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Abstract: The Deli Serdang Regency produces amongst the highest amounts of rice in the province of
North Sumatera in Indonesia. Due to land use change and stagnant productivity, the total rice land
area and its production have gradually decreased over the years. Hence, understanding this issue is
crucial, especially to ensure the sustainability of rice production in the future. The objectives of this
study were to identify the trends in land use change (especially regarding rice land) and to investigate
the factors affecting rice land change. We classified the satellite images acquired for the years 1989,
1994, 2003, 2009, and 2018 to determine the total area of various land uses. The factors driving rice
land change were analyzed using biophysical and socio-economic factors identified from the collected
primary and secondary data. The primary data were derived from field surveys, soil analysis, and
household surveys, and the secondary data were derived from the Statistical Institution of the Deli
Serdang Regency. Correlation analysis, principle component analysis, binary logistic regression,
normalization, and weighted index were used to investigate the factors driving rice land change.
The results show that forest and rice land have continuously decreased, while plantations and urban
areas have continuously increased over this period. We found that the majority of rice land has been
converted to plantation expansion and urban development, especially from 2009 to 2018. The factors
most affecting rice land change were the distance of rice land to the district capital, the distance of
rice land to the provincial capital, population density, slope, and the distance of farmers’ rice land
to a road. A suitability map for rice land was generated. All the outputs could help with making
appropriate strategic decisions to achieve sustainable land use management, especially for rice land.

Keywords: spatial-temporal change; rice land change; policy; biophysical and socio-economic factors;
sustainable land use management; Indonesia

1. Introduction

Land use change is a natural and anthropogenic phenomenon that may occur directly and indirectly
at the local, regional, and global levels [1,2]. Land uses changes are categorized as natural phenomena
when they are the result of a natural hazard, such as a typhoon or earthquake [3]. The changes are
considered anthropogenic when any kind of change in land use is influenced by human activities.
Influential factors include socio-economic, urbanization, industrialization, population, and policy
changes [4,5]. Today, globalization is a particular issue that drives land use change [6,7].

As globalization increases, urbanization and industrialization tend to increase as well. Some
drivers behind these two issues are population growth, rural to urban migration, increased wealth,
international trade, and policy changes [8]. These issues have been paid less attention in the literature
with respect to large-scale land use change assessment. A total of 271 Mha (2.06%) of the Earth’s
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surface was categorized as urban in 2000, which was expected to increase to 621 Mha (4.72%) in 2040,
implying that majority of agricultural land be converted for urban land use [9].

Urbanization, one of the significant factors affecting land use change, has been occurring in the
Deli Serdang Regency in the province of North Sumatera in Indonesia. Population growth, increasing
wealth, industrialization, and new policies are the factors driving this urbanization development.
The urbanization policy in the Deli Serdang Regency is the land use planning (LUP) of Mebidangro
(2008), which is the acronym for Medan-Binjai-Deli Serdang-Karo [10]. The LUP was included in the
Presidential Role No. 62 in 2011. The focus of this plan was to help the Indonesia-Malaysia-Thailand
Growth Triangle (IMT-GT) program succeed. Unfortunately, this policy adversely affected agricultural
land use, especially rice land.

The expansion of plantation areas is another factor influencing land use change. Oil palm, rubber,
and cacao are three plantation commodities that have led to changes in rice land. The increase in
oil palm production is supported by international trade, for which globalization is the causal source.
Crude palm oil (CPO) from Indonesia is mainly exported to India, China, and The Netherlands, and the
amount exported increases every year. In 2014, Indonesia exported 25.3 Mton (48% of world CPO
exports), while India alone imported palm oil amounting to US $3.73 billion (60% of Indonesia’s CPO
exports) from Indonesia [11,12].

The evidence for the land use change issue in Indonesia is the existence of forest cover and
agricultural land. Illegal logging, transmigration programs, estate crop expansion, and spontaneous
settlement are the main factors contributing to deforestation in Indonesia. Approximately 6 million
hectares of primary forest was lost from 2000 to 2012, mostly in the Sumatera and Kalimantan
Islands [13]. Thousands of hectares of irrigated and prime agricultural lands have been converted to
other uses in Indonesia, and these changes have been extremely uncontrolled. In Java, approximately
30% (480,000 ha) of existing rice land was converted from 1981 to 1999 [14]. In the Deli Serdang
Regency, approximately 3735 ha of rice land was converted from 2010 to 2016, which amounts to
533 ha/year [15].

The increases in globalization, deforestation, urbanization, and industrialization, as well as
plantation expansion will produce more greenhouse gases (GHGs) through the many activities in
these sectors [16–18]. The cumulative GHGs lead to climate change that will continue to increase
temperature and the frequency of extreme events, such as drought and flooding [19]. These negative
impacts will further lead declining rice productivity [20,21] and income. The consequence of declining
income has persuaded farmers to sell their rice land and/or to switch to growing other commodities.
In other words, the climatic issue may change the rice land both directly and indirectly.

Investigating the factors driving land use change requires comprehensive understanding of
the issues behind. Land use change is influenced by many factors that can be categorized as either
biophysical (i.e., slope, elevation, etc.) or socio-economic (i.e., number of populations, income,
etc.) [22,23]. These factors, which work in isolation or in combination, can have different effects on land
use [24]. In the case of rice land conversion, due to low income, farmers change their rice land to other
land uses. The rice land located in lowlands and flat areas can easily be converted via urbanization
and the expansion of plantations. Investigating what factors drive rice land change can help land use
planners in Deli Serdang Regency select the appropriate strategic actions for addressing the issue of
continuous rice land decline.

Maintaining agricultural land is necessary, especially for rice, maize, and wheat, to meet the food
needs of the world’s population, which is projected to reach around 9.1 billion in 2050. The population
of Indonesia, together with those of India, China, Pakistan, Nigeria, and Bangladesh, is expected to
make up half that number [25]. To meet the demand for food at that time, the global food production
level has to double [26,27] to minimize food insufficiency. However, increasing the rate of global food
production is no simple task. Indonesia is facing challenges including climate change [28,29] and
plantation expansion [30,31], creating barriers to increasing food production.
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Given the lack of reliable and quantified information in the Deli Serdang Regency of Indonesia,
we aimed to identify the trend in land use changes, especially the rice land trend from 1989 to 2019,
and investigate the factors affecting these changes. We integrated geographic information system (GIS)
and remote sensing technology with field and household-based surveys. This provides information
for policy makers to generate new strategic actions and to strengthen existing policies to achieve
sustainable land use management specifically for rice land.

2. Materials and Methods

2.1. Study Area

The Deli Serdang Regency is located at 2◦57′–3◦16′ N, 98◦33′–99◦27′ E. The Deli Serdang Regency
is bordered by Medan city and Malacca Strait to the north, Karo and Simalungun Regencies to the south,
Binjai city and Langkat Regency to the west, and Serdang Bedagai Regency to the east. Deli Serdang
Regency is divided into 22 districts and 394 villages (Figure 1). The Hamparan Perak, Sinembah
Tanjung Muda Hulu, and Sinembah Tanjung Muda Hilir Districts are the largest districts at 230.15 km2,
223.38 km2, and 190.50 km2, respectively. The population density of the Deli Serdang Regency is
847 people/km2. The highest population density is in Deli Tua District, followed by Sunggal and
Lubuk Pakam at 7672, 3109, and 3079 people/km2, respectively. The Deli Serdang Regency has only
two seasons: the dry season occurs from June to September and the rainy season from November to
March [15].
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Figure 1. Location map of the study area.

The elevation of Deli Serdang Regency ranges from 0 to 2200 m above sea level. It has diverse
topography; the southern part is characterized by undulating and mountainous areas, and the northern
part is characterized by flat topography. Hence, various crops, such as food crops (rice and maize),
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horticulture crops (vegetables and fruits), and estate crops (oil palm, rubber, and cacao) are produced
in this area [15]. Three major types of soil are found in this study area according to the Centre for
Agricultural Land Resources Research and Development (Agricultural Ministry, Bogor city, West Java,
Indonesia): Inceptisol, Entisol, and Oxisol (according to United States Department of Agriculture
(USDA) Soil Taxonomy).

2.2. Data Preparation and Processing

The primary and secondary data were acquired to investigate the factors affecting rice land
change. Satellite imageries from Landsat 4, 5, 7, and 8 of Path 129/Rows 57–58 for the years 1989,
1994, 2003, 2009 and 2018 were downloaded from the Earth Explore website [32]. By considering
two rice growing seasons in the study area May–August, November– February), we used the images
accordingly to delineate rice growing areas. The Shuttle Radar Topography Mission Digital Elevation
Model (SRTM-DEM) data, with 30 m resolution downloaded from http://srtm.csi.cgiar.org, were used
to generate contour, slope, and elevation data. Several thematic layers in shapefile format, such as
administrative boundaries, roads, rivers, forests, and agro-ecological zones, were obtained from
the Development Planning Agency of North Sumatera Province and Centre for Agricultural Land
Resources Research and Development at Bogor, West Java.

The primary data were collected through field surveys, soil analysis, and household surveys;
the secondary data, such as the total population, population density, and total rice land area, were
collected from the Statistical Institution of Deli Serdang Regency. The field survey was conducted to
measure the soil depth and collected soil samples. The soil depth was measured until 60–80 cm, given
the ability of rice roots to penetrate the soil. The total number of sampling points was decided by the
number of land mapping units in the study area, which have different characteristics related to soil type,
slope, and elevation. A total of 26 soil samples were collected and sent to the laboratory for soil texture
analysis using the hydrometer method, pH using a pH meter, C-org using the spectrophotometric
method, total N using the Kjeldahl method, P2O5 using the atomic absorption spectroscopy method,
and K2O using the atomic absorption spectroscopy method. The soil analysis result together with
slope, elevation, and soil depth data were used in the rice suitability analysis due to the absence of a
rice suitability map in the study area. Based on the rice suitability classification result, the areas with
potential (highly suitable, moderately suitable, and low suitable) and without potential (unsuitable)
for rice growth were generated. We further investigated these potential and non-potential areas
as the biophysical driving factor of rice land change. We conducted a household survey to collect
socio-economic data like age, household numbers, education level, total income/expenditure, and
frequency and occurrence rate of flood and drought in the area.

2.3. Methodology

The research framework of this study is presented in Figure 2, which included three main parts:
landsat image analysis, biophysical variables analysis, and socio-economic variables analysis.

Since two Landsat image scenes were required to cover the whole study area in each period,
the scenes were accordingly mosaiced to form a continuous image. The mosaic images from 1989,
1994, 2003, 2009, and 2018 were subset to the same extent as the study boundary. Unsupervised
classification, using the iterative self-organizing data analysis technique (ISO-DATA) method, was
used to produce a land use map for each period. This classification technique relies on a computed
algorithm that clusters pixels based on their inherent spectral similarities [33]. Despite its weakness
that is related to the limited control of the classifier over the classes chosen during the classification
processing [30], this technique still selected due to its abilities [34,35] to discriminate the features of
the area for the analysts with little or no knowledge about the area, to identify and solve errors easily,
and to recognize the unique classes that might be overlooked when using supervised classification
techniques. In unsupervised classification, a total of 180, 179, 193, 190, and 199 clusters were derived
from the images for 1989, 1994, 2003, 2009, and 2018, respectively. Some RGB-composite imageries

http://srtm.csi.cgiar.org
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were used to aid in the visual interpretation and image classification processes. The observation of the
color, size, shape, pattern, site, and association that were generated by the RGB-composite imageries
guided us in relating the clusters with the real-world classes. Ground truth data from the field survey
were also used for identifying the land use classes. In the end, these clusters were classified into seven
land uses: forest, plantation, mixed vegetation, rice land, urban, waterbody, and barren land, as shown
in Table 1.Agriculture 2019, 9, 186  5  of  23 
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Table 1. Characterization of land use types for image classification.

Land Use Type Characterization

Forest Land covered by forest, mangrove, and highly dense vegetation
Plantation Land covered by oil palm, rubber, cacao, and sugarcane

Mixed Vegetation Land covered by a mixture of trees and the others of low dense-covered vegetation
Rice land Land covered by rice, distributed on low and high land

Urban Land covered by the high and low density of buildings, roads, housing, or others infrastructure
Waterbody Land covered by water, e.g., river, seashore, lake, dam, and fishpond

Barren Land covered by nothing: no vegetation and no infrastructure

Accuracy assessments were used to test the accuracy of the land use classification in terms of
the accuracy of image classification in relation to the ground reality [36]. Different approaches are
available for conducting accuracy assessments [37]: (1) ground truthing using a global positioning
system (GPS) and observing the research area, (2) comparing our land use classification with the image
that is thought to be correct like Google Earth image (Google LLC, Mountain View, CA, USA), and (3)
obtaining the information from someone with trusted experience or trusted information. There are two
methods for collecting ground truth points: by conducting a field survey and identifying ground truth
points with GPS assistance and recording the land use, and by creating additional ground truth points



Agriculture 2019, 9, 186 6 of 22

randomly in ArcGIS ver. 10.2 (ESRI, Redlands, CA, USA) and overlaying using Google Earth (Google
LLC, Mountain View, CA, USA) and then recording the land use. Both recorded-ground truth points
were validated with classified-image then. All data were summarized using the error matrix. Then,
Cohen’s Kappa coefficient (κ), as a standard measurement, was used to quantify the classification
accuracy [38,39] using this equation:

κ =
observed accuracy − change agreement

1 − change agreement
. (1)

The evaluation of land use change requires the comparison of two specific classified land use
images from different time periods. Thus, we needed to generate images of the four time periods of
land use conversion: 1989–1994, 1994–2003, 2003–2009, and 2009–2018.

We investigated some plausible factors of land use change in this study, especially for rice land
change. We used two approaches conducted to identify these factors, from which the most influential
factors were determined. The first approach, a biophysical (pixel data analysis) approach, involved
the use of binary logistic regression with dependent and independent variables derived from raster
data. The rice land change compared with the other land uses from 2009 to 2018 was designated
as the dependent variable. The ‘extract by value’ command in ArcGIS (ESRI, Redlands, CA, USA)
generated this raster data, where “1” denotes a changed pixel and “0” denotes an unchanged pixel.
Ten variables were designated as independent variables: elevation, slope, distance to the main road,
distance to the stream, distance to the district capital, distance to the regency capital, distance to the
provincial capital, population density, potential for rice land, and non-potential for rice land. These
independent variables were transformed into raster data. Both dependent and independent variables
were converted into ASCII (*.asc) format and exported into a text file (*.txt). DynaCLUE package ver.
2.0 (Institute for Environmental Study, VU University Amsterdam, Amsterdam, The Netherlands) was
used to process this conversion [24]. Binary logistic regression analysis was applied to identify which
variables have a high probability of influencing rice land change. The logistic model is

ln
[

p
1− p

]
= β0 + β1x1 + β2x2 + β3x3 + . . .+ βnxn (2)

where the dependent variable is an odds is ratio of probability (p) of change to the probability (1 − p) of
no change; β0 is the intercept; and β1, β2, β3, . . . , βn are the coefficients of the independent variables of
x1, x2, x3, . . . , and xn, respectively [40].

The potential and non-potential areas for rice procued were derived from land suitability
classification for rice (Table 2). The System of Land Suitability Evaluation was used to assist with this
classification measurement [41]. The S1 (highly suitable), S2 (moderately suitable), and S3 (low suitable)
suitability level were grouped and labeled as potential rice production zones, and N (unsuitable) was
grouped as the non-potential zones. These outputs were transferred into ArcGIS to generate the maps
of potential and non-potential zones and were used as two biophysical variables.
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Table 2. The rice land suitability classification [42].

Characteristic
Rice land Classification

S1 S2 S3 N

Slope (%) 0–3 3–8 8–15 >15
Elevation (m) 0–400 400–700 700–1200 >1200
Soil Texture Moderately Fine Medium Moderately Coarse Coarse

Soil Depth (cm) >50 40–50 25–40 <25
pH 5.9–7.5 5.4–5.9 4.5–5.4 <4.5; >7.5

Organic C (%) >3 1.2–3 0.8–1.2 <0.8
Total N (%) >0.5 0.2–0.5 0.1–0.2 <0.8

C/N <8 8–10 10–15 >15
P2O5 (mg/100 g) >40 20–40 15–20 <15
K2O (mg/100 g) >60 30–60 16–30 <16

Note: S1 = highly suitable; S2 = moderately suitable; S3 = low suitable; N = unsuitable.

The second approach used to investigate the socio-economic variables that affect rice land change
were identified by conducting a household-based survey. Purposive sampling was implemented to
choose particular districts and respondents. Based on the recent total area of rice land, the particular
districts with the highest, medium, and lowest total rice land area were identified. Then, two representative
districts for each level were selected. We determined the sample size using [43]:

n =
N

1 + Nd2 (3)

where n denotes the sample size, N denotes the population of rice farmers in the selected area, and d
denotes the margin of error (0.05).

We conducted structured interviews using closed- and open-ended questions to collect in-depth
information from respondents’ perspective on the issue. The questionnaire was prepared to be as
comprehensive as possible to gather all variables. All variables were analyzed using Spearman
correlation and descriptive statistical analysis was used to summarize the significant variables. Then,
principal components analysis (PCA) was performed. PCA is a multivariate analysis commonly used
to compress a large number of original variables into a smaller number of new composite variables,
while minimizing the loss of information [44]. Binary logistic regression was then applied to identify
the significant factors affecting rice land change. The decision of respondents to change their rice
land was selected as the dependent variable, where “0” denoted no experience and “1” denoted
experience with rice land conversion. The most significant variable from each component was set as
the independent variable.

Finally, the most influential biophysical and socio-economic factors were determined by
normalization and weight analysis. The values of biophysical factors were calculated from the
mean values from each significant factor for each interviewed district (as the similar districts where
the socio-economic variables were taken as well). The zonal statistic tool in spatial analyst of the
ArcGIS toolbox (ESRI, Redlands, CA, USA) was used to calculate the mean values [45]. Normalization
was used to ensure all factors were both unitless and scaleless using the min-max approach. Before
normalizing the factors’ values, we determined the functional relationship of each factor with the
probability of changing rice land, which was observed from sign of their coefficient value (positive (+)
or negative (–)). This is related to implementing the min-max equation.

(Xi −Min Xj)/(Max Xj −Min Xj) (4)

was applied when increasing the factors value increased the probability of rice land changing, and

(Max Xj − Xi)/(Max Xj −Min Xj) (5)
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was applied when increasing the factor value decreased the probability of rice land changing, where Xi

is the actual value of the factor with respect to district (i), Min Xj and Max Xj are the minimum and
maximum values, respectively, of factor (j) among all the districts.

After obtaining the normalized value for each factor, the weight was measured using the following
equation. The weight value from each factor indicated the degree of its influence on rice land change [46]:

W j =
1

(SD j ×
∑n

j=1(
1

SD j
))

. (6)

where Wj is the weight of the factor of j and SDj is the standard deviation of the factor j.

3. Results and Discussion

3.1. Land Use Change

The classification accuracy is important when generating a new classified image to identify the
correctness of the image. A total of 176, 156, 161, 102, and 96 ground truth points were evenly distributed
in the study area for the images for 2018, 2009, 2003, 1994, and 1989, respectively. These points were
gathered to obtain the overall accuracy (OA), κ coefficient, user’s accuracy (UA), and producer’s
accuracy (PA) values, as listed in Table 3. UA is the proportion of pixels that were precisely classified
based on the classified image; PA is the proportion of pixels that were precisely classified based on the
reference map.

Table 3. Accuracy assessment of the land use classification.

Land Use
1989 1994 2003 2009 2018

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) PA (%) UA (%)

Forest 91.7 88 95.7 81.5 94.9 86.1 90.7 82.9 96.3 86.7
Plantation 90 90 92.3 85.7 79.2 86.4 78.1 89.3 86.7 86.7
Mixed Veg 70 100 69.6 94.1 76.9 83.3 83.3 71.4 77.3 80.9

Rice 91.3 84 87.5 82.4 88.9 80 86.1 88.1 86.1 83.8
Urban 84.6 91.7 78.6 84.6 78.1 89.3 85.7 82.8 91.7 94.3

Waterbody 100 83.3 75 75 81.3 86.7 76.9 83.3 81.3 92.8
Barren 83.3 100 100 83.3 100 100 100 66.7 88.8 88.8

OA (%) 88.5 84.3 85.1 84.6 87.5

κ Coef. 0.86 0.81 0.82 0.81 0.85

Note: PA = producer’s accuracy; UA = user’s accuracy; OA = overall accuracy.

Among all land uses, the most user accurate classes were forest, plantation, rice, and urban,
which were greater than 80% in all classified images. The other three classes, mixed vegetation,
waterbody, and barren, had UA values below 80%: 71.4%, 75%, and 66.7%, respectively. The reason
for misclassifying the images was the similarity of range land between two or more land uses classes
that creating an overlap. The OA for all classified images was more than 84.3% and the κ coefficient
was greater than 0.81, indicating that a high proportion of pixels were classified correctly, which is
categorized as good performance. A κ coefficient greater than 0.8 is categorized as good classification
performance, 0.4–0.8 is categorized as moderate, and less than 0.4 is categorized as poor classification
performance [38,47].

By following the procedures in the methodology, a land use image for each year (1989, 1994, 2003,
2009, and 2018) was generated. The seven land uses that were generated (the forest, plantation, mixed
vegetation, rice land, urban, waterbody and barren) had their own characterization. The land uses
images are presented in Figure 3, depicting the changes in forest, plantation, rice land, and urban.

Forest and rice land were the predominant land uses from 1989 to 2003 (Table 4), representing 35%
and 34% of the total area in the Deli Serdang Regency, respectively, in 1989. In 2003, these two land
uses were still dominant: rice land area (31%) was the highest, followed by forest (30%). A different
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trend in land uses changes occurred in 2018, where plantation became the dominant land use as forest
and rice land had continuously decreased. Plantations covered 32% of the total area while rice land
and forest were 26% and 25%, respectively. In line with the plantation trend, urban areas gradually
increased. In 1989, urban areas only covered 3% and continuously increased to 8% in 2018, a nearly
three-fold increase in area.
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Table 4. The total area of land use in 1989, 1994, 2003, 2009, and 2018.

Land Use
Total Area (ha)

1989 1994 2003 2009 2018

Forest 91,300 89,524 77,141 72,961 63,393
Plantation 37,611 39,752 53,584 66,130 82,137

Mixed Vegetation 14,090 24,697 23,772 17,659 17,174
Rice 88,000 80,836 79,406 75,863 66,009

Urban 6504 9317 13,755 14,609 20,834
Waterbody 18,613 11,572 8743 9482 6888

Barren 1409 1831 1127 824 793

Total 257,528 257,528 257,528 257,528 257,528

Figure 4 shows that forest and rice land decreased consistently from 1989 to 2018. The highest
percentage of forest change occurred in during 1994–2003 and 2009–2018 at 14% and 13%, respectively,
rice land decreased during 1989–1994 and 2009–2018 by 8% and 13%, respectively. While forest and
rice area decreased, plantations and urban areas continuously increased. The highest plantation
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increases occurred during 1994–2003 and 2009–2018, at 35% and 24%, respectively, and those for urban
development occurred during 1989–1994 and 1994–2003, at 43% and 48%, respectively.
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Figure 4. The percentage of land uses change (1989–2018).

Our land use change analysis result is supported by Food and Agriculture Organization (FAO)
data [48], which reported that about 246,000 ha of rice land in Indonesia were converted to other land
uses during 1981–1985 and 1998–1999. A total of 187,720 ha of rice land was converted in Indonesia
from 2000 to 2002 [49]. Through the Green Revolution, Indonesia, including the Deli Serdang Regency,
has achieved food self-sufficiency using technology, high-yielding varieties, fertilizer application, and
pest and disease control with pesticides along with a large rice land area, as rice is a staple food
in Indonesia.

Higher forest conversion (12,382 ha) was observed from 1994 to 2003 due to one of the
national Indonesian government programs called the Transmigration Program (Law No. 15, 1997).
The purpose of this program was to move people from densely populated to less populous provinces.
The government allowed transmigrated-people to convert forest to plantations to provide a livelihood.
Deli Serdang Regency was one of destinations for trans-migrants from Java, Madura, and Bali Island.
Hence, many intentional forest fire incidents occurred to clear land to build large-scale plantations [50].

During 2003–2018, rice land was still one of the highest converted-land use types. The high profit
from oil palm farming encouraged farmers to change their rice land to plantations. During 2009–2018,
the urban area increased significantly (6225 ha). The reason for this increase was the new Kuala Namu
Airport development, which required a large space to build the supporting infrastructure (i.e., roads,
hotels, warehouse, etc.). Also, the nationally-owned plantation and rice land had to be converted.
Land use planning related to Mebidangro started in 2008, which was supported by Presidential Role
No. 62 in 2011 to ensure the success of the Indonesia-Malaysia-Thailand-Growth Triangle (IMT-GT) in
this region. This policy resulted in the faster growth of urbanization and industrialization [10].

3.2. Land Suitability Classification for Rice

Land suitability classification information provides detailed knowledge about the potential and
non-potential land that can be used for rice production. Two variables, potential and non-potential
land, were applied further to be parts of biophysical factors, which is discussed in Section 3.3.

Land suitability for rice was classified to identify where the locations suitable and unsuitable
zones for rice. Then, policymakers would understand what land is suitable for rice, which could then
be retained and prevented from being converted. The main purpose for protecting this rice land from
conversion is to maintain rice production [51]. In this study, the suitability rice land was classified into
four classes: S1, S2, S3, and N. Based on the field survey and soil laboratory results, only three classes
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were used (Figure 5). Some limiting factors such as slope, elevation, status of soil fertility, were used
as parameters for classification measurement. A large area in the south was grouped as unsuitable
because the majority of this area has a high degree of slope (in the highlands).
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Table 5 shows the total of rice land where located according to the suitability level of rice land in
1989 and 2018. The total rice land area in 1989 and 2018 can be differentiated by considering the same
level of rice land suitability classification. We used the overlay raster technique in GIS between rice land
and the suitability level to obtain the output. The highest rice land decrease occurred in low suitable
areas, followed by moderately suitable and unsuitable areas by 394, 258, and 106 ha/year, respectively.

Table 5. The coverage area of rice land according to the suitability level for rice land in 1989 and 2018.

Suitability Level 1989 2018 Change from 1989 to 2018

(ha) (ha) (ha) (ha/year)

Moderately Suitable 32,126 24,641 −7485 −258
Low Suitable 51,946 40,518 −11,428 −394
Unsuitable 3928 850 −3078 −106

Total 88,000 66,009 −21,991

Table 6 presents the total area of each land use that were classified as different levels of suitability
for rice in 1989 and 2018. Rice land still covered a larger part of the suitable area (84,072 ha) in
1989. The majority of land suitable for rice was replaced by plantations (73,813 ha) by 2018. Urban
development on the land suitable for rice production increased significantly over the 30-year period.
In 1989, urban areas covered only 6497 ha, and increased to 20,546 ha in 2018.
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Table 6. The coverage area of land use types in each suitability level for rice land in 1989 and 2018.

Land Use
Total Area in 1989 (ha) Total Area in 2018 (ha)

S2 S3 N S2 S3 N

Forest 22,117 32,042 37,140 14,239 13,369 36,086
Plantation 10,657 24,104 2851 23,649 50,164 8324

Mixed Vegetation 3015 8068 3007 3273 10,426 3475
Rice land 32,126 51,946 3928 24,641 40,158 850

Urban 1909 4588 8 7826 12,720 288
Waterbody 7886 8488 2239 4452 2318 118

Barren 574 818 17 204 539 50

Total 78,284 130,054 49,190 78,284 130,054 49,190

3.3. Factors Affecting Rice land Change

Two approaches were used to identify the factors driving rice land change in this study. For the
first approach, 10 biophysical factors derived from secondary data and field surveys were investigated
(Figure 6).
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Figure 6. Biophysical factors affecting rice land change (elevation (a), slope (b), distance to road (c),
distance to stream (d), distance to district capital (e), distance regency capital (f), distance to provincial
capital (g), population density (h), potential for rice land (i), and non-potential for rice land (j)).
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All level measurements of the biophysical variables used the scale format, except potential and
non-potential, which are presented in nominal format. The values 0 and 2201 for the elevation variable
for pixels denote lowland and highland, respectively. The values 0 and 72 for slope for the pixels
represent flat and steep areas, respectively. The values 0 and 7672 for population density for the
pixels denote the least-densely and most-densely populated areas, respectively. For distances variables
(meters), a smaller value (0) indicates pixels closer to the variable (road, stream, district capital, regency
capital, and provincial capital); conversely, a higher value means the pixels are farther from the variable.
The descriptive statistic of each biophysical variables is given at Table 7.

Table 7. Descriptive statistics of each biophysical variable.

Variable Min Max Mean SD

Elevation (m)
Slope (degree)

Distance to road (m)
Distance to stream (m)

Distance to district capital (m)
Distance to regency capital (m)

Distance to provincial capital (m)
Population density (people/km2)

0
0
0
0
0
0
0
0

2201
72

18,576
12,590
12,685
56,694
74,347
7672

155
5

1403
2740
3309

24,489
26,702

925

287
5

2696
2201
2321

13,609
16,461

957

Variable Min Max Mode

Potential for rice land
Non-potential for rice land

0
0

1
1

1
0

Table 8 shows the result of the binary logistic regression analysis of rice land conversion to other
land uses from 2009 to 2018. The elevation, slope, distance to the road, distance to the stream, distance
to the district capital, distance to the provincial capital, population density, and potential for rice
land significantly influenced the probability of rice land conversion. Distance to regency capital and
non-potential land insignificantly influenced the probability of rice land conversion.

Table 8. Binary logistic regression of the probability of rice land conversion 2009 to 2018.

Variable β SE Sig. Exp (β)

Elevation
Slope

Distance to road
Distance to stream

Distance to district capital
Distance to regency capital

Distance to provincial capital
Population density

Potential for rice land
Non-potential for rice land

Constant

−0.000653
−0.045154
−0.000024
0.000004
−0.000013

−0.000015
0.000014
0.438468

0.352

0.000019
0.000711

9.7345 × 10−7

0.000001
0.000001

2.5389 × 10−7

0.000003
0.009334

0.013

0.001
0.001
0.001
0.001
0.001

ns
0.001
0.001
0.001

ns

0.999347
0.955850
0.999976
1.000004
0.999987

0.999985
1.000014
1.550331

1.42

Overall Percentage 63.3

ROC 0.66

Note: β = regression coefficient; SE = standard error; Sig. = the significance level, Exp (β) = the odds ratio, ns = not
significant at 0.05 level, and ROC = relative operating characteristics.

The odds ratio, exp (β), expresses the relative contribution of independent variables (driving
factors) in rice land change. An odds ratio greater than one means that an increase in the variable by
one unit of standard deviation will result in an increase in the chance of rice land change equal to
exp (β). An odds ratio less than one means that an increase in the variable by one unit of standard
deviation will result in a decrease in the chance of rice land change equal to exp (β). An odds ratio
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of one means rice land change has no probability to increase or decrease caused by the independent
variable. We used relative operating characteristics (ROC) applied to figure out the goodness of fit for
the models. The ROC value of this model is 0.66, which is [52] found that a model was considered to
have skill when its value is above 0.5.

Table 8 shows the probability of rice land change was significantly affected by elevation and slope.
This negative relationship means that the higher the elevation and slope, the lower the probability of
rice land changing. This makes sense because the majority of rice land that was located on lowland and
flat areas tend was replaced by population growth, urbanization, and plantation expansion. This table
also shows that the probability of rice land change increases by factors of 0.99 and 0.95 for every 287 m
and 5 degrees of elevation and slope, respectively.

The probability of rice land change was affected significantly by driving factors of distance to the
main road, distance to the district capital and distance to the provincial capital. The relationship means
that closer these distances to the rice land area will increase the probability of rice land to change. It is
a plausible relationship because urbanization growth is in line with the existence of road [53] and with
the distance to the district capital/provincial capital. This table also indicates the probability of rice
land change will increase by a factor of 0.99 for every 2696 m, 2321 m and 13,609 m of distance to the
road, to the district capital and to the provincial capital, respectively.

The distance to a stream and the potential for rice land, together with the population density also
significantly affected the probability of rice land change. Contrary to the other driving factors, these
three factors have a positive relationship; a closer distance to a stream, the potential for rice land and
lower population density decrease the probability of rice land changing. Supporting water from a
stream and fertile land will maintain high productivity, so farmers will avoid converting their rice land.
In line with distance to a stream and potential for rice land, a lower population density will reduce rice
land conversion.

For the second approach, a survey was administered to investigate the main factors affecting rice
land conversion from the household perspective. Six districts were grouped into three levels of total
rice land area: large (Percut Sei Tuan and Hamparan Perak districts), medium (Beringin and Sunggal
districts), and small (Tanjung Morawa and STM Hilir districts). There were 180 household respondents
and the purposive sampling method was used to select the proper respondents. Among all respondents,
105 respondents (58%) had no experience and 75 (42%) had experience with rice land changes.

Some specific reasons for converting and maintaining their rice land were recorded. Multiple
responses analysis was used to determine the reasons distribution. As presented in Table 9, the top
three reasons for changing the land to the production of another commodity were: following the lead
of other farmers, increasing income, and weather conditions, accounting for 29%, 23%, and 13% of
the responses, respectively. The respondents’ reasons for maintaining their rice land included food
provision, high productivity, and providing an inheritance asset for their children, accounting for 30%,
21%, and 18% of the responses, respectively.

The household-based survey was used to in-depth explore the socio-economic reasons why
respondents changed their rice land and issue of environmental change. The first step was setting
explanatory variables that were hypothesized as the factors affecting rice land conversion. Table 10
presents the descriptive statistics of 26 significant variables resulting from Spearman correlation analysis.

After identify the significant variables, PCA was conducted as the second step. The purpose
of this analysis was to condense the large number of significant variables to a small number of
significant variables. This extraction was processed by grouping the significant variables into eight
specific components based on the initial eigenvalue (>1), with 73.218% of the cumulative variance for
this analysis. The pattern matrix table from PCA provided meaningful information about the most
significant variables for each component. The criterion for factor loading >0.5 was used to group every
variable into a specific component. This PCA had a 63.4% Kaiser–Meyer–Olkin (KMO) value, and
Bartless’s Test explained that our PCA performed well [54]. Table 11 presents the pattern matrix that
showed which variable in each component highly contributed to rice land conversion.



Agriculture 2019, 9, 186 15 of 22

Table 9. Respondents’ reasons to convert and maintain their rice land (n = 180).

Reasons to Convert %

Sell rice land to support family needs
Change to another commodity due to weather conditions

Change to another commodity to increase income
Change to another commodity due to costly rice land inputs

Change to another commodity due to the difficulty accessing agricultural inputs
Change to another commodity due to the availability/cost of labor

Change to another commodity due to technical cultivation
Change to another commodity due to pest and disease

Change to another commodity due to following other farmers’ lead

2
13
23
5
2

11
12
3

29

Total 100

Reasons to Maintain %

Cannot be sold due to the inheritance land status
High productivity

Children will inherit
Food provision

Located in a strategic area

15
21
18
30
16

Total 100

Table 10. Descriptive statistic of significant variables for rice land conversion.

No. Variable Label Min Max Mean

1 The changing of planting pattern Patern_Change 0 1 −8.14
2 Number of planting season Indx_Plant 0 3 1.67
3 The availability of agricultural organization benefit Org_Ben 0 1 0.92
4 Kind of land tenure Land_Tenur 1 3 2.04
5 Distance of irrigation network to the rice land Dis_Irrig 10 8000 625.57
6 Existence of inadequate water occurrence Inad_Water Occur 0 1 0.5
7 Frequency of inadequate water Inad_Water Freq 0 3 0.57
8 Frequency of drought Drought_Freq 0 3 1.01
9 Existence of drought occurrence Drought_Occur 0 1 0.84
10 Frequency of flood Flood_Freq 0 3 0.62
11 Existence of flood occurrence Flood_Occur 0 1 0.48
12 Number of environmental problems No_Env Prob 0 5 2.29
13 Level of farmer’s understanding on the sustainable agriculture policy Underst_Policy 1 2 1.86
14 Total household member HH_Member 0 7 3.36
15 Total household member stay-in the same district HH_Memb Stayin 0 7 3.04
16 Age Age 25 71 45.66
17 Distance of road network to the rice land Dis_Road 30 2500 883
18 Distance of housing to the rice land Dis_Housing 15 2000 668.25
19 Strategic action to anticipate land degradation through the usage of high-quality seed Strat_Seed 1 5 3.96
20 Number of strategic activities applied to anticipate land degradation No_Strat 2 7 4.3
21 Level of agricultural organization involvement Org_Involv 2 5 4.36
22 Total income from non-agriculture sector Incom_Non-Agri 0 8571.43 815.01
23 Strategic action to anticipate land degradation through water efficiency Strat_Water Eff 1 5 1.84
24 Frequency of delayed planting season Delay Plant_Freq 0 2 0.48
25 Strategic action to anticipate land degradation through using water-pump Strat_Wat Pump 1 5 2.19
26 Distance of plantation to the rice land Dis_Plantation 50 7500 2552.78

Table 11. Distributed variables for each component as output from the principle component analysis
(PCA) pattern matrix.

Variable
Component

1 2 3 4 5 6 7 8

Patern_Chang −0.838
Indx_Plant −0.818
Org_Ben −0.655

Land_Tenur −0.599

Inad_Water Occur 0.937
Inad_Water Freq 0.916

Drought_Freq 0.507

Flood_Freq 0.908
Flood_Occur 0.884
No_Env Prob 0.534 0.587
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Table 11. Distributed variables for each component as output from the principle component analysis
(PCA) pattern matrix.

Variable
Component

1 2 3 4 5 6 7 8

HH_Member 0.959
HH_Memb Stayin 0.911

Age 0.539

Dis_Road 0.832
Dis_Housing 0.806

Strat_Seed 0.840
No_Strat 0.748

Org_Involv 0.640

Incom_Non-Agri 0.747
Strat_Water Eff 0.505

Strat_Wat Pump 0.731
Dis_Plantation 0.651

Initial Eigenvalues
% of Variance
Cumulative %

20.874
20.874

14.406
35.280

9.948
45.229

7.612
52.840

5.989
58.829

5.131
63.960

4.862
68.822

4.395
73.218

The name and information of each component from PCA is presented in Table 12.

Table 12. The name and information of each component.

Component Name and Information

1 Cultivation Management: The changing planting patterns, number of planting
seasons, the benefit to the agricultural organization, and kind of land tenure.

2 Drought Issue: The existence of inadequate water occurrence and its frequency
per year together with drought frequency.

3 Flood Issue: The frequency and occurrence of flood and number of
environmental problems

4 Socio-economic: The number of household members and their ages.

5 Distance: The distance of rice land to the road network and housing.

6
Strategic Farming: The strategy to address land degradation using high-quality
seeds, number of strategic farming methods applied, and the level of agricultural
organization involvement.

7 Income Non-Agriculture: The total income from the non-agriculture sector and
the strategic action of water efficiency.

8 Water Efficiency Strategy: The strategic action used to anticipate land
degradation using water pumps and distance to the plantations.

Table 13 presents the result of the binary logistic regression, with the respondent’s decision to
change or maintain their rice land as the dependent variable and the eight most significant variables from
each component as independent variables. Among the eight variables, seven variables were identified
as significant factors affecting rice land change: total number of household members (HH_Member),
the existence of inadequate water occurrences (Inad_Water Occur), the distance of the road network
to the rice land (Dis_Road), the changing planting patterns (Patern_Change), the frequency of flood
(Flood_Freq), the strategic actions used to anticipate land degradation using water pumps (Strat_Wat
Pump), and the total income from non-agriculture sector (Incom_Non-Agri). The regression analysis
showed that the model explained 83.9% of the variance in the data.
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Table 13. The output of the binary logistic regression analysis.

Variable β SE Sig. Exp (β)

Total number of household members 0.912 0.209 0.001 2.489
Inadequate water occurrences 1.551 0.477 0.001 4.716

Distance of road network to rice land −0.002 0 0.001 0.998
The changing planting patterns 1.902 0.586 0.001 6.697

Frequency of floods 1.708 0.425 0.001 5.518
The strategic action to anticipate land degradation using a water pump −0.851 0.218 0.001 0.427

Total income from the non-agriculture sector −0.001 0 0.004 0.999
Constant −1.615 0.92 0.79 0.199

Note: β = regression coefficient; SE = standard error; Sig. = the significance level, and Exp (β) = the odds ratio.

The binary logistic regression analysis showed the relationship of each variable to the probability
of respondents changing their rice land (Table 13). The number of household members contributes
significantly to the farmers’ decision to change their rice land. This issue was frequently encountered
in farmers’ lives. A higher number of household members provides more motivation for farmers
to change their rice land, includes: sell the rice land to support their income and share a portion
of their rice land with their children as an inheritance. A higher number of children increases the
cost/expenditure for their education and health.

The existence of inadequate water occurrence and frequency of floods are the real negative impact
of climate change perceived by farmers in the Deli Serdang Regency. The more environmental problems
occur and the more their frequencies increase, the greater the probability of farmers changing their rice
land. During the survey, many respondents stated they have many experiences with environmental
issues, including inadequate water, drought, flooding, and erosion. These environmental problems
have encouraged farmers to use water pumps for irrigating their rice land as one of strategic actions
to mitigate the problems caused by issues. We observed a negative relationship of this variable with
farmer decision to change their rice land. Without the use of a water pump, both rice production and
income are low. This is also why some farmers changed the commodity produced (such as oil palm
plantations) to one more tolerant of drought and flooding.

The changing planting pattern was investigated as one of the significant factors affecting rice land
use change. The farmers formerly had a fixed schedule for planting their rice, but climate change
has posed challenges to determining an appropriate planting date. Sometimes they postpone their
planting time or plant corn, soybean, etc. instead. This could be one of the reasons why farmers tend
to change their rice land.

The distance of a road network to rice land had a negative relationship with rice land
change. The shorter this distance, the higher possibility of rice land change to other land uses.
The existence of a road increases the fragmentation of the landscape pattern through urbanization and
industrialization growth [55]. The large-scale construction of new highways has been underway to
support socio-economic improvement, with the addition of a new airport in Deli Serdang Regency.

The total income from the non-agriculture sector was no less important in influencing farmers to
change their rice land. This factor was negatively related with rice land conversion. The more income
farmers earn from the non-agricultural sector, the lower the possibility of rice land change. Additional
income from the non-agricultural sector supports basic family needs, such as water, food, health, and
education. This supporting income prevents farmers from changing or selling their rice land.

Normalization and weight-based analysis was used to identify the factors most influencing rice
land change among all significant biophysical and socio-economic factors. Table 14 presents the
mean, normalized, and weight values of all significant factors derived from the previous equations.
As the weight value of the factors indicates the degree to which they influence rice land change [46],
the distance of rice land to the district capital, distance of rice land to the provincial capital, population
density, slope, and distance of farmers’ rice land to the road were the factors most influencing the
change of the rice land in the Deli Serdang Regency.
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Table 14. The mean, normalized, and weighted values of the factors significantly influencing rice land change.

District

Mean Values

Biophysical Factor Socio-Economic Factor

Elevation Slope Distance
Road

Distance
District

Distance
Province

Distance
Stream

Pop
Density

Potent
Land

Dis_
Road

Strat_Wat
Pump

Incom_
Non-Agri

HH_
Member

Inad_ Water
Occur

Pattern_
Chang

Flood_
Freq

STM Hilir 144.5 6.12 934.67 3252.49 36,642.84 1902.32 191 0.8578 1219.64 1.14 684.84 2.96 0.43 0.15 0.71
T. Morawa 26.01 2.75 185.7 2800.13 23,089.64 2000.02 1723 0.9855 707.14 3.14 1201.12 2.93 0.71 0.07 0.14

Sunggal 32.74 1.66 198.02 1782.75 15,844.05 3008.91 3109 0.9909 822 1.63 615 3.93 0.85 0 0.15
H. Perak 7.59 1.44 2565.69 3172.2 7581.25 2644.27 770 0.9907 979.41 2.53 1101.63 2.88 0.35 0.18 1.12
P.S. Tuan 8.30 1.73 483.48 4687.54 9461.9 3974.72 2381 0.9926 1214.06 1.34 777.5 3.28 0.25 0.03 1.09
Beringin 9.46 2.02 166.13 2307.13 20,932.09 1830.26 1179 0.9784 308.13 3.91 742.94 3.78 0.44 0.25 0.31

District

Normalized Values

Biophysical Factor Socio-Economic Factor

Elevation Slope Distance
Road

Distance
District

Distance
Province

Distance
Stream

Pop
Density

Potent
Land

Dis_
Road

Strat_Wat
Pump

Incom_
Non-Agri

HH_
Member

Inad_ Water
Occur

Pattern_
Chang

Flood_
Freq

STM Hilir 0 0 0.68 0.494 0 0.034 0 0 0 1 0.881 0.076 0.3 0.6 0.582
T. Morawa 0.865 0.72 0.992 0.65 0.466 0.079 0.525 0.947 0.562 0.278 0 0.048 0.767 0.28 0

Sunggal 0.816 0.953 0.987 1 0.716 0.55 1 0.987 0.436 0.823 1 1 1 0 0.01
H. Perak 1 1 0 0.522 1 0.38 0.198 0.986 0.264 0.498 0.17 0 0.167 0.72 1
P.S. Tuan 0.995 0.938 0.868 0 0.935 1 0.751 1 0.006 0.928 0.723 0.381 0 0.12 0.969
Beringin 0.986 0.876 1 0.819 0.541 0 0.339 0.895 1 0 0.782 0.857 0.317 1 0.173

Elevation Slope Distance
Road

Distance
District

Distance
Province

Distance
Stream

Pop
Density

Potent
Land

Dis_
Road

Strat_Water
Pump

Incom_
Non-Agri

HH_
Member

Inad_ Water
Occur

Pattern_
Chang

Flood_
Freq

SD 0.388 0.379 0.389 0.342 0.365 0.39 0.367 0.395 0.379 0.398 0.408 0.438 0.38 0.384 0.461
1/SD 2.575 2.638 2.568 2.922 2.739 2.567 2.723 2.531 2.638 2.515 2.452 2.284 2.631 2.603 2.17

Weight 0.0668 0.0684 0.0666 0.0758 0.071 0.0666 0.0706 0.0657 0.0684 0.0652 0.0636 0.0592 0.0682 0.068 0.056
Rank 8 4 9 1 2 10 3 11 5 12 13 14 6 7 15
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4. Conclusions

In this study, we investigated the trend in land uses change for three decades, 1989–2018, and the
factors affecting land use change, especially for rice land in the Deli Serdang Regency in Indonesia by
integrating GIS and remote sensing with field and household surveys. The trends in land use changes
showed that the majority of forest and rice land decreased due to plantation expansion and urban
development, especially in 2009–2018. Population growth, socio-economic factors, industrialization
and urbanization, airport-building, and specific policies (such as the transmigration program and
Mebidangro policy) generally contributed to those changes. We also found that the distance of rice
land to the district capital, the distance of rice land to the provincial capital, the distance of rice land to
a road, the population density, and the slope were the most influential biophysical and socio-economic
factors affecting the change of rice land.

The information about the total decrease in rice land over time together with the factors most
affecting change the rice land could be used as basic data for local and upper governments to create
and implement strategic and precise policies to anticipate the continuous rice land conversion. Hence,
the results of this study can be used to help meet the human food demand in the future to meet
the sustainable rice production goal. The information about rice land suitability, which was one of
biophysical factors, would highly benefit policy makers, providing exact data that can be used to
prevent any land with the potential for rice farming from being used for other purposes.

Based on the results, we provide some recommendations for farmers and the policy makers
including practicing integrating crop management (ICP), good agricultural practices (GAPs), and
climate smart agriculture (CSA) [56], planting a high yield-rice variety that is tolerant to drought or
flood [57], constructing and developing irrigation systems and water catchments on potential rice land
areas [58], providing insurance for rice cultivation especially from climate change and environmental
issues [59], providing a map of the zones with the potential for rice land, creating and implementing a
precise and strict policy related to forest and rice land protections, and ensuring land use management
is sustainable by considering soil biodiversity, water resources, forests, and agricultural and human
sectors. All these recommendations could increase rice production and prevent rice land conversion in
the future. This research was limited by resources, time, and financing. The specific limitation for this
research was the difficulty to find the clear satellite images at a particular time because the study area
located in the equatorial zone, where cloud existence unavoidable. Hence, finding the appropriate
acquisition date of satellite images is needed for the next research.

Author Contributions: Research design, D.R.S., R.P.S., S.S., and J.K.M.K.; methodology, D.R.S. and R.P.S.; software,
S.S.; formal analysis, D.R.S., R.P.S., and J.K.M.K.; sharing critical ideas, R.P.S., S.S., and J.K.M.K.; writing (original
draft preparation, review, and editing), D.R.S., J.K.M.K., and R.P.S.

Funding: This research was funded by Ministry of Agriculture of Indonesia through the Sustainable Management
of Agricultural Research and Technology (SMARD) Project.

Acknowledgments: We gratefully acknowledge the support of the Ministry of Agriculture of Indonesia and Asian
Institute of Technology (AIT) Thailand provided to the first author for doctoral study opportunity and associated
research work. We thank the government organizations for providing data and Google Earth and USGS Earth
Explore for allowing access to download the images. Special thanks for the technical assistance and respondents
(farmers) for their participation and time during the survey. We thank the anonymous reviewers for their insight
and valuable contributions, which helped us significantly improve this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ma, T.; Li, X.; Bai, J.; Ding, S.; Zhou, F.; Cui, B. Four decades’ dynamics of coastal blue carbon storage driven
by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta,
China. Sci. Total Environ. 2019, 655, 741–750. [CrossRef] [PubMed]

2. Vitali, A.; Urbinati, C.; Weisberg, P.J.; Urza, A.K.; Garbarino, M. Effect of Natural and Anthropogenic Drivers
on Land-Cover and Treeline Dynamics in the Apennines (Italy). J. Veg. Sci. 2017, 29, 189–199. [CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2018.11.287
http://www.ncbi.nlm.nih.gov/pubmed/30476854
http://dx.doi.org/10.1111/jvs.12598


Agriculture 2019, 9, 186 20 of 22

3. Hong, N.M.; Chu, H.J.; Lin, Y.P.; Deng, D.P. Effects of land cover changes induced by large physical
disturbances on hydrological responses in Central Taiwan. Environ. Monit. Assess. 2010, 166, 503–520.
[CrossRef] [PubMed]

4. Shu, C.; Xie, H.; Jiang, J.; Chen, Q. Is Urban Land Development Drive by Economic Development or Fiskal
Revenue Stimuli in China. Land Use Policy 2018, 77, 107–115. [CrossRef]

5. Jia, Z.; Ma, B.; Zhang, J.; Zeng, W. Simulating Spatial-Temporal Changes of Land-Use Based on Ecological
Redline Restrictions and Landscape Driving Factors: A Case Study in Beijing. Sustainability 2018, 10, 1299.
[CrossRef]

6. Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: Distant drivers of land change
and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [CrossRef]

7. Oduwaye, L. Globalization and Urban Land Use Planning: The Case of Lagos, Nigeria. In Proceedings of
the Real Corp 2013, Rome, Italy, 20–23 May 2013; pp. 1193–1200.

8. Nigro, J.; Thome, K.; Lachir, A.; Zhang, P.; Bounoua, L. Mapping urbanization in the United States from 2001
to 2011. Appl. Geogr. 2018, 90, 123–133.

9. Vliet, J.V.; Eitelberg, D.A.; Verburg, P.H. A global analysis of land take in cropland areas and production
displacement from urbanization. Glob. Environ. Chang. 2017, 43, 107–115. [CrossRef]

10. Lindarto, D.; Sirojuzilam, S.; Badaruddin, B.; Aulia, D.N. The place character as land use change determinant
in Deli Serdang. IOP Conf. Ser. Earth Environ. 2018, 126, 012080. [CrossRef]

11. Alatas, A. Trend Produksi dan Ekspor Minyak Sawit (CPO) Indonesia. AGRARIS: J. Agribus. Rural Dev. Res.
2015, 1, 114–124. [CrossRef]

12. Dewanta, A.S.; Arfani, R.N.; Erfita. Elasticity and competitiveness of Indonesia’s palm oil export in India
market. Econ. J. Emerg. Mark. 2016, 8, 148–158.

13. Margono, B.A.; Potapov, P.V.; Turubanova, S.; Stolle, F.; Hansen, M.C. Primary forest cover loss in Indonesia
over 2000–2012. Nat. Clim. Chang. 2014, 4, 730–735. [CrossRef]

14. Firman, T. Major issues in Indonesia’s urban land development. Land Use Policy 2004, 21, 347–355. [CrossRef]
15. BPS-DeliSerdang. Deli Serdang Regency in Figure 2018; Rilis Grafika: Medan, Indonesia, 2018.
16. Shrestha, R.P. Land Degradation and Biodiversity Loss in Southeast Asia. In Land Use, Climate Change and

Biodiversity Modelling: Perspectives and Applications, 1st ed.; Trisurat, Y., Shrestha, R.P., Alkemade, R., Eds.;
Information Science Reference: Hershey, PA, USA, 2011; pp. 303–327.

17. Trisurat, Y.; Shrestha, R.P.; Alkemade, R. Linkage between biodiversity, land use informatics and climate
change. In Land Use, Climate Change and Biodiversity Modeling: Perspectives and Applications, 1st ed.; Trisurat, Y.,
Shrestha, R.P., Alkemade, R., Eds.; Information Science Reference: Hershey, PA, USA, 2011; pp. 1–22.

18. Yang, J.; Ji, X.; Deane, D.C.; Wu, L.; Chen, S. Spatiotemporal Distribution and Driving Factors of Forest
Biomass Carbon Storage in China: 1977–2013. Forest 2017, 8, 263. [CrossRef]

19. Wu, W.-B.; Yu, Q.-Y.; Peter, V.H.; You, L.-Z.; Yang, P.; Tang, H.-J. How Could Agricultural Land Systems
Contribute to Raise Food Production Under Global Change? J. Integr. Agric. 2014, 13, 1432–1442. [CrossRef]

20. Nara, P.; Mao, G.; Yen, T. Climate Change Impacts on Agricultural Products in Thailand: A Case Study of
Thai Rice at the Chao Phraya River Basin. APCBEE Proc. 2014, 8, 136–140. [CrossRef]

21. Li, W.-J.; Tang, H.-J.; Qin, Z.-H.; You, F.; Wang, X.-F.; Chen, C.-L.; Ji, J.; Liu, X.-M. Climate Change Impact
and Its Contribution Share to Paddy Rice Production in Jiangxi, China. J. Integr. Agric. 2014, 13, 1565–1574.
[CrossRef]

22. Bhatti, S.S.; Tripathi, N.K.; Nitivattananon, V.; Rana, I.A.; Mozumder, C. A multi-scale modeling approach
for simulating urbanization in a metropolitan region. Habitat Int. 2015, 50, 354–365. [CrossRef]

23. Dang, A.N.; Kawasaki, A. Integrating biophysical and socio-economic factors for land-use and land-cover
change projection in agricultural economic regions. Ecol. Model. 2017, 344, 29–37. [CrossRef]

24. Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V. Modeling the Spatial Dynamics of
Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [CrossRef]

25. Carvalho, F.P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 2006, 9, 685–692.
[CrossRef]

26. Hewitt, R.; Hernandez-Jimenez, V. Developing Regions, Fragmented Landscapes: The Struggle for
Sustainability in Madrid. Sustainability 2010, 2, 1252–1281. [CrossRef]

27. Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production
by 2050. PLoS ONE 2013, 8, e66428. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10661-009-1019-1
http://www.ncbi.nlm.nih.gov/pubmed/19496007
http://dx.doi.org/10.1016/j.landusepol.2018.05.031
http://dx.doi.org/10.3390/su10041299
http://dx.doi.org/10.1016/j.cosust.2013.04.003
http://dx.doi.org/10.1016/j.gloenvcha.2017.02.001
http://dx.doi.org/10.1088/1755-1315/126/1/012080
http://dx.doi.org/10.18196/agr.1215
http://dx.doi.org/10.1038/nclimate2277
http://dx.doi.org/10.1016/j.landusepol.2003.04.002
http://dx.doi.org/10.3390/f8070263
http://dx.doi.org/10.1016/S2095-3119(14)60819-4
http://dx.doi.org/10.1016/j.apcbee.2014.03.015
http://dx.doi.org/10.1016/S2095-3119(14)60811-X
http://dx.doi.org/10.1016/j.habitatint.2015.09.005
http://dx.doi.org/10.1016/j.ecolmodel.2016.11.004
http://dx.doi.org/10.1007/s00267-002-2630-x
http://dx.doi.org/10.1016/j.envsci.2006.08.002
http://dx.doi.org/10.3390/su2051252
http://dx.doi.org/10.1371/journal.pone.0066428
http://www.ncbi.nlm.nih.gov/pubmed/23840465


Agriculture 2019, 9, 186 21 of 22

28. Perdinan, P.; Dewi, N.W.S.; Dharma, A. Lesson learnt from Smart Rice Actions in Indonesia. Future Food J.
Food Agric. Soc. 2018, 6, 9–20.

29. Syaukat, Y. The Impact of Climate Change on Food Production and Security and Its Adaptation Programs in
Indonesia. Int. Soc. Southeast Asian Agric. Sci. 2011, 17, 40–51.

30. Ariyanti, D.; Kroeze, C.; Saad, A. Indonesia palm oil production without deforestation and peat conversion
by 2050. Sci. Total Environ. 2016, 557–570, 562–570. [CrossRef] [PubMed]

31. Siagian, D.R.; Marbun, T.; Hermanto, C.; Alcantara, A.J. Landuse Conversion Impact Assessment on
Landscape Provisioning Service for Rice Sufficiency in Langkat Regency, Indonesia. Procedia Environ. Sci.
2015, 24, 3–14. [CrossRef]

32. USGS. 2018. Available online: https://earthexplorer.usgs.gov/ (accessed on 7 June 2018).
33. Abburu, S.; Golla, S.B. Satellite Image Classification Methods and Techniques: A Review. Int. J. Comput. Appl.

2015, 119, 20–25. [CrossRef]
34. Enderle, D.I.M.; Weih, R.C., Jr. Integrating Supervised and Unsupervised Classification Methods to Develop

a More Accurate Land Cover Classification. J. Ark. Acad. Sci. 2005, 59, 65–73.
35. Thakur, N.; Maheshwari, D. A Review of Image Classification Techniques. Int. Res. J. Eng. Technol. 2017, 4,

1588–1591.
36. Foody, M.G. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201.

[CrossRef]
37. Tilahun, A.; Teferie, B. Accuracy Assessment of Land Use Land Cover Classification using Google Earth.

Am. J. Environ. Prot. 2015, 4, 193–198. [CrossRef]
38. Mahmon, N.A.; Ya’Acob, N.; Yusof, A.L. Differences of image classification techniques for land use and land

cover classification. In Proceedings of the 2015 IEEE 11th International Colloquium on Signal Processing and
Its Applications (CSPA 2015), Kuala Lumpur, Malaysia, 6–8 March 2015.

39. Manandhar, R.; Odeh, I.O.A.; Ancev, T. Improving the Accuracy of Land Use and Land Cover Classification
of Landsat Data Using Post-Classification Enhancement. Remote Sens. 2009, 1, 330–344. [CrossRef]

40. Handavu, F.; Chirwa, P.W.C.; Syampungani, S. Socio-economic factors influencing land-use and land-cover
changes in the miombo woodlands of the Copperbelt province in Zambia. For. Policy Econ. 2019, 75–94.
[CrossRef]

41. Bachri, S.; Rofi; Sulaeman, Y. SPKL: Program Komputer Untuk Evaluasi Kesesuaian Lahan. In Proceedings
of the Prosiding Seminar Informatika Pertanian-Information Technology for Sustainable Agroindustry,
Jatinagor, Indonesia, 12–13 November 2015.

42. Djaenudin, D.; Marwan, H.; Subagjo, H.; Hidayat, A. Petunjuk Teknis Evaluasi Lahan untuk Komoditas Pertanian;
BBSDLP: Bogor, Indonesia, 2011; pp. 30–34.

43. Dhokhikah, Y.; Trihadiningrum, Y.; Sunaryo, S. Community participation in household solid waste reduction
in Surabaya, Indonesia. Resour. Conserv. Recycl. 2015, 102, 153–162. [CrossRef]

44. Othman, M.; Ash’aari, Z.H.; Mohamad, N.D. Long-term Daily Rainfall Pattern Recognition: Application of
Principal Component Analysis. Procedia Environ. Sci. 2015, 30, 127–132. [CrossRef]

45. Zurovec, O.; Cadro, S.; Sitaula, B.K. Quantitative assessment of vulnerability to climate change in rural
municipalities of Bosnia and Herzegovina. Sustainability 2017, 9, 1208. [CrossRef]

46. Pandey, P.P.; Manandhar, S.; Kazama, F. Climate Change Vulnerability Assessment. In Climate Change
and Water Resources; Shrestha, S., Babel, M.S., Pandey, V.P., Eds.; CRC Press: Boca Raton, FL, USA, 2014;
pp. 183–208. ISBN 978-1-4665-9467-8.

47. Adam, A.H.M.; Elhag, A.M.H.; Salih, A.M. Accuracy Assessment of Land Use & Land Cover Classificatio
(LU/LC) “Case study of Shomadi area-Renk County-Upper Nile State, South Sudan”. Int. J. Sci. Res. Publ.
2013, 3, 1–6.

48. Suparto, A. Land and water resources development in Indonesia. Available online: http://www.fao.org/

docrep/005-/ac623e/ac623e0g.htm. (accessed on 22 August 2018).
49. Irawan, B. Konversi lahan sawah: Potensi dampak, pola pemanfaatannya, dan faktor determinan.

Forum Penelitian Agro Ekonomi 2005, 23, 1–19. [CrossRef]
50. Segah, H.; Limin, S.; Hirano, T.; Tani, H.; Kasahara, T. Forest Fire Impact Monitoring in Peat Swamp Area

Using Satellite data; Case Study in Central Kalimantan, Indonesia. J. Agric. Meteorol. 2016, 60, 415–420.
[CrossRef]

http://dx.doi.org/10.1016/j.scitotenv.2016.03.032
http://www.ncbi.nlm.nih.gov/pubmed/27037877
http://dx.doi.org/10.1016/j.proenv.2015.03.002
https://earthexplorer.usgs.gov/
http://dx.doi.org/10.5120/21088-3779
http://dx.doi.org/10.1016/S0034-4257(01)00295-4
http://dx.doi.org/10.11648/j.ajep.20150404.14
http://dx.doi.org/10.3390/rs1030330
http://dx.doi.org/10.1016/j.forpol.2018.10.010
http://dx.doi.org/10.1016/j.resconrec.2015.06.013
http://dx.doi.org/10.1016/j.proenv.2015.10.022
http://dx.doi.org/10.3390/su9071208
http://www.fao.org/docrep/005-/ac623e/ac623e0g.htm.
http://www.fao.org/docrep/005-/ac623e/ac623e0g.htm.
http://dx.doi.org/10.21082/fae.v23n1.2005.1-18
http://dx.doi.org/10.2480/agrmet.415


Agriculture 2019, 9, 186 22 of 22

51. Bathrellos, G.D.; Gaki-Papanastassiou, K.; Skilodimou, H.D.; Skianis, G.A.; Chousianitis, K.G. Assessment of
Rural Community and Agricultural Development using Geomorphological-Geological Factors and GIS in
Trikala Prefecture (Central Greece). Stoch Environ. Res. Risk Assess. 2013, 27, 573–588. [CrossRef]

52. El-Khoury, A.; Seidou, O.; Lapen, D.R.; Sunohara, M.; Zhenyang, Q.; Mohammadian, M.; Daneshfar, B.
Prediction of land-use conversions for use in watershed-scale hydrological modeling: A Canadian case study.
Can. Geogr. 2014, 58, 499–516. [CrossRef]

53. Zhao, X.; Pu, J.; Wang, X.; Chen, J.; Yang, L.E.; Gu, Z. Land-Use Spatio-Temporal Change and Its Driving
Factors in an Artificial Forest Area in Southwest China. Sustainability 2018, 10, 4066. [CrossRef]

54. Roy, R.; Chan, N.W.; Xenarios, S. Sustainability of rice production systems: An empirical evaluation to
improve policy. Environ. Dev. Sustain. 2016, 18, 257–278. [CrossRef]

55. Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R. Landscape Metrics and Indices: An Overview of Their
Use in Landscape Research Living Reviews in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 1–28.
[CrossRef]

56. Gupta, D.K.; Bhatia, A.; Kumar, A.; Das, T.K.; Jain, N.; Tomer, R.; Sandep, K.M.; Fagodiya, R.K.; Dubey, R.;
Pathak, H. Mitigation of greenhouse gas emission from rice-wheat system of the Indo-Gangetic plains:
Through tillage, irrigation and fertilizer management. Agric. Ecosyst. Environ. 2016, 230, 1–9. [CrossRef]

57. Rumanti, I.A.; Hairmansis, A.; Nugraha, Y.; Nafisah; Susanto, U.; Wardana, P.; Subandiono, R.E.; Zaini, Z.;
Sembiring, H.; Khan, N.I.; et al. Development of tolerant rice varieties for stress-prone ecosystems in the
coastal deltas of Indonesia. Field Crops Res. 2018, 223, 75–82. [CrossRef]

58. Chartzoulakis, K.; Bertaki, M. Sustainable Water Management in Agriculture under Climate Change.
Agric. Agric. Sci. Procedia 2015, 4, 88–98. [CrossRef]

59. Lopulisa, C.; Rismaneswati; Ramlan, A.; Suryani, I. The emerging roles of agricultural insurance and farmers
cooperatives on sustainable rice productions in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 157,
012070. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s00477-012-0602-0
http://dx.doi.org/10.1111/cag.12105
http://dx.doi.org/10.3390/su10114066
http://dx.doi.org/10.1007/s10668-015-9638-x
http://dx.doi.org/10.12942/lrlr-2009-1
http://dx.doi.org/10.1016/j.agee.2016.05.023
http://dx.doi.org/10.1016/j.fcr.2018.04.006
http://dx.doi.org/10.1016/j.aaspro.2015.03.011
http://dx.doi.org/10.1088/1755-1315/157/1/012070
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data Preparation and Processing 
	Methodology 

	Results and Discussion 
	Land Use Change 
	Land Suitability Classification for Rice 
	Factors Affecting Rice land Change 

	Conclusions 
	References

