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Abstract: This study comprehensively analysed the chemical composition of the cuticle in pitaya
fruits. The total coverage amount of the waxes versus cutin monomers accumulated at a ratio of 0.6,
corresponding to masses per unit of 30.3 µg·cm−2 and 50.8 µg·cm−2, respectively. The predominant
wax mixtures were n-alkanes in homologous series of C20–C35, dominated by C31 and C33; as well as
triterpenoids with an abundant amount of uvaol, lupenon, β-amyrinon, and β-amyrin. The most
prominent cutin compounds were C16- and C18-type monomers, in which 9(10),16-diOH-hexadecanoic
acid and 9,10-epoxy-ω-OH-octadecanoic acid predominated, respectively. The average chain length
(ACL) of aliphates in pitaya fruit cuticle (30.5) was similar to that estimated in leaf waxes, and higher
than that in most of the fruit and petal waxes that have been reported. We propose that the relatively
high ACL and wax/cutin ratio might enhance the cuticular barrier properties in pitaya fruit cuticle to
withstand drought.
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1. Introduction

Pitaya or dragon fruits are the fruits of Hylocereus polyrhizus (Weber) Britton and Rose (Cactaceae),
which was originally cultivated in Central American. As a cactus species, the modified stems of
H. polyrhizus is involved in photosynthesis as opposed to leaves. The leaves are shaped as spines,
minimizing the rapid water loss under high temperatures and dry environments [1]. When mature,
flesh colour can be white, crimson, or pale-yellow depending on the cultivars. For its sweet taste,
the fruit flesh is also used to flavour or colour juices. The pitaya peel is commonly bright-red,
representing approximately 22% of the total fruit mass, which is usually discarded during processing [2].
Recently, several studies paid attention to the importance of the peel related to its significance in
delaying the shelf life with treatments, i.e., hot air, different temperatures with plastic bags, and ozone
gas [1,3,4]. However, the potential importance of the cuticular membrane of the peel has not yet been
comprehensively investigated.

The cuticular membranes covering almost all aerial plant organs, protect the cells from uncontrolled
water loss as well as other biotic and abiotic stresses [5]. The plant cuticle is composed of lipid
components and minor amounts of phenolics, polysaccharides, and proteins. Therefore, the functional
properties of cuticle are largely related to the chemical compositions and the structural arrangement
of the cuticular layers. As a succulent and drought-tolerant plant, H. polyrhizus might possess
a well-stated cuticular membrane, which add, besides the protection of fruits against rapid water loss,
the maintenance of the fruit taste and flavour. The present study aims to analyze comprehensively
the chemical composition of cuticular waxes and cutin monomers of pitaya fruit peel. The possible
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relationships between the diversity of chemical compositions in the cuticle and its barrier properties in
pitaya fruits will also be discussed.

2. Materials and Methods

2.1. Plant Materials

Red-coloured fruits of H. polyrhizus ‘Hongshuijing’ at the mature red stage were harvested
from an orchard in Conghua, Guangzhou, Guangdong Province, P. R. China (23◦30′ N, 113◦30′ E).
The mature pitaya fruits were large (10–15 cm length) with an attractive colour, and bell shaped;
with the detailed BBCH (Biologische Bundesantalt, Bundessortenamt und Chemische Industrie) scale
previously described [6]. It is largely planted in South China, especially in Conghua, Guangzhou.
The water status of pitaya fruit is important for the quality of fruits. Hence, the fruits were transported
to laboratory immediately within 3 h. Fruits with uniformity of colour, shape, and free of blemish and
disease were selected and used in further experimental materials.

2.2. Chemicals and Standards

All the reagents used for experiments were of analytical grade. Authentic
n-tetracosane (CAS#: 646-31-1) and n-dotriacontane (CAS#: 544-85-4) served as standards,
N,O-Bis(trimethylsilyl)trifluoroacetamide (BSTFA, CAS#: 25561-30-2), and Boron trifluoride in methanol
(1.3 M, CAS#: 373-57-9) were purchased from Sigma-Aldrich (Shanghai, China). Pyridine (CAS#:
110-86-1) was purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China).
Cellulase (CAS#: 90212-54-8) and pectinase (CAS#: 9032-75-1) were purchased from Beijing Solarbio
Science and Technology Co., Ltd. (Beijing, China).

2.3. Isolation of Cuticular Membranes

Cuticular membranes (CMs) from pitaya fruits were isolated enzymatically. To isolate the CMs
from pitaya fruit, discs were punched from the fresh, non-contaminated and non-treated fruit peels at
the middle section of the fruit using a puncher with diameter of 1.2 cm (Runzekang Biology Technology
Co., Ltd., Beijing, China). The discs were immediately immersed in an enzyme solution, containing
10 mM citric acid buffer with pectinase (1% w/v), cellulase (1% w/v) and 0.1 mM sodium azide to
avoid the growth of microorganisms. After the CMs were completely isolated from tissues at room
temperature for 7 day, the CMs were washed with 10 mM sodium tetraborate decahydrate and distilled
water, then dried under dry atmosphere (with dry silica gel) for further experiments (Figure 1).
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2.4. Cuticular Wax Extraction

To extract the cuticular waxes from the pitaya fruit cuticle, the enzymatically isolated fruit CMs
were dipped and extracted three times in 50 ◦C hot chloroform, each time for 60 s. The two extracts
per each disc obtained were combined, and n-tetracosane was added. The extracted mixtures were
evaporated under a gentle stream of nitrogen gas until obtaining dry samples for further analysis.

2.5. Cutin Depolymerization for Chemical Analysis

For the cutin analysis, the matrix obtained by wax extraction as described above was subsequently
immersed in boron trifluoride dissolved in methanol (1.3 M) and depolymerized at 70 ◦C for 16 h.
After extraction in chloroform, n-dotriacontane was added. Then, a saturated aqueous sodium chloride
solution was added. The mixtures were further extracted by chloroform three times. The collected
organic phase, which contained cutin monomers was dried over sodium sulphate, and evaporated
under a gentle stream of nitrogen gas until dry samples were obtained for further analysis.

2.6. Chemical Analyses: Gas Chromatography and Mass Spectrometry

The above dried extracts were then derivatized with BSTFA in pyridine at 70 ◦C for 30min.
To detect the wax and cutin monomer components, the extracts were analysed using a capillary gas
chromatograph with a flame ionization detector (7820A, GC System; Agilent Technologies, Santa Clara,
CA, USA), and on-column injection with a capillary column (30 m × 0.32 mm, DB-1 ms, 0.1 µm film;
J&W Scientific, Agilent Technologies, Santa Clara, California, USA). To separate the cuticular wax
compounds, the samples were injected, and kept at 50 ◦C for 2 min. Then, the temperature was raised
at a rate of 40 ◦C min−1 to 200 ◦C, and kept at 200 ◦C for 2 min, then raised at a rate of 3 ◦C min−1 to
320 ◦C and kept at 320 ◦C for 30 min. For separation of the cutin monomers, samples were injected and
kept at 50 ◦C for 1 min. Then the temperature was raised at a rate of 10 ◦C min−1 to 150 ◦C, kept at
150 ◦C for 2 min, raised at a rate of 3 ◦C min−1 to 320 ◦C and kept at 320 ◦C for 30 min. The sample
volume was 10 µL. The carrier gas was hydrogen. The area of the peaks was compared with that of the
internal standard to obtain the quantity of cuticular wax and cutin monomer components per unit
cuticle area.

The chemical components were analysed using a temperature-controlled capillary gas
chromatograph equipped with a mass spectrometric detector (m/z 50–750, MSD 5975; Agilent
Technologies, Santa Clara, California, USA) under the same gas chromatographic conditions but
with helium as carrier gas. Single compounds were identified based on their electron ionization mass
spectra using authentic standards, the Wiley 10th/NIST 2014 mass spectral library (W10N14; John Wiley
and Sons) or by interpretation of the spectra according to their retention times and/or by comparison
with a mass spectra library established by our own laboratory or with literature data [7–10].

The component coverage (Cs) was quantified against the amount of internal standard (Mis)
by integrating the peak area of the component (As) and the peak area of internal standard (Ais),
and dividing by the extracted area (Aea):

Cs =
As·Mis
Ais·Aea

(1)

The weighted average of carbon chain length (ACL) of aliphatic compounds was calculated from
the chain length (Li,) and the molar mass fraction (Mi) of the component (i):

ACL =

∑
i Li·Mi∑

i Mi
(2)
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2.7. Statistical Analysis

Statistical analyses were performed using SPSS 17.0 (IBM Corp., Armonk, NY, USA) and SigmaPlot
10.0 (Systat Software, Inc., San Jose, CA, USA). SigmaPlot 10 was used to generate the graphs.

3. Results and Discussion

3.1. Composition of Cutin of Pitaya Fruit

The chemical composition and quantity of the compounds of the cutin matrix involved in the
cuticle of pitaya fruits were analysed and detail in this study. The overall coverage of the cutin matrix
was 50.8 µg cm−2 (Table 1). The cutin monomers were largely accumulations of fatty acids (7.7% of total
cutin) without added groups,ω-hydroxy fatty acids (13.4%),ω-hydroxy fatty acids with mid-chain
hydroxy groups (39.8%) and ω-hydroxy fatty acids with mid-chain epoxy groups (15.7%, Figure 1 and
Supplementary Table S1). The predominant cutin compounds were 9/10,16-dihydroxy-hexadecanoic
acid (37.5% of the total cutin mass), 9,10-epoxy-ω-hydroxy-octadecanoic acid (14.0%) and
ω-hydroxy-octadec-9/12-enoic acid (7.9%, Figure 2 and Supplementary Table S1). Small amounts
of fatty acids with most even-numbered carbon chain lengths from C15 to C32 (7.7% of the total
cutin), α,ω-dicarboxylic fatty acids with mid-chain hydroxy group (1.5%), and α,ω-dicarboxylic fatty
acids with mid-chain epoxy group (<1%) were also identified in the fruit cutin matrix (Figure 1 and
Supplementary Table S1). The unsaturation degree of the cutin matrix was 14.3%, and the epoxidation
degree was 15.9%. Furthermore, the ratio of the carbon chain length of C16 and C18 cutin monomers
amounted to 1.7 (Table 1).

Table 1. Total coverage of wax and cutin matrix, as well as the content of aliphatics, cyclics, C16 and C18

monomers; Ratio of very long chain aliphatic fraction to cyclic fraction, ratio of C16 to C18 monomers,
total wax to cutin; and average chain length (ACL) of the very long chain aliphatic fraction in pitaya
fruit cuticle. Data are given as means ± standard deviation (n = 5).

Waxes (µg cm−2) Cutin Monomers (µg cm−2) Ratios ACL

Total wax 30.3 ± 1.47 Total cutin 50.84 ± 7.4 Aliphatics/cyclics 0.7 ± 0.11 Aliphates 30.45 ± 0.76

Aliphates
(≥C20) 9.93 ± 0.99 C16

monomers 24.15 ± 5.33 C16/C18 1.71 ± 0.48

Cyclics 14.38 ± 1.38 C18
monomers 14.92 ± 4.84 Total wax/cutin 0.57 ± 0.05

In pitaya fruit, the most abundant cutin monomers were of C16 and C18 chain length.
The predominant 9/10,ω-dihydroxyhexadecanoic acid was also detected in other fruits such as
Prunus avium L. [11], Solanum lycopersicum L. [12], Olea europaea L. [13], and Malus domestica Borkh. [14].
In contrast, the 9,10-epoxy-ω-18-hydroxy-octadecanoic acid detected as the second most abundant
monomers in pitaya fruit cuticle (14.0% of total cutin) are commonly found in the leaf cutin matrix of
examples such as Olea europaea L., Rhazya stricta and Agave Americana etc., but was scarcely detected in
fruit cuticle of olive and apple [9,12,13,15,16].

The cutin matrix, polymerized by mostly oxygenated fatty acids, is proposed to construct the
framework of the plant cuticle [17]. However, cuticular waxes rather than cutin polymers may form the
crucial barrier against uncontrolled water loss [18,19]. The chain-length distribution of cutin monomers
in the matrix was also found to slightly affect the permeability to water and organic or inorganic
substances [20]. The abundant accumulation of C18 chains could lead to a slower permeability unlike
that of C16 chains. Previous investigations implied that a unique polymeric cutin matrix might result
from the various characteristics of carbon chain lengths, the degree of unsaturation, and mid-chain
epoxidation in both leaf and fruit cuticle [13]. The ratio of C16/C18 cutin monomers was 1.7, the C18-long
chains of 9,10-epoxy-ω-hydroxyoctadecanoic acid was detected, which might add to enhancement
of the mechanical strength of the cutin matrix in pitaya fruits. In addition, the substantial content of
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unsaturated and mid-chain epoxidation cutin monomers might also broaden the network of polymers
in the matrix, providing spaces for wax accumulation in the cuticle of pitaya fruits.Agriculture 2019, 9, x FOR PEER REVIEW 5 of 11 
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Figure 2. Wax compounds in the pitaya fruit cuticle. Data are given as means ± standard deviation
(n = 5).

3.2. Composition of Cuticular Waxes of Pitaya Fruit

As cuticular waxes are the main compounds resulting in the functional pattern for the barrier
properties of cuticle, the chemical composition of the cuticular waxes was thoroughly analysed for
pitaya fruit. The total wax coverage was 30.3 µg cm−2 (Table 1), which was similar to the wax coverage
on the fruits of Prunus avium L. [11] and Solanum lycopersicum L. [12]. Typical very-long-chain fatty
acids (VLCFAs) and their derivatives, including fatty acids, primary alcohols, aldehydes, and n-alkanes,
as well as a variety of sterols and pentacyclic triterpenoids were detected in pitaya cuticular wax
mixtures (Figure 3 and Supplementary Table S2). In particular, n-alkanes (17.6% of total wax mass)
and the variety of pentacyclic triterpenoids (44.8% of total wax mass) were the prominent components.
The pentacyclic triterpenoids contained various components with the most abundant being uvaol
(18.8% of total wax mass), followed by lupenon (9.8% of total wax mass), β-amyrinon (5.5% of total
wax mass), β-amyrin (3.0% of total wax mass), α-amyrin (2.7% of total wax mass), lupeol (1.9% of
total wax mass), ursolic acid (1.4% of total wax mass), as well as small amount of maslinic acid and
germanicol (Figure 4 and Supplementary Table S2). Relatively small amounts of other VLCFAs such as
fatty acids (2.1% of total wax mass, the chain-length larger than 19 carbons, fatty acids in C16 and C18

were excluded), primary alcohols (6.6% of total wax mass), and trace of aldehydes, as well as various
cyclic sterols (2.7% of total wax mass) were detected (Figure 3 and Supplementary Table S2).

Additionally, the diversity in the accumulation and amount of VLCFAs (>19 carbon chain-length),
i.e., aliphates, versus the cyclic compounds including sterols and pentacyclic triterpenoids, was in
a ratio of 0.7 (Table 1), which showed similar amounts accumulating for aliphates and cyclics in the
cuticular wax of pitaya fruit cuticle. The n-alkanes and pentacyclic triterpenoids being the major wax
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components in pitaya fruit cuticle, which were similar to the wax mixtures of tomato fruit cuticle [12],
sweet cherry [11], as well as similar to the leaf waxes of most previously studied plant species [13,16,21].
However, this differed from fruit cuticular waxes of many other plant species [13,14].

Simultaneously, a ratio of 0.3 for the accumulated amount of triterpenoids versus cutin monomers,
and a ratio of 0.6 for total wax versus total cutin monomers, were found (Table 1). So far, few studies
have tried to take the triterpenoids into account as fillers to reinforce the cutin matrix mechanically.
The cuticular wax, especially the intracuticular wax has been reported to fix and restrict the strain of
cuticle of leaves and fruits [22]. The triterpenoids were detected mainly in intracuticualr waxes [21].
Therefore, triterpenoids might be one of the main wax fractions embedded in the cutin matrix. It has
been implied that triterpenoids accumulated in the leaf cuticles of R. stricta might play an important role
in protecting the barrier of cuticular layer from thermal stress under very hot and drought environments
as found in desert plants [16]. In addition, the triterpenoids were indicated to be nanofillers embedded
in the cuticular matrix, which may increase the mechanical strength of the cuticle in Fuyu Persimmon
fruit [23]. Likewise, as a member of the cactus family, pitaya usually sustains high temperatures and
less water resources. Thus, the relatively high amount of triterpenoids embedding in cuticular layer
together with cutin matrix may also help to adapt the thermal stress, maintaining the integrity of
cuticular membrane for the pitaya fruit cuticle.
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3.3. Chain Length Distribution of Aliphates and their Putative Significance for Barrier Properties

It has been pointed out that the accumulation of total wax or homologous substances could not
directly contribute to the barrier properties, but is more likely related to the chain-length distribution of
straight chain components based on the comprehensive studies in various petals [24], leaves [5,21] and
fruits [25]. The chain-length distribution of VLCFAs differed in each compositional class. Fatty acids
and primary alcohols of the pitaya fruit had a similar carbon chain-length distribution, which ranged
from C20 to C31 and from C22 to C30, respectively (Figure 5A,B). Similar small amounts of each
carbon chain were found for fatty acids, while the primary alcohol fraction predominated by C28

and C30. The aldehydes with trace of C30 were found in pitaya fruit cuticle (Figure 5C). In contrast,
the predominant VLCFAs fraction of n-alkanes occurred in a fairly broad range with a continuous
homologous of chain-length from C20 to C35. Remarkably, high concentrations of C31 (4.3% of total
wax) and C33 (7.3%) were deposited and found to be the most abundant of n-alkanes in pitaya fruit
waxes (Figure 5D).
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A variable chain-length distribution of aliphatic waxes in pitaya fruit cuticle was comparable to the
previously studied fruits, and/or other plant organs such as leaves and petals. For example, the aliphatic
pattern of waxes was dominated by C29 n-alkanes in cherry fruit cuticle [11]; by odd-numbered
n-alkanes ranging from C29 to C33 in tomato fruit cuticle [12]; by a mixture of C30 aldehydes, fatty acids,
and alcohols, as well as C29 n-alkanes in berry fruit cuticle [26]; and by C26 and C28 for both fatty acids
and primary alcohols in olive fruit cuticle [13] etc. The predominant aliphates were odd-numbered
n-alkanes that ranged from C29 to C33 in most leaf waxes that have been investigated [13,21,27].
In pitaya fruit cuticle, the most abundant n-alkanes were dominated by C31 and C33 (Supplementary
Table S2), which were about two carbons longer, when compared to other fruits, and were more similar
to that of leaf waxes.

It has long been mentioned that the barrier properties of the cuticle in each plant species and
different organs were largely related to the accumulation of VLCFAs, especially their chain-length
distributions [28]. Given the wide range distribution of carbon chain lengths and variety of compositions
in cuticular waxes, ACL was used as a proxy to indicate the overall wax compositional quality [29].
ACL has recently been noticed as one of the important parameters leading barrier property differences
between leaves and fruits, and/or petals [13,24]. In the present study, the weighted ACL of aliphatic
compounds, which were calculated based on the molar concentration of VLCFAs, were 30.5 in pitaya
fruit cuticle (Table 1). The ACL loading has been reported in the cuticle of a variety of plant species
and/or different fruits [11,13,14], leaves [13,21,24], and petals [24,30] reported previously as comparison
groups. ACL of aliphates in pitaya fruit cuticle was similar to the median value in leaf waxes,
and higher than that in most of the fruit and petal cuticular waxes previously reported (Figure 6).
Previous research reported that water permeability of leaves was significantly lower than that of
fruits and petals [12,24,25], which was putatively related to the higher ACL loading in the leaf waxes.
Therefore, the relatively high ACL value in pitaya fruit might provide an efficient barrier for the
cuticular membrane, leading to slow water transpiration and maintaining fruit water status for pitaya.
Certainly, this could also be an intrinsic/unique characteristic for pitaya to withstand high temperature
and arid stresses.
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Figure 6. The comparisons of ACL (average chain length) load in the pitaya fruit cuticle to the different
fruits, leaves, and petals in different plant species. The dark triangle corresponds to the ACL value of
pitaya fruit cuticle. The different lowercase letters on the bars indicate significant differences of ACL
load in cuticle of different fruits, leaves and petals (p < 0.05).

4. Conclusions

In conclusion, the chemical composition of cuticular waxes and cutin monomers in pitaya fruit
peel has been characterized and discussed to link to the eco-physiological adaptation of pitaya fruit
cuticle. The cuticular membrane of pitaya fruit contained both abundant VLCFAs dominated by
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n-alkanes (C31 and C33), and various pentacyclic triterpenoids for the wax pattern, embedded incutin
matrix composed of mixture of C16, and C18 chain cutin monomers (Figure 7). Similar amount of waxes
and cutin monomers were detected in cuticle of pitaya fruit. ACL of aliphatic compounds of waxes in
pitaya fruit cuticle was similar to that in leaves and higher than that in the cuticle of fruits and petals of
most previously studied plant species [13,24,25]. On the one hand, the abundant triterpenoids and
equivalent of wax coverage and cutin polymer in pitaya fruit cuticle might strengthen the mechanical
support/stability and the plasticity of the cuticular membrane, protecting the cuticle from thermal
extension for pitaya to adapt to high-temperature stress. On the other hand, the relatively high ACL
of VLCFA loads could enhance the tight and highly ordered crystalline zones in cuticular wax layer,
leading an efficient transpiration barrier for rapid water loss for pitaya in arid habits. Altogether,
the results of wax and cutin in pitaya fruit cuticle add further insights into the relationship between
the chemical composition and the eco-physiological context for the plant fruit cuticle.
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