars) were calculated. For confirmation, an analysis was
carried out with their original values (see Table 1) and after with csa values and Log 10
(L) transformed values. The accuracy and goodness of each single variable (var) and of
a group of vars to yield a regression equation were evaluated analyzing the coefficients
of determination (R-sq, R-sq adj, and R-sq-pred), the prediction sum of squares (PRESS),
the goodness of prediction (Mallows Cp), and the error standard of the regression (S) (see
Materials and Methods).

The best results were obtained expressing the vars as Logarithmic-transformed, cell-
specific activities (L-csa). At the top of Table 3, the statistics of each single var and the best
combination of vars (from 2 to 5) are reported. When single vars were considered, LAP
showed to be the best var (R-sq pred = 59.9%), followed by ß-G (R-sq pred = 29.2%), AP,
LPS and TPP (R-sq pred = 1.5%). According to Mallows’ Cp, the regression models using a
single predictor resulted in very imprecise predictive responses; with two or more vars as
predictors, the precision of the models was significantly increased, giving higher CD and
lower PRESS, Mallows Cp and S.

Table 3. Exploratory best subsets log-log regression analysis of specific heterotrophic prokaryotic
production (HPP) versus specific leucine aminopeptidase (LAP), specific alkaline phosphatase (AP),
specific ß-glucosidase (ß-G) and specific lipopolysaccharide (LPS). Reported are: HPPcsa, LAPcsa,
APcsa and ß-Gcsa as Log10 cell-specific activity h−1, LPS as Log10 ag cell−1, TPP as Log10 cells L−1.
Abbreviations: PRESS-prediction sum of squares; S-standard error of the regression; R squared
(sq)-coefficients of determination. The meaning of the statistical parameters is explained in Materials
and Methods.

R-sq R-sq Mallows Variables

Vars R-sq (Adj) PRESS (Pred) Cp S LAPcsa APcsa ß-Gcsa LPScsa TPP

Total Dataset
1 61.4 61.1 14.1 59.9 37.6 0.3555 X
1 32.1 31.4 24.8 29.2 146.1 0.4719 X
1 31.1 30.5 25.0 28.7 149.5 0.4751 X
1 24.9 24.2 27.4 21.9 172.8 0.4963 X
1 4.4 3.5 34.5 1.5 248.4 0.5598 X

2 * 70.8 70.2 10.8 69.2 5.1 0.3110 X X
3 * 71.7 70.9 10.8 69.3 3.7 0.3076 X X X
4 * 72.1 72.1 10.8 69.3 4.0 0.3066 X X X X
5 72.1 70.8 10.9 68.9 6.0 0.3080 X X X X X

≤50 nmol L−1 LAP Dataset LAPcsa APcsa ß-Gcsa LPScsa TPP
1 67.8 67.4 9.7 66.1 14.3 0.3298 X
1 32.6 31.8 20.1 30.0 120.3 0.4768 X
1 29.0 28.1 21.4 25.4 131.3 0.4896 X
1 25.9 25.1 22.4 21.9 140.4 0.4999 X
1 25.3 24.4 22.5 21.5 142.5 0.5022 X

2 * 70.1 69.4 9.2 67.0 9.3 0.3196 X X
3 * 71.2 70.1 9.2 67.8 7.9 0.3155 X X X
4 * 71.9 70.5 9.2 68.0 7.9 0.3137 X X X X
5 73.2 71.5 9.1 68.4 6.0 0.3083 X X X X X

>50 nmol L−1 LAP Data Set LAPcsa APcsa ß-Gcsa LPScsa TPP
1 81.8 81.0 1.6 78.6 5.5 0.2394 X
1 81.5 80.6 1.6 78.1 6.0 0.2418 X
1 73.9 72.8 2.3 68.6 17.1 0.2868 X
1 65.1 63.6 2.9 59.4 29.9 0.3316 X
1 62.8 61.2 3.1 56.6 33.2 0.3422 X

2 * 85.7 84.4 1.3 82.7 1.8 0.2169 X X
3 * 86.2 84.3 1.3 82.1 3.1 0.2179 X X X
4 * 86.8 84.2 1.3 81.9 4.3 0.2188 X X X X
5 87.0 83.5 1.4 80.6 6.0 0.2230 X X X X X

* The best of n (2, 3, 4) variables (vars).
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For the Model Building Sequence and Optimize Response steps, three vars (LAP,
ß-G, and LPS) were selected as potential predictors of HPP. ß-G was not considered due
to its negligible contribution to the regression model. To reduce the multi-collinearity,
logarithmic-transformed-LAP and logarithmic-transformed-LPS were used as predictors,
and the statistic of the regression model from total dataset (TDS-RE) is shown at the
top of Table 4. Their main features were R-sq = 97.23%, R-sq pred = 97.16%, low S,
and moderate multi-collinearity (VIF = 5.2) values, which were compatible with a good
predictive equation.

Table 4. Heterotrophic prokaryotic production (HPP) prediction from logarithmic-transformed
LAP and LPS variables: selected multiple regression analysis with optimized response from total,
≤50 nM h−1 and >50 nM h−1 LAP datasets. Abbreviations: SE (standard error of coefficient), VIF
(variance inflation factor), TDS (total dataset), RE (regression equation). For the selection of predictor
parameters see Table 1, and for the meaning of the regression parameters see Materials and Methods.
For the matrix D, the correlations were calculated using the cell-specific activity (csa) values. Leucine
AminoPeptidase-LAP and alkaline phosphatase-AP are reported as nM h−1, lipopolysaccharide-LPS
as ng L−1; csa are reported as amol cell−1 h−1 for LAP and AP and as ag cell−1 for LPS.

Predictor Coef SE p-Value VIF

Total Dataset (TDS)
LAP * 0.5360 0.0270 0.000 5.24
LPS * 0.2833 0.0230 0.000 5.24

S 0.2483
R-sq 97.23%

R-sq (adj) 97.19%
R-sq (pred) 97.16%

Mallows’ Cp 2.00
alpha = 0.05

Regression Equation from TDS (TDS-RE)
Log HPP = 0.536 log (LAP *) + 0.283 log (LPS *)

≤50 nM h−1 LAP dataset (≤50 DS)
Constant 0.6820 0.1190 0.000
LAPcsa ** 0.6285 0.0403 0.000 1.28
APcsa ** 0.0932 0.0374 0.015 1.28

S 0.2319
R-sq 80.73%

R-sq (adj) 80.29%
R-sq (pred) 79.17%

Mallows’ Cp 2.53
alpha = 0.05

Regression Equation from ≤50-DS (≤50 DS-RE)
Log HPPcsa = 0.682 + 0.6285 log (LAPcsa **) + 0.0932 log (APcsa **)

>50 nM h−1 LAP dataset (>50 DS)
Constant 0.1230 0.3320 0.714
LAPcsa ** 0.3950 0.1690 0.029 3.31
LPScsa** 0.4540 0.1110 0.000 3.31

S 0.2212
R-sq 85.15%

R-sq (adj) 83.80%
R-sq (pred) 81.45%

Mallows’ Cp 1.59
alpha = 0.05

Regression Equation from >50 DS (>50 DS-RE)
Log HPPcsa = 0.1230 + 0.3950 log (LAPcsa **) + 0.4540 log (LPScsa **)

* As Log 10 of total activity, ** as Log 10 of cell-specific activity.
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In the equation building process, seven predictor values (four responsible of large resid-
uals and three of unusual values) were removed from the total dataset (plots not shown).

From the highest correlations observed between HPP and LAP (Table 2), a simple
scatter plot between these two parameters was produced. The general trend was that the
dataset points were arranged following a linear distribution. In detail, in correspondence
with low LAP values (<50 nM h−1), the respective “cloud” of points were fitted on an axis
different from the axis of the main regression line. This is also shown in Figure 2.
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Figure 2. Relationships between the logarithmic-transformed and cell-specific values of the observed
(O-HPP) and the predicted (P-HPP) heterotrophic prokaryotic production (L-HPPcsa) obtained from
the total dataset regression equation (T DS-RE). The solid line represents the regression line showing
the best fit to these data, and the dotted lines represent the 95% confidence intervals (CI) and
prediction intervals (PI). The meaning of the statistical parameters is explained in the Section 2.

Particularly, LAP activity values > 50 nM h−1 were recorded in seawater collected
from 0–50 m depth of the TNB area only, while lower values (LAP ≤ 50 nM h−1) were
detected below 50 m in the TNB area and in all the VLT area. Consequently, two datasets
were re-arranged, one corresponding to LAP values ≤50 nM h−1 and the other to LAP
values >50 nM h−1, which were used to build two multiple regression equations. Therefore,
simple regressions HPP versus LAP were computed from each dataset and their respective
equations showed different slopes and intercepts [Log (HPPcsa) = 1.372 + 1.230 Log (LAPcsa)
≤ 50 nM h−1; Log (HPPcsa) = 27.78 + 0.195 Log (LAPcsa) > 50 nM h−1].

From the LAP ≤ 50 nM h−1 dataset (≤50 DS), the respective exploratory best subsets
regression analysis is detailed in the middle part of Table 3. As observed from the total
dataset analysis, the best single var was LAP (R-sq = 67.8%), followed by LPS (R-sq = 29.0%),
ß-G, and AP (R-sq = 25.3%). Single var regression models were imprecise, as shown
by high Mallows Cp and S; better results were obtained simultaneously using two or
more vars as predictors. The three vars selected to optimize the regression analysis were
the three enzymatic activities expressed as Log-transformed cell-specific activities (L-csa)
(R-sq = 71.2%, PRESS 9.2, Mallows Cp = 7.9, and S = 0.3155). The regression equation
(≤ 50 DS-RE), that is shown in the middle of Table 4 was characterized by discrete values
of SE, high R-sq (80.73%), and R-sq pred (79.17%), and very low levels of multi-collinearity
(VIF = 1.28). As found from TDS-RE optimization step, β-G gave a negligible contribution
to the regression model. Consequently only two predictors (LAPcsa and LPScsa) were
considered, and four vars were excluded, as they were responsible for large residuals.
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From the LAP > 50 nM h−1 dataset (>50 DS), the respective exploratory best subsets
regression analysis, detailed at the bottom of Table 3, was markedly different from the other
two exploratory analyses. The best single var was LPS (R-sq = 81.5%), followed by LAP
(R-sq = 73.9%), AP, and β-G (R-sq = 62.8%). In general terms, LPS increased its value as
predictor, while two enzymatic activities (AP and ß-G) did not. Better results were obtained
using two or more vars as predictors simultaneously, which resulted in increased R-sq,
R-sq pred, and precision, as shown by low Mallows Cp and PRESS values. To model the
regression analysis, logarithmic-transformed cell-specific LAPcsa and LPScsa were selected,
and the statistic of this test is shown at the bottom of Table 4. Conversely, TPP was not
considered as an X variable of the regression equation; indeed, using cell-specific variables
there was an autocorrelation, as HPPcsa was calculated by dividing HPP by TPP.

3.3. Observed and Predicted HPP Values

Using the regression equation TDS-RE, the predicted HPP (P-HPP) values, as Logarithmic-
transformed, cell-specific-HPP values (HPPcsa), were calculated and plotted versus the
observed HPP (O-HPP) (Figure 2). A simple regression analysis was performed employing
P-HPP as a dependent variable, and yielded a regression equation with slope 1 and intercept
close to zero. Values located outside the prediction intervals (PI, indicated with a dashed
line) correspond to anomalous values responsible for large residuals.

Distribution of O-HPP and P-HPP along TNB and VLT Epipelagic Water Columns

From the selected parameters, the predicted HPP values along eight water columns
(four from TNB, namely from station PF sampled at different times and from station SMN,
with four stations from VLT: C2, A3, H1, and R2) were calculated and plotted with the
observed HPP (O-HPP) values (Figure 3). The predicted HPP values were calculated from
the predictor values measured in each water sample, both using the regression equation
from the total dataset (indicated as P-HPP) and simultaneously using two regression
equations (indicated as P2-HPP). All the predicted values showed trends similar to the
observed ones, with few exceptions. In TNB, O-HPP and P-HPP values were closely
related, except for the O-HPP values detected at stations SMN 02, PF 03 at surface; the same
discrepancy was found at R2 station in VTL area.



J. Mar. Sci. Eng. 2022, 10, 1812 11 of 18
J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 3. Terra Nova Bay (TNB, column on the left) and Victoria Land (VLT, column on the right) 

surveys. Vertical distribution along the water column of the observed (O-HPP) values of Hetero-

trophic prokaryotic production (HPP) and the predicted HPP values (P-HPP) from the total dataset 

and from the simultaneous use of two different regression equations developed according to both 

datasets (≤50 and >50 nM h−1) of Leucine AminoPeptidase (LAP) concentrations (P2-HPP). 

4. Discussion 

Accounting for about 20% of the atmospheric CO2 uptake, the Southern Ocean plays 

a significant role as a major carbon sink [40]; in this context, HPP regulates the efficiency 

of the biologically-mediated carbon sequestration and its quantification is important to 

obtain a biogeochemical model of the carbon cycle, and also in the light of current climate 

change scenario [41,42]. This study aimed at finding a set of microbial variables as suitable 

predictors of HPP in Antarctic epipelagic waters during the austral summer period; to this 

end, two datasets were analyzed through calculation of regression equations. In a com-

prehensive view of ocean carbon fluxes, HPP is universally recognized as a key process 

to evaluate the role played by the prokaryotic assemblage. Nevertheless, criticism has fre-

quently been moved against the method based on tritiated leucine incorporation, regard-

ing the use of standard carbon-to-leucine conversion factors, which vary along environ-

mental gradients and must be determined in situ [43]. These factors could result in under-

estimation of the actual production rates by at least a factor of 6.1 in open-ocean waters 

Figure 3. Terra Nova Bay (TNB, column on the left) and Victoria Land (VLT, column on the right) sur-
veys. Vertical distribution along the water column of the observed (O-HPP) values of Heterotrophic
prokaryotic production (HPP) and the predicted HPP values (P-HPP) from the total dataset and from
the simultaneous use of two different regression equations developed according to both datasets
(≤50 and >50 nM h−1) of Leucine AminoPeptidase (LAP) concentrations (P2-HPP).

4. Discussion

Accounting for about 20% of the atmospheric CO2 uptake, the Southern Ocean plays
a significant role as a major carbon sink [40]; in this context, HPP regulates the efficiency
of the biologically-mediated carbon sequestration and its quantification is important to
obtain a biogeochemical model of the carbon cycle, and also in the light of current climate
change scenario [41,42]. This study aimed at finding a set of microbial variables as suitable
predictors of HPP in Antarctic epipelagic waters during the austral summer period; to
this end, two datasets were analyzed through calculation of regression equations. In
a comprehensive view of ocean carbon fluxes, HPP is universally recognized as a key
process to evaluate the role played by the prokaryotic assemblage. Nevertheless, criticism
has frequently been moved against the method based on tritiated leucine incorporation,
regarding the use of standard carbon-to-leucine conversion factors, which vary along
environmental gradients and must be determined in situ [43]. These factors could result
in underestimation of the actual production rates by at least a factor of 6.1 in open-ocean
waters [44]. Starting from these considerations, the present study aimed at assessing
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which, among a set of microbial parameters, was the best hypothetic predictor of HPP. In
the perspective of proposing an eco-friendly methodological approach alternative to the
commonly used radiotracer measurements for HPP estimation, empirical models suitable
to be applied to cold marine environments such as the Antarctic waters were developed.

4.1. Microbiological Scenario

During a high photosynthetically active radiation (PAR) availability period, in the
epipelagic layer, the photoautotrophic processes and the consequent production of biopoly-
mers are particularly active, as well as the synthesis of prokaryotic inducible catabolic
enzymes [6]. In the polynya of the Ross Sea, the hydrolytic activities and their relationships
with particulate organic substrates were analyzed [17], confirming the close link between
organic substrates availability and degradations systems response; particularly high LAP
activity was detected in the upper layer (0–50 m depth). During the early summer period
in the Arctic Ocean, significantly positive correlations were detected among HPP, amino
acids, temperature, and chlorophyll a, as well as between LAP activity and amino acids,
in relation to the prokaryotic activity [10]. In such a case, a direct linear relationship was
recorded between cell-specific HPP and cell-specific LAP (R2 = 0.74, p < 0.001, n = 16).
In the same study a high temperature variability (∆t = 7–8 ◦C) was observed, positively
associated with amino acid concentrations and prokaryotic activity. In the summer season
in a South American sub-Antarctic area, high positive correlations among HPP and LAP
activity, TPP, POC, and Chla were observed [9]. Conversely, in the present study, narrow
temperature variations were observed during both surveys (∆t~1.6 ◦C, 0.5 ◦C in TNB sur-
face waters) and temperature showed no or little influence on the microbiological activities
(Temperature versus HPP Spearman rho = −0.02). As a consequence, this environmental
parameter was not considered as a predictor parameter in our regression study.

The values of the microbial parameters collected from the TNB area were in the same
range as those observed by Talbot et al. [9] and Piontek et al. [10], even expressed as cell-
specific activity; conversely, at the VLT area, all parameters showed values significantly
lower than those measured at the TNB one (Table 1) and similar to those reported under ice
close to Cape Hallett (Victoria Land) [19]. The high rates of HPP, enzymatic activities, TPP,
and LPS suggested the occurrence of intense biological activities in the TNB area compared
to the VLT one.

In both the study areas HPP was significantly correlated with LAP, with a Spearman’s
rho coefficient similar to that reported by Talbot et al. [9], indicating a coupling of organic
matter decomposition and heterotrophic production during summer. At a lower level,
significant correlations were also observed between HPP and TPP, as well as between
HPP and LPS, and AP and ß-G. Particularly, the prokaryotic biomass (LPS) was positively
correlated with the three enzyme activities and HPP (Table 2); a similar result was observed
in an Arctic study [10]. The different rho correlation values observed between the TNB
and the VLT surveys (Table 2), together with the quantitative differences (Table 1), were
probably the result of the different trophic and geographical characteristics of the sampled
areas and sites [18,22].

The phytoplanktonic biomass, measured as water fluorescence, was significantly cor-
related (Spearman’s rho) with HPP (0.58), LAP (0.74), ß-G (0.42), TPP (0.50), and LPS (0.64),
as calculated on logarithmic-transformed data from the whole dataset. In a previous study,
a strong positive empirical relationship between prokaryotic abundance and chlorophyll
concentration was observed by Bird and Kalff [45] in fresh and marine waters. A tight
coupling between HPP and chlorophyll-a was also recorded in the Amundsen Sea Polynya
(Antarctica) [42], suggesting that phytoplankton biomass provides a relevant source of
DOC that supports the metabolic activity of prokaryotic organisms.

Concerning the used datasets, during both surveys, samplings did not take into
consideration the diel dynamics of microbial parameters which could influence qualitatively
some values [19], the rapid changes of microbial biomass detected in the early ice-free
areas [15], the horizontal transport of DOC and POC, and other forcings/variables capable
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of influencing the microbial processes and, consequently, the absolute values of the analyzed
parameters and their relationships. On the other hand, all these features underlined
the value of the total dataset considered in this study, as it was representative of most
microbial processes taking place during two middle summer periods in coastal areas along
Victoria Land.

The relative ratio between proteolysis and glycolysis processes gave insights on the
qualitative composition and availability of organic matter to planktonic microorganisms;
variations in LAP/ß-G ratios depend on the quality and nature (labile or refractory) of
the organic matter pool available in the waters [46]. Proteins and organic phosphorus
compounds are polymers degraded early during the enzymatic breakdown of the organic
matter, while polysaccharides are more recalcitrant [47,48]. During the TNB survey, molar
ratios LAP/ß-G in terms of Carbon mobilized from these hydrolytic activities varied from
1199 (on 22 January) to 65 (on 10 February) [18]. The mean LAP/ ß-G ratios (from Table 1)
were 395 and 100 for TNB and VLT, respectively. In the Ross Sea Polynya, sampled during
the same period of this study, ratios higher than 10 were detected during autotrophic
productive processes [17].

In a previous study performed in the Ross Sea [49], a close relationship was found to
link the expression of enzymatic activities to the available organic matter; during productive
periods, when both auto- and heterotrophic-derived organic substrates are already available
in the environment, the relative importance of leucine aminopeptidase in the organic matter
recycling decreased, suggesting that under these conditions the synthesis of new enzymes
was not stimulated. As bacterial growth in marine environments depends on peptidyl
substrates, extracellular aminopeptidase production is regulated through a “on-demand”
mechanism by the peptides present in seawater, as shown in batch cultures of selected
bacterial genera [50]. Taking into consideration the release of carbon atoms and considering
that one molecule of hydrolyzed leucine is equivalent to six carbon atoms, the LAP/HPP
ratios calculated in the Ross Sea were 231 (TNB) and 39 (VLT) (Table 1). In both surveys,
the amount of monomers potentially mobilized from protein decomposition supplied those
removed by the heterotrophic prokaryotic production, providing a surplus available to
other processes.

4.2. Regressions and Predictive Models

From the microbial parameters analyzed as potential predictors, the variations of
Log-transformed LAPcsa alone and together with Log-transformed LPScsa were those that
better interpreted the response variable (HPP). Additionally, in the building process of the
regression equation from≤50 nM h−1 LAP dataset, APcsa contributed to decrease the multi-
collinearity level of predictors in the regression equation. The significant relationships
between HPP and LAP (Table 2) suggested that the conceptual trophic model [productive
period (polymeric new production)→ proteolytic exoenzymes→ new prokaryotic biomass
(HPP)] was fully active in the studied area, even at variable intensities, as shown by the
variable microbial parameters values reported in Table 1. The ecological correlation of
such functional processes was reflected in the numerical correlation between HPP and
the other variables, allowing the building of empirical regression models for predictive
purposes. In addition, the positive correlations between activity rates (HPP, LAP) and
biomass (LPS) agreed with previous studies on polar and cold environments. Moreover,
like our findings, Sinsabaugh et al. [51] underlined the close relationships between the
heterotrophic prokaryotic production and extracellular enzyme activities, as calculated
from a ln-ln regression (instead of Log-10 datasets like in the present study). Table 5
summarizes the regression statistics calculated between HPP and enzyme activities.
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Table 5. Least squares ln-ln regression statistics calculated between HPP and enzyme activities (HPP
values ranging from 0.65 to 0.79 µmol C L−1 d−1, modified from [51]).

Enzyme. N Observations Slope Intercept R2

LAP 544 1.10 +0.66 0.48
B-G 567 1.04 −1.79 0.46
AP 391 1.05 −1.40 0.45

Although the magnitude order of HPP values reported by the above-cited study
were not comparable with our data, due to the different environmental conditions (tem-
perate and polar, respectively), the significant links between HPP and enzyme activity
rates further confirmed that microbial growth depends on enzyme synthesis and on sub-
strate availability; therefore, the enzymatic activity expression acts as an optimal resource
allocation strategy between environmental resource availability and microbial growth re-
quirements, undergoing up- and down-regulation in close relationships with environmental
and trophic conditions.

In contrast with the significant relationships between HPP and LAP detected in
our study, heterotrophic bacterial production was found to be significantly related to
lipase activity, which in turn correlated with temperature, in sinking particles collected by
sediment traps from the western North Pacific Ocean [52].

Post-Regression Tests

From the three datasets (TDS, ≤50 DS, and >50 DS) and using the three regression
equations (TDS-RE, ≤50 DS-RE, and >50 DS-RE), the predicted values of HPP, together
with the respective residuals and squared values, were calculated. All squared residuals
varied into the same range with similar mean and standard deviation values (not shown).
Another analysis was carried out using the Kruskal–Wallis test and Mann–Whitney (M–W)
pairwise comparisons between the O-HPP and the P-HPP values; the results are shown in
Table 6. M–W U values suggested that the predictive equation (Regression Equation, RE)
built from the Total DataSet (TDS-RE) gave a better predictive interpretation when >50 DS
predictors were used (M–W = 0.912) than TDS ones; conversely, the predictive equation was
not appropriate when predictors from≤50 Dataset (DS) (M–W = 0.104) were used. The best
interpretative capacity was associated to ≤50 DS and its specific regression (M–W = 0.995),
and a good result was obtained also using >50 DS and its specific regression (M–W = 0.741),
whereas it was completely unsuitable for ≤50 DS and >50 DS-RE (M–W ≤ 0.001).

Table 6. U values of Mann–Whitney pairwise comparisons calculated between the observed (O-HPP)
and the predicted (P-HPP) values of heterotrophic prokaryotic production (HPP). The datasets and
regression combinations used in the building of the P-HPP along the water columns are reported in
bold (reported in Figure 3), namely the comparisons between O-HPP and P-HPP obtained from Total
dataset, ≤50 nM h−1 LAP and >50 nM h−1 LAP datasets. The asterisks indicate the combinations
giving the best matches between O-HPP and P-HPP. Abbreviations: TDS-RE, Total Dataset Regression
Equation; DS-RE, Dataset Regression Equation obtained with the two concentrations of Leucine
AminoPeptidase (LAP ≤ 50 nM h−1 and >50 nM h−1).

P-HPP from Regression Equations:
O-HPP from: TDS-RE ≤50 DS-RE >50 DS-RE

Total dataset (TDS) 0.263 0.544 0.810
≤50 nM h−1 LAP dataset (≤50 DS) 0.104 0.995 * <0.001
>50 nMh−1 LAP dataset (>50 DS) 0.912 * 0.509 0.741 *

As the same numerical database was used for the regression equation building and prediction processes, close
relationships between the O-HPP and the P-HPP were expected.

In Table 5, the datasets and regressions combinations used to predict HPP distribution
in the water columns are reported in bold (Figure 3). Observing the distribution of both P-



J. Mar. Sci. Eng. 2022, 10, 1812 15 of 18

HPP and O-HPP values, the question if the single predictive equation built from the TDS
instead of two predictive equations used simultaneously was more suitable to predict the
response variable was not completely answered.

4.3. Observed versus Predicted HPP

The dataset of each single survey, summarized in Table 1, was closely related with the
two datasets (≤50 and >50 DS) of LAP produced after the regression study. All samples
collected from the VLT survey were included in ≤50 DS and 68% of samples from the TNB
survey were included in >50 DS. Therefore, practically, the predicted HPP values for the
VLT area and for 50–100 m depth of the TNB area were obtained using ≤50 DS regression
equation (Figure 3).

The single regression equations, derived from log-transformed, cell-specific activities
linking O-HPP versus two LAP datasets [Log (HPPcsa) = 1.372 + 1.230 Log (LAPcsa) ≤
50 nM h−1; Log (HPPcsa) = 27.78 + 0.195 Log (LAPcsa) > 50 nM h−1], exhibited two different
slopes (=coefficients of the regression equation). This resulted in different ecological
implications: indeed, in the VLT area (≤50 DS) characterized by low microbial activities, ice
covered an active melting process, and the slope of 1.230 indicated that HPP increased more
rapidly than LAP, resulting in a potential consumption of the dissolved monomers released
from the proteolytic activity. On the contrary, in the TNB area (>50 DS, particularly in the
0–50 m layer of the water column), characterized by high microbial activities in decreasing
trend during a post-bloom period [18], the slope of 0.195 suggested that HPP increased
more slowly than LAP, indicating that dissolved monomers exceeded those consumed by
the heterotrophic production process.

The substantial differences observed between the two simple regression equations
(HPP versus LAP) might contribute to interpreting the recent history, and the close evo-
lution, of the biological processes taking place in each area. When very low microbial
activities (close to the limit of detection) are observed, the precision of these estimates is
low and their respective numerical data are less reliable, which can contribute to making
the predictive capacity of the regression equation less confident. The low values of AP
and ß-G detected mainly in the VLT survey and at 50–100 m depth in the TNB waters
could be susceptible to this error. According to the analytical protocols used in the study
of the variables, it was not possible to assess the possible methodological error included
into the regression equation; for HPP, the determinations were made in triplicate and the
results gave a mean coefficient of variation (CV) of 15.1%, which was the only CV that
could be considered. Moreover, another potential error source could be introduced by the
ectoenzymatic activities calculated using the Michaelis–Menten kinetics, since a Vmax value
was obtained.

In some water columns (SMN-02 and R2 stations, Figure 3), the O-HPP values at
surface were far from or did not follow the same trend as the P-HPP ones. This behavior
led us to suppose that not all the variance in HPP could be explained by the selected
predictors and that other processes affected HPP [53]. Variability in temperature, nutrients,
and community composition has been reported to influence HPP patterns in oligotrophic
Arctic streams and lakes affected by nutrient pulses following storm events [54]. Moreover,
besides temperature, other physical factors related to climate change (i.e., ice melting
inputs) and biogeochemical forcings (i.e., DOC availability) were reported to affect bacterial
dynamics in a coastal ecosystem of the Western Antarctic Peninsula, where a decadal
(2002–2014) time series of bacterial production was collected and analyzed [55]. All such
factors can lead to erroneous data predictions and misinterpretations.

Although our observations were the results of two surveys referred to the Ross Sea
summer conditions, and additional data should be collected to generalize our findings to the
entire annual period, the good agreement between the predicted and observed HPP rates
confirmed the validity of our predicted models for the Ross Sea environmental scenario.
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5. Conclusions

The results obtained in this study proved that enzymatic activities, particularly exo-
proteases, together with prokaryotic biomass, are good predictors for HPP in the context
of the microbial processes and trophic characteristics of the coastal Ross Sea epipelagic
environments.

The application of EEA measurements to get empirical predictive models of HPP
values has the important advantage of ensuring laboratory safety, as fluorogenic assays do
not involve the production of hazardous (i.e., radioactive) wastes; moreover, the analytical
protocols of enzyme assays are cheap and widely used in routine analysis.

The used statistical tools, together with an ecological interpretation of the microbial
processes investigated during the surveys, led us to consider the more appropriate simlta-
neous use of two regression equations, each of them built with different ranges of the main
predictor (LAP), for the empirical prediction of HPP.

The total dataset of microbiological parameters, however, referred to two middle
summer periods only; this leaves the question of how the models would have predicted
HPP after and before the studied period unanswered. Moreover, in this study the datasets
considered referred to natural microbial communities; in future experiments it would be
interesting to confirm the performance of the experimental and analytical workflow applied
here through experiments in microcosms with known concentrations of both autotrophic
and heterotrophic microorganisms.

As the models developed in this study are tailored for the austral summer period,
future Antarctic surveys should be performed to extend the period of observations and
include other seasonal periods, as well as to check these models and analyze other envi-
ronmental and/or biological parameters capable of improving current model estimates,
making them applicable to almost the entire year.
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