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Abstract: Achieving economic sustainability in the olive oil production sector is a challenge. This
is particularly so for small scale producers who are faced with pressing, production and marketing
costs that relative to overall sales, minimise profits. In this study we aimed to describe the phenolic
profile of extra virgin olive oils (EVOOs) derived from the Maltese islands. The polar fractions
from EVOOs from nine indigenous (six Bidni and three Malti), one historically acclimatized tree
(Bajda), 12 locally-grown but foreign cultivars and 32 foreign EVOOs were extracted using SPE
(solid phase extraction), separated using HPLC analysis at 280 nm and 320 nm and identified using
mass spectrometry. Application of ANOVA and Tukey post hoc hypothesis testing for analysis of
variance on the peak areas identified a significantly higher concentration of p-coumaric acid, tyrosol
acetate, DHPEA-EDA and oleocanthal in EVOOs derived from indigenous or historically acclimatized
cultivars. Imported but locally grown cultivars showed differences when compared to the same
cultivar grown in other countries, confirming that pedo-climatic conditions modulate genetic factors.

Keywords: Maltese islands; olive culture; sustainability; phenolic compounds; extra virgin olive oils

1. Introduction

The inhabited Maltese Islands consist of a set of three small islands, just under 316 km2 in area
(Malta 247.5 km2, Gozo 67.1 km2 and Comino 2.8 km2), isolated in the central Mediterranean Sea [1].
Typical of the region bordering the Mediterranean basin, the islands exhibit conditions favorable for
olive (Olea europaea L. subsp. Europaea) cultivation. Historical records and cultural references abound,
with olive pollen having been reported in samples from the Neolithic and Phoenician periods [2], a
Bronze Age pit [3] as well as from a detailed study of a core from the Burmarrad region [4]. Remnants of
olive cultivation may be evidenced by the remains of ‘rustic villas’ where processing of olives occurred
during the Roman occupation [5], while today towns and valleys still bear place-names associated with
olives and cultivation, e.g., Zejtun, Zebbug and Wied Ghajn Zejtuna. Despite the optimal geo-climatic
conditions on the islands, down-sizing and abandonment of the sector in response to rationalization of
land use for maximal financial or agronomic returns has been a feature of the industry [6].

The local olive culture industry offers an interesting case-study as the revival may be traced to a
recent commercial initiative, the Project for the Revival of the Indigenous Olive (PRIMO). This focused
on the grafting of the ‘Bidni’ tree where 30,000 trees were subsequently planted. The ‘Bidni’ variety is
named after the place where the trees were found growing (Bidnija, Malta). The tree shows vigorous
growth and is characterized by a small, almost elliptical, violet drupe and is markedly resistant to the
fruit-fly Bactrocera oleae. The small-sized drupe is difficult to harvest but results in an oil of excellent
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quality [6]. Other trees that form part of the nascent industry are the Maltese olive ‘Malti’ and the
white olive or ‘Bajda’. The former shows vigorous growth, with a violet drupe that is also elliptical but
blunt at the lower extremity. The tree is highly productive and the drupe is used both for oil and table
purposes. The ‘Bajda’ olive tree is smaller and produces a pale green drupe and is mostly used for the
table. The project PRIMO has served as a strong impetus and over the last two decades, olive trees
such as Carolea, Frantoio, Leccino, Pendolino and the table varieties Uovo di Piccione and Bella di
Spagna have become widely cultivated [7]. Currently olive groves cover a total of 128.5 hectares [7]
equivalent to 8.88% of permanent crop cover or 1.3% of total agricultural land.

Achieving economic sustainability for the olive oil sector is a challenge [8–10], but more so locally,
given the low availability of agricultural land for olive tree cultivation and the severe conflict over
land use. Absorption of production, harvesting, pressing and marketing costs from a small volume of
high quality olive oil to generate sustainable profits is also difficult. A niche market based on strong
product valorization may permit premium olive oil prices and help to offset some of the additional
costs identified above. Honojosa-Rodriguez et al. [10] argues that reduction of production cost is also
an essential step and that a strategy focused on achieving quality can help to achieve ‘competitive and
marketing advantages’.

The ability to distinguish olive cultivars is a critical preliminary step for traceability, valorization
and breeding programs [11] where genetic sequences are often favored over biochemical markers as
they are independent of terroir. DNA based methods are effective in allowing a traceability chain to be
established between tree and oil [12]. In a first approach, random amplified polymorphic DNA (RAPD)
and microsatellite analysis [11,13] were used to identify marker sequences specific to local varieties.
Both studies showed that indigenous olive trees occupied a distinct group. Presently further studies
using a larger number of local varieties are ongoing. As yet, there are no papers in the published
domain describing the organoleptic, biochemical and nutritional characteristics of Malta-derived olive
oils with the exception of a published description of their antioxidant properties [14]. Characterization
of these properties would help to identify uniqueness, while preventing adulteration or mislabeling of
local extra virgin olive oils (EVOOs) while ensuring the growth of the local industry.

Several methods have been developed to characterize phenols from olive oils including high
pressure liquid chromatography (HPLC) separation in conjunction with UV-vis, mass spectrometry
(MS) and nuclear magnetic resonance (NMR) [15–18]. Extraction of phenolic compounds may be
achieved using liquid–liquid extraction (LLE) or solid phase extraction (SPE) [19]. LLE is reported
to yield a higher recovery of secoiridoids under certain conditions, but is more laborious and uses
higher volumes [19]. SPE methods are well characterized and include conditioning of cartridges with
hexane, application of small volumes of olive oil, followed by washing with hexane to remove non
polar fractions and elution with methanol or acetonitrile [20,21]. Many separation methods on HPLC
have been described using a variety of solvents and separation profiles [22–24].

In this study the aim was to describe the phenolic profile of Maltese-derived extra virgin olive
oils (EVOOs), in so doing leading to future variable-characterization that may help to establish their
authenticity and reducing the potential for adulteration with cheaper oils (both olive and seed oils) or
mislabeling by foreign imported oil.

2. Method

2.1. EVOO Sample Collection and Extraction

In this paper specific metabolites belonging to the polyphenolic class of compounds that could
be used as biochemical markers were studied. The EVOOs for this study were derived from nine
indigenous (six Bidni and three Malti), one historically acclimatized tree (Bajda) and 12 locally-grown
but foreign cultivars. Indigenous and foreign but locally grown EVOOs were collected directly
from olive presses following expert identification of drupes between late September to November of
the harvest seasons 2014–2016 (bar 1 sample dating to 2013). Thirty-two foreign EVOOs were also
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purchased over the same time period 2014–2016 and included in the study (Table S1). These oils were
sought with the demarcation EVOO as well as the protected designation of origin (PDO) in order
to ensure traceability of the product. Samples were collected from different oil producers so as to
cover a representative sample of the Maltese islands in terms of pedological conditions and pressing
equipment, all olive presses used cold press technique. EVOOs were stored at 4 ◦C in the absence of
light prior analysis, i.e., stored using standard methods in line with methods used in published papers
were such methods are recorded, to assure the integrity of the analysis, then preheated to 35 ◦C in a
water bath for an hour and mixed to ensure homogeneity. Phenolic compounds from monocultivar
EVOOs were extracted using solid phase extraction (SPE) on diol-bonded phase cartridges (Analytical
Columns SolGel-1ms™, Croydon, England). Of EVOO samples 3.5 g were applied under vacuum (not
more than 15 mmHg) to the cartridge, washed with hexane to remove apolar components (2 × 6 mL)
and twice with hexane/ethyl acetate (85:15, v/v; 8 mL) based on the method described in Mateos et al.
(2001) [19]. The phenolic fraction was eluted with methanol (20 mL) filtered and concentrated to half
of the initial volume under vacuum and then to dryness using a nitrogen evaporator at 45 ◦C to ensure
complete removal of solvent.

2.2. Polyphenol Separation

All solvents were HPLC grade. HPLC analysis was carried out on an HPLC (Waters, Milford,
MA, USA) using a 20 µL injection volume on a Symmetry® C18 analytical column (250 × 4.6 mm i.d.)
with a particle size of 5 µm (Woodford, Santry, Dublin, Ireland). The mobile phases were degassed
and consisted of (A) water: Acetic acid (98:2, v/v) and (B) methanol: Acetonitrile (1:1, v/v) at a constant
flow rate of 1 mL/min. Elution was performed using the following solvent program: 80% (A): 20%
(B) 0–30 min; 70% (A): 30% (B) 30–45 min; 50% (A): 50% (B) 45–55 min; 40% (A): 60% (B) 55–65 min;
100% (B) 65–75 min and then 80% (A): 20% (B) for the final 4 min as a post-equilibration step. The
column temperature was set to 35 ◦C whilst the sample chamber was set to 10 ◦C to prevent phenolic
degradation. UV detection was carried out at 280 nm and 320 nm. Compounds were identified using
peak identification through retention time followed by analysis of molecular fragments by MS. Method
transfer from HPLC was carried to UPLC MS/MS.

2.3. UPLC MS/MS Analysis

An m/z scan was carried out for every eluting peak, which allowed detection of the parent
molecular ion. For each of these a separate multiple reaction monitoring (MRM) experiment to identify
the most stable fragment followed using IntelliStart™ function in MassLynx™ (Waters, Milford, MA,
USA). The UPLC system consisted of an AcQuity TMUPLC equipped with Waters binary pump system
(Milford, MA, USA) using an AcQuityUPLC TM BEH C18 column (1.7 µm, 100 mm × 2.1 mm i.d.).
During the analysis, 1.7 µL of sample was injected, the column was kept at 35 ◦C and the flow rate was
0.2 mL/min using 2% acetic acid as solvent A and 1:1 methanol/acetonitrile as solvent B. The elution
program was as follows 80% (A): 20% (B; 0 min); 80% (A): 20% (B; 5.5 min); 70% (A): 30% (B; 6.5 min);
50% (A): 50% (B; 20 min); 40% (A): 60% (B; 26 min); 25% (A): 75% (B; 30 min) and 80% (A): 20% (B;
31.6 min).

The UPLC system was coupled to a TUV detector AcQuity UPLCTM and a TQDTM mass
spectrometer equipped with a Z-spray electrospray ionization (Waters, Milford, MA, USA). The
software used was MassLynx 4.1. Ionization was performed by electro-spray (ESI) in the negative
mode and the data was collected in the selected ion recording mode (SIR) mode.

For the detection and identification of phenolic compounds present in olive oils, a phenolic sample
was infused at a rate of 50 µL/min for 10 min. Nitrogen was used as the nebulizing and desolvation gas.
The MS conditions were capillary potential 3.0 kV, extractor cone voltage 30 V, RF lens voltage 0.1 V,
source temperature 130 ◦C, desolvation temperature 300 ◦C and desolvation gas flow rate 500 L/h. Data
were collected by use of the MassLynx 4.0 software resident in a personal computer. In order to confirm
the identity of the compounds MRM transitions parameters were optimized by using the Intellistart
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tool of the MassLynx software, which consisted in automatically detecting the major fragments and
optimizing cone voltages and collision energies.

3. Results

The phenolic profile of indigenous Maltese EVOOs (Bidni, Malti) and foreign but locally grown
EVOOs is presented, where a summary of the peaks identified using SPE followed by HPLC analysis
at 280 nm and 320 nm and MS are presented in Table 1 (see also Supplementary Material Figure S1
and Table S2). A total of 32 peaks were observed where p-coumaric acid (peak 6), Tyrosol acetate
(peak 10), DHPEA_EDA (peak 15), oleocanthal (peak 17) and an unknown, possibly an aldehydic
form of oleuropein glycone (peak 28) were identified in EVOOs derived from indigenous or locally
grown but foreign trees. Conversely, phenolic acids such as p-hydroxybenzoic acid, o-coumaric acid
and syringic acid were present either at very low or undetectable concentrations. With respect to
the Italian EVOOs luteolin (peak 20), followed by pinoresinol (peak 19) and an unknown, possibly
decarboxymethyl-ligstroside aglycone (peak 21) featured prominently, while in the French EVOOs
an unknown compound possibly 10-hydroxy-oleuropein aglycone (peak 26) and another unknown
compound, possibly an isomer of the former compound (peak 27) were distinguished. Pinoresinol
(peak 19) and the oleuropein aglycone 3,4 DHPEA-EA were noticeable in the Greek EVOOs at 320 nm.
Similarly peak 23 identified as a possible hydroxy-decarboxymethyl-ligstroside aglycone was observed
in the Spanish EVOOs.

Table 1. Peak number, retention times and phenolic compounds at 280 nm.

Peak Number Retention Time (RT) Phenolic Compound

Peak 1 3.0–3.45 Gallic Acid
Peak 2 4.0–4.27 Hydroxytyrosol
Peak 3 4.9–5.06 Protocatechuic acid
Peak 4 5.3–5.9 Tyrosol
Peak 5 7.0–7.51 Syringic Acid

Peak 6 * 8.89–9.0 p-coumaric acid
Peak 7 10.9–11.5 Vanillin
Peak 8 11.8–12.2 o-coumaric acid
Peak 9 13.1–13.6 Ferulic acid

Peak 10 * 14.8–15.2 Tyrosol Acetate
Peak 11 17.5–18.0 Hydroxytyrosol Acetate
Peak 12 19.2–19.9 3-methoxycinnamic acid
Peak 13 24.9–25.5 Unk1 Verbascoside/dialdehydic form of oleuropein aglycone
Peak 14 39.1–41.0 Oleuropein

Peak 15 * 42.8–43.1 3,4 DHPEA-EDA
Peak 16 * 44.7–45.5 Unk2 Hydroxy-decarboxymethyl oleuropein aglycone
Peak 17 * 47.3–47.8 Oleocanthal
Peak 18 48.9–49.6 Cinnamic Acid/Acetoxypinoresinol
Peak 19 51.7–52.3 Pinoresinol
Peak 20 53.1–53.5 Luteolin
Peak 21 53.8–54.1 Unk3 Decarboxymethyl-ligstroside aglycone
Peak 22 54.5–55.5 3,4 DHPEA-EA
Peak 23 56.7–57.3 Unk4 Hydroxy-decarboxymethyl-ligstroside aglycone
Peak 24 57.6–58.3 p-HPEA-EA
Peak 25 59.0–61.0 Apigenin
Peak 26 61.5–62.1 Unk7 10-Hydroxy-oleuropein aglycone
Peak 27 62.5–62.8 Unk8

Peak 28 * 63.4–64.3 Unk9 Aldehydic form of oleuropein aglycone
Peak 29 65.5–66.6 Unk10

Peak 30–32 42.8–43.1 3,4 DHPEA-EDA and its oxidized forms

* Marked presence in indigenous and foreign but locally grown trees.
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A univariate statistical analysis on the distinct peak areas showed that EVOOs derived from locally
grown cultivars and indigenous cultivars had a significantly higher concentration of the polyphenol
p-coumaric acid (peak 6, significant at the 95% confidence level) when compared to EVOOs derived
from other Mediterranean countries (Table 2). Likewise, application of an ANOVA and Tukey post hoc
hypothesis testing for the analysis of variance on the peak areas of tyrosol acetate (peak 10) showed a
significantly higher level in EVOOs derived from indigenous or historically acclimatized cultivars such
as Bidni, Malti and Bajda, when compared to EVOOs derived from foreign varieties. Similar results
were also obtained on comparing DHPEA-EDA (peak 15), oleocanthal (p-HPEA-EDA) (peak 17) and
an aldehydic form of oleuropein aglycone (peak 28).

Table 2. Peak areas and their corresponding compounds, which were found to vary significantly under
an ANOVA statistical test across the three classes of extra virgin olive oils (EVOOs) studied.

Peak6
p-Coumaric

Acid

Peak10 Tyrosol
Acetate

Peak15 3,4
DHPEA-EDA

Peak17
Oleocanthal

p-HPEA-EDA
Peak28 Unk9

Indigenous
(n = 9)

3.81 × 105 a
±

3.54 × 104
1.20 × 105 a

±

8.75 × 104
2.62 × 106 a

±

4.81 × 104
1.56 × 106 a

±

3.28 × 104
1.00 × 106 a

±

2.25 × 104

Foreign but
locally grown

(n = 12)

9.80 × 105 b
±

6.71 × 104
3.57 × 104 c

±

3.87 × 104
4.27 × 106 b

±

5.37 × 104
1.37 × 105 c

±

1.14 × 104
6.26 × 105 b

±

4.87 × 104

Foreign (n = 32) 9.30 × 104 a *±
1.13 × 104

2.95 × 104 c
±

2.63 × 104
1.16 × 106 a

±

6.52 × 104
1.23 × 105 c

±

1.02 × 105
2.84 × 105 b

±

1.70 × 105

Superscript letters in the same column represent statistically distinct homogeneous subsets as determined by an
ANOVA and post hoc Tukey analysis at a 5% confidence level, same letters followed by an * indicate homogeneous
subsets at a 10% confidence level.

4. Discussion

In this paper a first description of the phenolic profile of Maltese derived EVOOs using SPE and
HPLC is presented. Phenolic profiles of Maltese EVOOs (both indigenous and foreign but locally
grown) derived during the three harvest seasons of 2014–2016 were studied. 3,4 DHPEA-EDA, and
oleocanthal (pHPEA-EDA) were markedly present in the indigenous EVOOs rather than in the foreign
varieties. As these EVOOs were extracted using the same mechanical and recovery processes, the
presence of these compounds appears to reflect a marked occurrence in the indigenous EVOOs.
The tyrosol/hydroxytyrosol ratio was observed to be similar to EVOOs from other Mediterranean
countries for other varieties [25]. The presence of these phenols is attributed to the partial hydrolysis
of their derivatives, while the higher antioxidant activity of hydroxytyrosol when compared to tyrosol
make it more susceptible to degradation [26]. The presence of pinoresinol was not noticeable, while
trans-cinnamic acid was observed to co-elute with 1-acetoxypinoresinol. These compounds are the
main components of the phenolic fraction, which is derived from olive seed and are noticeably absent
from the drupe pulp [27]. Hence their presence in oil reflects crushing and admixing of the olive pits
during the crushing process rather than inherent variations in the drupe and hence in the EVOO.

Direct comparison with the foreign EVOOs is difficult either because the phenolic profile for a
particular EVOO is not available in the published literature or due to differences in the extraction
processes, separation methods and elution profiles used. For example the UV detection in this study
was carried out at 280 nm and 320 nm in line with the absorption of polyphenols. In this study the
Italian EVOOs were rich in the flavonoid luteolin that is known to increase with fruit ripening and
pinoresinol but these latter phenolic compounds were negligibly present in local EVOOs. The relatively
low levels of oleuropein in all EVOOs tested are correlated to the action of β-glucosidases that result in
the formation of secoiridoid aglycones.
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The results confirm the organoleptic qualities reported for certain Maltese EVOOs. The presence of
the phenolic compound in Table 1 such as oleocanthal supports the known pungent, burning sensation
associated with the Bidni variety [23].

Notably the HPLC chromatograms of foreign and indigenous/local EVOOs (Figure 1) showed
diversity in terms of a quantitative variation in their phenolic profile rather than a qualitative one
(for example tyrosol acetate, p-coumaric acid). Variations in polyphenol expression may arise due to
the harvesting period and ripeness, which reportedly affects an increase in hydroxytyrosol, tyrosol
and luteolin, the extraction system [28], oxygen concentration and temperature during the malaxation
process [29–32], removal of stones [33] storage conditions [34] and not least irrigation regimes [35].
However there are important factors that affect the phenolic fingerprint and are independent of
processing, such as the combination of climate and pedological factors [36] as well as cultivar genotype.
Compounds such as 3,4 DHPEA-EA, the aldehydic form of oleuropein aglycone and particularly
DHPEA-EDA are produced by the activation of endogenous β-glucosidases the expression of which
reflects cultivar genotype. These compounds that have been ascribed protective functions and
contribute to EVOO bitterness [37–39] were markedly present in both indigenous and foreign but
local varieties. As these phenolic compounds were recorded across indigenous as well as in foreign
but locally derived EVOOs (e.g., Carolea) this indicates that the pedo-climatic conditions contributed
strongly to the expressed phenolic phenotype, particularly since the ripening stages, i.e., the harvesting
period, the conditions of oil extraction (uniquely due to few oil presses) and irrigation treatment
based on a low water regime typical for the arid island were uniform [39]. Interestingly low water
levels are correlated with oils with increases in DHPEA-EDA and 3,4 DHPEA-EA as well as elevated
bitterness and pungency and this may explain their marked presence in indigenous and acclimatized
EVOOs [39]. Ultimately the presence of these biochemical markers in the locally derived EVOOs offers
an encouraging indication that a tool derived from variable data derived from multiple separation and
structural pattern recognition techniques in conjunction with DNA markers may be possible [39–41].
This will have important implications on developing methods to ensure authenticity and allowing
sustainability contribution of the olive industry to the economy.
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5. Conclusions

This paper achieves a profile based on the separation of polyphenols in EVOOs; for both indigenous
and foreign but locally derived EVOOs from the Maltese islands. Evidence that ultimately certain
polyphenols were dependent on the pedo-climatic conditions and not solely on the genetic component
of the originating olive tree is also presented.
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