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Abstract: A conventional method for wrapping round bales of agricultural materials by wrappers
with a rotating table or with rotating arms is considered. In contemporary agriculture, the demand for
minimal consumption of the film used to wrap bales is very high, in order to apply this method with
lower cost and less damage to the environment. A combined model-based problem of such a design,
focusing on the width of stretch film and the overlap between adjacent film strips that minimizes film
consumption, was mathematically formulated and solved. It was proven that the complete set of
optimal film widths is defined by a simple algebraic equation described in terms of film, bale, and
wrapping parameters. The optimal overlap ratios were found to be irreducible fractions in which the
dividend is the divisor minus one; however, only the first three factions, 1

2 , 2
3 , and 3

4 , are practically
significant. Next, the robustness to disturbances in the functioning of an actual bale wrapper, which
leads to overlap ratio uncertainty, is examined. It was shown that, unfortunately, the optimal film
widths applied together with the optimal overlaps do not provide any robustness to overlap variations.
To overcome this inconvenience, the problems of a choice of the best commercially available film
width guaranteeing minimal film consumption or maximal tolerance on the overlap uncertainty were
formulated and solved. A new algorithm for a robust design of wrapping parameters was developed,
motivated, and numerically verified to achieve a trade-off between satisfactory robustness and low
film usage. For the resulting wrapping parameters, near-optimal film usage was achieved; the relative
errors of the minimal film consumption approximation did not exceed 4%. It was proven that for
the overlap, slightly more than 50%, i.e., 51% or 52%, provides both optimality and robustness of
the overlap over disturbances, which are ensured regardless of the number of film layers. Moreover,
it was found that for these overlaps and for the commercially available film widths selected according
to the algorithm, the film consumption was more than twice as small than the film usage for exactly
50% overlap, if the actual overlap was smaller than pre-assumed. Similarly, an overlap of slightly more
than the commonly used 67% will result in about 30% to 40% reduction in film usage in the presence
of unfavorable disturbances, depending on the number of film layers and wrapping parameters.

Keywords: baled silage; stretch film consumption; optimization; robustness; mathematical model

1. Introduction

Baling technology has been widely used in storing agricultural materials, both at large feed factories
and small-scale farms, due to the mechanization of the production chain, low labor requirements, ease
of the manipulation and transport of bales, and low requirements for bale storage [1–3]. A persistently
exciting bale wrapping application is that of silage conservation. Bales are wrapped in plastic
film to ensure proper fermentation in anaerobic conditions without the need to build dedicated
structures [4,5]. Comprehensive reviews of the literature, substantial and multifaceted, concerning
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physical and biochemical characteristics of baled silages with fermentation and nutritive quality [6–8]
provide detailed information about the progress in bale silage conservation techniques [7,9,10], recent
experimental studies [6,7], and future perspectives [7,8,10]. Although other silage conservation
technologies are poised to replace baled silage for the primary purpose of providing good silage at low
cost, it is likely to remain popular in the foreseeable future [7,11].

Today’s silage conservation in many regions of Europe [9,12], America [9], and China [1,11],
especially for small and mid-sized producers, prefers round (i.e., cylindrical) bales wrapped individually.
Since its origin in the 1980s, the conventional wrapping technique, according to which film strips
are wrapped along the longitudinal axis of a bale, from the base to the top or vice versa, resulting in
successive film layers, has been at the heart of the modern bale silage technique. Two main types of
such round-bale wrappers are available [13,14]. In the first type, the film is applied by a pre-stretching
unit mounted on an arm rotating around the bale (Figure 1a); see also [15]. The second type uses a
rotating table on which the bale is rotated around its longitudinal axis, as seen in Figure 1b. For effective
winding, the tension of the film has to be appropriately set [5]. Distribution of the film strips wrapped
around the bale is illustrated in Figure 1, and is the same for the two types of round-bale wrappers; see
also the bale wrapper documentation [16].
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However, silage wrap-film represents additional cost and environment damage [7,18]. Financial
expenditures on the purchase of stretch film constitute a high percentage of the total costs of this
technology [12,19]. The decrease in the usage of plastic film means cost reduction, a decrease in
working time [9,20], and less damage to the environment. An appropriate choice of the wrapping
variables and parameters may guarantee the assumed conservation quality of wrapped bales without
increasing the consumption of plastic film [9], especially if the optimal wrapping parameters are
applied and the uniform or near-uniform film coverage on the bale’s lateral surface is obtained [21].

To reduce film consumption, researchers have incorporated experimental methods; several
strategies have been tested for the conventional wrapping method [11,20,22], for the alternative
technique of three-dimensional (3D) film wrapping using biaxial rotation of the film applicators [14],
and for a polyethylene tying-film system used to replace the typical net wrapping [23]. Simultaneously,
a limited number of studies have been concerned with model-based optimization of film consumption
by an appropriate choice of the film and wrapping process parameters. In [12], the mathematical
models describing film usage for wrapping round and square bales were given, which take into
account bale dimensions, film width, and the width of the overlap between successive film strips.
A mathematical model describing film consumption as a function of the bale and film dimensions,
and taking into account the mechanical properties of the stretch film described by the Poisson ratio
and unit deformation, were presented, for the first time, in [24]. A mathematical model describing the
distribution and consumption of stretch film used for bale wrapping, which captures more features of
a realistic description of the wrapping process than previously existing models, was derived in [21].
Bale and film dimensions, mechanical properties of the stretch film, the overlap between adjacent film
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strips, and the pre-assumed number of basic film layers were taken into account. The minimization of
film consumption gained by optimal design of the film width and the bale dimensions was conducted,
for a fixed overlap ratio, in two papers [25,26], under the assumption that the number of bale rotations,
rather than the pre-assumed number of film layers, is known. In [21], the complete set of the overlaps
determining the width of the contact area between adjacent film strips guaranteeing, for the assumed
film width, minimal film consumption was determined.

The proposed approach is model-based, and thus, is bound to be affected both by the inevitable
inaccuracies of the model as well as the non-nominal values of wrapping parameters. The new
IntelliWrap™ systems use sophisticated electronics to monitor the wrapping process and continuously
control the film overlap [16]. However, when disturbances appear that yield an overlap ratio different
than what was pre-assumed, severe consequences may result, in particular, the loss of the uniformity
of film distribution or the increase of film usage. Therefore, it is of interest to evaluate the robustness
of the design method into modeling inaccuracies and uncertainties caused by the disturbances in the
functioning of an actual bale wrapper. The robustness of the overlap over disturbances was examined
in [21], where two algorithms for robustly optimal overlap ratio design were developed.

The objective of the present paper was to find such film widths and overlap ratios, jointly, for
which the consumption of the film used to wrap the bale is minimal, with an emphasis on robustness
issues, and to propose a design approach.

2. Materials and Methods

2.1. Mathematical Model

In this section, a model describing film consumption is provided based on previous
papers [21,24,25]. Symmetry of the bale was assumed and thickness of the film was ignored; for
example, polyethylene film is 25 µm thick. Following [21,25], it was assumed that the bale’s rotation
speed and the baler rotation speed were taken so that the subsequent strips of film overlap one another,
creating the overlap k f b f r, where k f is a dimensionless relative ratio determining the width of the
contact area between adjacent film strips and b f r is the film width after stretching described by the
following formula [24]:

b f r = b f
(
1− v f εl f

)
(1)

where b f is the width of un-stretched film and Poisson’s ratio v f and unit deformation εl f describe the
mechanical properties of the film. The main symbols are summarized, mostly with the references to
respective equations, where they are defined or used for the first time, in Appendix B.1. The above
assumption means that all film strips were equally overlapped by successive strips; the cross-section of
the bale with overlapping film strips of width b f r and exemplary overlap k f b f r are presented in Figure 2.

For the selected film strip (marked with a bold line) and two subsequent strips, the parts b f r
(
1− k f

)
of

the stretched film strips that were non-overlapped by the next film strip, are also indicated in Figure 2.
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)
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film layers.

We assumed that the bale was wrapped correctly when the last applied strip of film overlaps the
preceding strip with overlap k f b f r and ‘overlaps’ the first applied film strip with the overlap not less
than k f b f r [25]. This means that the number of entire wrappings i f obtained directly for nb rotations of
the bale is the smallest integer, such that [21,25]:

i f b f r
(
1− k f

)
≥ πDbnb

where Db is the outer bale diameter, and from which the following direct formula results:

i f =

 πDbnb

b f r
(
1− k f

)  =
 πDbnb

b f
(
1− v f εl f

)(
1− k f

)  (2)

where dxe denotes the ceiling function, i.e., the least integer greater than or equal to x [27], see
Appendix B.2. This formula, derived in [25], was first reported in [24]. During wrapping of one film
strip, the film is also wrapped on the opposite side of the bale; thus, during a half-rotation of the bale,
the bale’s whole lateral surface is wrapped, as seen in Figure 2. Thus, the number n1/2, depicted in
Figure 2, of minimal film layers on a bale’s lateral surface achieved during half-rotation of the bale is
the largest integer, such that [21]:

n1/2b f r
(
1− k f

)
≤ b f r.

An immediate consequence of the above inequality is that [21]:

n1/2 =
⌊ 1

1− k f

⌋
where bxc denotes the floor function, i.e., the greatest integer less than or equal to x [27]. Thus, n1/2 is
uniquely determined by the overlap ratio k f . From this, the number pl of basic (i.e., minimal on the
bale’s whole surface) film layers achieved during nb bale rotations is described as follows [21]:

pl = 2nb

⌊ 1
1− k f

⌋
(3)
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provided that nb is an integer multiple of half-rotation, i.e., nb =
1
2 m, m ∈ N ; henceforth,N denotes the

set of positive integer numbers. Thus, the applicability condition for Equation (3) and all the resulting
formulas follows [21]:

pl⌊
1

1−k f

⌋ = m, m ∈ N . (4)

Note that arbitrary k f <
1
2 satisfies the applicability condition for any pl, while for k f ≥

1
2 ,

the applicability is not so evident. Note also that the applicability condition does not depend on bale
and film parameters.

Combining Equations (3) and (2) results in the final rule [21],

i f =

 πDbpl

2b f
(
1− v f εl f

)
Ω

(
k f

) , (5)

where the number of entire wrappings i f is directly described, ensuring the pre-assumed number of
basic film layers pl, where the following function is introduced for brevity of the notation:

Ω
(
k f

)
=

(
1− k f

)⌊ 1
1− k f

⌋
. (6)

The dependence of the total number of wrappings i f on the film width b f from the range
0.35÷ 0.75 m and pl = 4 is shown in [25] (Figure 4), while the dependence of i f on the overlap ratio
0 < k f <

3
4 is illustrated in [21] (Figure 5) for fixed b f = 0.75 m and pl = 6.

The surface area of the film used to wrap the bale S f can be directly expressed as [21,24]:

S f =
2i f b f (Db + Hb)

εl f + 1
=

2b f (Db + Hb)

εl f + 1

 πDbpl

2b f
(
1− v f εl f

)
Ω

(
k f

)  (7)

where Hb is bale height. A useful measure of film consumption is the surface area to volume of silage
ratio S f /Vb [12,25,28], where Vb is the volume of the bale, which for a cylindrical bale is described by
the following function:

FC =
S f

Vb
=

8(Db + Hb)b f

πD2
bHb

(
εl f + 1

)  πDbpl

2b f
(
1− v f εl f

)
Ω

(
k f

) . (8)

This formula indicates the dependence of the index FC on the overlap ratio k f , the number of film
layers pl, and the bale and film parameters. It was assumed that the bale dimensions, the number of
pre-assumed film layers pl, and the parameters εl f and v f were given. Thus, only the width of the film
b f and the overlap ratio k f are decision variables.

2.2. Model Development

In this paper, a model-based approach was applied, which addressed the goals (film usage
optimization and robustness on overlap ratio uncertainties) by using mathematical tools.

Firstly, two problems of the optimal, in the sense of minimal film consumption, selection of
the film width and the overlap ratio were mathematically formulated and solved, separately. Both
problems were continuous programming tasks, and the goal functions were non-continuous due to
piecewise constant ceiling and floor functions in the formula given by the right hand side of Equation (8).
The optimal solutions were derived based on the specific properties of the film consumption index FC as
a function of the film width b f and the overlap ratio k f , which are reported in Section 3.1 and Section 3.2.
The problem of the optimal film width design was solved before in a previous paper [26]; however,
under the less detailed assumption that the number of bale rotations, not the number of film layers,
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is given. Thus, the result abstracted in Proposition 1 was a generalization of the previously known
results [26] for a more detailed model of the film consumption considered in this article. Similarly, the
results concerning the choice of the optimal overlap ratio, abstracted in Proposition 2, came directly
from the previous paper [21]; however, the film consumption per unit of the bale volume index FC
Equation (8) was used here as a measure of film usage, while in [21], the surface area S f Equation (7),
was treated as the film usage index. The solutions of the two separate optimization problems formed
the basis for solving the new problem of the film width and overlap ratio combined design; therefore,
they were briefly presented here. They were also significant for the robustness analysis of the overlap
uncertainties caused by disturbances in the real wrappers work.

Next, the solution of the combined problem of optimal design of film width and overlap ratio was
derived. This problem was stated and solved here for the first time, to the author’s best knowledge.
The complete set of the optimal film widths, which were defined by simple algebraic equation, was
indicated and it was shown that the complete set of the optimal overlap ratios is composed of irreducible
fractions in which the dividend is the divisor minus one. The optimal overlap ratios also guarantee
uniform stretch wrap-film coverage on the bale’s lateral surface.

As the next step in the study of the wrapping parameters’ effect on film consumption, the robustness
to disturbances in the functioning of an actual bale wrapper, which leads to overlap ratio uncertainty,
was examined. Robustness is crucial to ensure the pre-assumed number of film layers, which is
fundamental to obtaining appropriate tightness of the wrappings; acceptable anaerobic conditions for
fermentation; and an acceptable risk of internal and external puncture. The above indicates that not
only should the film usage be minimal, but also that the tolerance to uncertainties of the overlap ratio
should be guaranteed. It was found that, unfortunately, the optimal film widths applied together with
the optimal overlap ratios did not provide any robustness to overlap ratio variations, which caused the
need for optimal film width disappeared from the robustness point of view. Simultaneously, it was
found that this inconvenience could be overcome by using an appropriately selected commercially
available film of non-optimal width.

The problems of the choice of the best commercially available film width to guarantee minimal
film consumption or maximal tolerance on uncertainty of the overlap were stated and solved. It was
found that these requirements were not congruent. Consequently, design requires a careful trade-off

between satisfactory robustness and the small consumption of the film. Simple mathematical formulas
were derived to compute the optimal overlap ratio and to select the best film width, on the basis of
which a new algorithm for wrapping parameters design was developed, executed, and numerically
verified. For the wrapping parameters determined according to the algorithm, only near-optimal film
usage was achieved, from which the analytical and numerical analyses of the relative errors for such
approximations of the minimal film consumption were carried out.

Typical assumptions concerning the bale, film, and wrapping parameters were taken; no specific
assumptions were made concerning the assumed number of film layers. Additionally, typical
assumptions concerning the mechanical properties of the stretch film suggested that the results
obtained can be applied both for the bales wrapped with a conventional PE film and with plastic
stretch films with enhanced oxygen impermeability, which have been intensively studied in recent
years [9]. The main developments were illustrated by figures and supporting discussions. The proposed
approach was also exemplified through a case study, which was aimed at optimizing the consumption
of the stretch film of typical mechanical properties for wrapping a cylindrical bale of commonly used
dimensions [16,29].

Summarizing, the solution of the problems of optimal and robustly optimal consumption of the
film used for wrapping cylindrical bales was carried out in several stages. These stages are discussed
individually in successive subsections.

The research framework is graphically shown in Figure 3, which also illustrates the relations
between these tasks.
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3. Results

3.1. Optimal Design of the Film Width

Assume additionally that the overlap ratio k f is given. Then, the problem of the optimal film

width design consists of minimizing the index FC
(
b f

)
by solving the following optimization problem:

min
b f>0

FC
(
b f

)
(9)

where, locally, the notation FC
(
b f

)
, indicating the dependence of FC on the film width b f , is used.

The index FC
(
b f

)
is a piecewise linearly increasing function of b f in the intervals determined by

discontinuity points b f ,int such that:

πDbpl

2b f ,int
(
1− v f εl f

)
Ω

(
k f

) =

 πDbpl

2b f ,int
(
1− v f εl f

)
Ω

(
k f

) . (10)
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Figure 4 shows the course of FC
(
b f

)
for exemplary bale silage from Example 1 given below. From

Equations (10) and (8) in discontinuity points b f ,int we have:

FC
(
b f ,int

)
= FCmin,b f

=
4(Db + Hb)pl

DbHb
(
εl f + 1

)(
1− v f εl f

)
Ω

(
k f

) . (11)
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Due to the right-continuity of the function FC
(
b f

)
in discontinuity points b f ,int and its lower

semi-continuity, FC
(
b f ,int

)
is the minimal value of FC with respect to b f . Thus, every b f ,int is,

simultaneously, the local and global minimum of FC
(
b f

)
. The following result can be stated.

Proposition 1. Assume the bale diameter, the pre-assumed number of film layers, and the overlap ratio are
given, such that the applicability condition expressed by Equation (4) holds. The solution of the problem of film
consumption minimization, Equation (9), there exists and is not unique. Every optimal film width b f ,int is defined
by Equation (10). The optimal film consumption FCmin,b f

is given by the right-hand side of Equation (11).

A similar result has been proven in [26] (Corollary 1); however, under less detailed assumptions
that the number of bale rotations, not the number of film layers, is given. For b f ,int by Equations (10)
and (5) we have:

i f =
πDbpl

2b f ,int
(
1− v f εl f

)
Ω

(
k f

) ; (12)

thus, every b f ,int can be written more succinctly as:

b f ,int =
πDbpl

2i f
(
1− v f εl f

)
Ω

(
k f

) . (13)

The relation between b f ,int and the respective number of entire film wrappings i f is uniquely
described by Equation (13) or Equation (12).

Example 1

The main concern in this example is determination of the complete sets of optimal film widths for a
few exemplary overlap ratios. The bale silage of diameter Db = 1.2 m [5,30] is considered. Conventional
wrappers are adjusted to wrap cylindrical bales up to 1.6 m diameter and up to 1.2 m height [16,29];
or are capable of wrapping round bales up to 1.2 m height and 1.5 m diameter [29]. However,
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typical bales are 1.2–1.25 m in diameter and height [12,14]. The Poisson’s ratio v f = 0.34(−) and unit
deformation εl f = 0.7(−) of the stretch film are assumed to be the same for all examples and figures,
which characterize, among others, commercial polyethylene (PE) film used traditionally because of its
mechanical characteristics and low costs. Assume pl = 6. The function FC

(
b f

)
is illustrated in Figure 4

for b f in the range 0.4–0.8 m for the exemplary overlap ratios k f = 0.5, 0.55, 0.6, and 0.65.

Assume that the film widths from the interval
[
b f ,min, b f ,max

]
are considered; [0.4, 0.8] meters in

the example. According to the formula from Equation (13), only b f ,int such that the related numbers of
film strips i f satisfy inequalities:

b f ,min ≤
πDbpl

2i f
(
1− v f εl f

)
Ω

(
k f

) ≤ b f ,max

there are in the assumed range, from which direct estimations for i f are as follows:

πDbpl

2b f ,max
(
1− v f εl f

)
Ω

(
k f

) ≤ i f ≤
πDbpl

2b f ,min
(
1− v f εl f

)
Ω

(
k f

) .

Since the closed interval [x, y] contains exactly byc − dxe+ 1 integers [27] Equation (3.12), the
number of optimal film widths b f ,int is uniquely given by:

N f =

 πDbpl

2b f ,min
(
1− v f εl f

)
Ω

(
k f

) −
 πDbpl

2b f ,max
(
1− v f εl f

)
Ω

(
k f

) − 1.

This number depends on bale and wrapping parameters as well as on the mechanical properties
of the stretch film.

In the range from 0.4 to 0.8 m for k f = 0.5, there are 19 optimal film widths b f ,int; all of them are
summarized in the first column of Table 1. Having in mind Equation (10), note that for any overlap
such that Ω

(
k f

)
= Ω

(
1
2

)
= 1, the ‘integer’ points b f ,int are identical to those given in the first column of

Table 1, whenever six film layers are pre-assumed. Optimal film widths for pl = 6 and k f = 0.55, which

yield Ω
(
k f

)
= 0.9, are given in the second column of Table 1; there are 21 such values. In the next

columns of Table 1, the same data is summarized for the next two overlap ratios: k f = 0.6 (23 b f ,int) and
k f = 0.65 (until 27 b f ,int). Different values, Ω(0.6) = 0.8 and Ω(0.65) = 0.7, yield different points b f ,int.
It should also be noted that, for example, if k f = 0.7, then the results are identical to those obtained for
k f = 0.55, because Ω(0.7) = 0.9. Additionally, Figure 4 shows that the overlap ratio influences the
number of optimal film widths b f ,int.

It is evident that none of the b f ,int from Table 1 is identical to commonly used film widths:
b f ,s = 0.5 m and b f ,s = 0.75 m [16,29]. Some of the b f ,int are in the near neighborhood of these b f ,s;
however, a small difference

∣∣∣b f ,int − b f ,s
∣∣∣ does not guarantee near optimal film consumption. This can

be easily confirmed by a quick inspection of data in Table 2, where the optimal FC
(
b f ,int

)
, the nearest

neighborhood b̃ f ,int of b f ,s, i.e.:∣∣∣∣̃b f ,int − b f ,s

∣∣∣∣ = min
b f ,min≤b f ,int≤b f ,max

∣∣∣b f ,int − b f ,s
∣∣∣,

and the film consumption FC
(
b f ,s

)
are summarized for b f ,s = 0.5 and 0.75 m. For example, for k f = 0.6

and b f ,s = 0.5 m the small difference,
∣∣∣∣̃b f ,int − b f ,s

∣∣∣∣ = 0.00142, results in the sub-optimality relative error:

FC
(
b f ,s

)
− FC

(
b f ,int

)
FC

(
b f ,int

) ·100% = 2.411%.
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However, for b f ,s = 0.75 m, a bigger difference
∣∣∣∣̃b f ,int − b f ,s

∣∣∣∣ = 0.00789 yields error equal only to:

FC
(
b f ,s

)
− FC

(
b f ,int

)
FC

(
b f ,int

) ·100% = 1.064%.

The problem of the selection of the best commercially available film width is discussed later
(Section 3.5, Section 3.6).

Table 1. The optimal b f ,int widths of un-stretched film in the range from 0.4 to 0.8 m for selected overlap
ratios k f ; pl = 6 pre-assumed film layers.

The Optimal bf,int (m)

k f = 0.5 k f = 0.55 k f = 0.6 k f = 0.65

0.40114 0.40223 0.40332 0.40006
0.41228 0.41228 0.41228 0.40775
0.42406 0.42285 0.42165 0.41575
0.43653 0.43398 0.43146 0.42406
0.44976 0.44571 0.44173 0.43272
0.46382 0.45809 0.45250 0.44173
0.47878 0.47118 0.46382 0.45113
0.49474 0.48504 0.47571 0.46094
0.51179 0.49974 0.48823 0.47118
0.53008 0.51535 0.50142 0.48189
0.54971 0.53198 0.51535 0.49309
0.57085 0.54971 0.53008 0.50484
0.59369 0.56866 0.54567 0.51715
0.61842 0.58897 0.56220 0.53008
0.64531 0.61079 0.57977 0.54367
0.67464 0.63428 0.59847 0.55798
0.70677 0.65965 0.61842 0.57306
0.74211 0.68714 0.63975 0.58897
0.78117 0.71701 0.66259 0.60580

0.74960 0.68714 0.62362
0.7853 0.71357 0.64252

0.74211 0.66259
0.77303 0.68397

0.70677
0.73114
0.75725
0.7853

Table 2. The optimal FC(b f ,int) and the nearest neighborhood b̃ f ,int of b f ,s = 0.5, 0.75 m for selected
overlap ratios k f ; pl = 6 pre-assumed film layers.

bf,s (m) k f = 0.5 k f = 0.55 k f = 0.6 k f = 0.65

FC
(
b f ,int

)
(m−1) 30.8785 34.3094 38.5981 44.1121

b̃ f ,int 0.5
0.49474 0.54971 0.50142 0.50484

FC
(
b f ,s

)
(m−1) 31.2069 34.3275 39.5287 44.7298

b̃ f ,int 0.75
0.74211 0.74960 0.74211 0.75725

FC
(
b f ,s

)
(m−1) 31.2069 34.3275 39.0086 45.2499

Both every optimal b f ,int as well as the optimal FCmin,b f
described by Equation (11) depend on the

overlap ratio, which is evident when comparing the successive columns of Table 1. Figure 5 shows
FCmin,b f

as a function of the ratio k f for four, six, and eight basic film layers. For k f variability, according
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to the applicability condition expressed by Equation (4), the intervals 0 < k f <
2
3 and 3

4 ≤ k f <
4
5 are

chosen for pl = 4, and also both applicability intervals 0 < k f <
3
4 and 5

6 ≤ k f <
6
7 are considered for

pl = 6. For pl = 8,. the ranges 0 < k f <
2
2 and 3

4 ≤ k f <
4
5 result from the applicability condition;

the interval 7
8 ≤ k f <

8
9 for which this condition is also satisfied is omitted here to make the figure

more readable.Agriculture 2019, 9, 248 11 of 26 
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Figure 5. The film consumption index FCmin,b f
, optimal with respect to the width of un-stretched film,

as a function of the overlap ratio k f for pl = 4, 6, and 8 basic film layers.

3.2. Optimal Design of the Overlap Ratio

Assume now that the film width b f is given. The subject is to find the overlap ratio such that

the film consumption index takes the minimal value. Now, locally, the notation FC
(
k f

)
, indicating

the dependence of FC given by Equation (8) on the overlap ratio, is used. Both the ceiling and inside
nested floor functions make the function FC

(
k f

)
hard to analyze. The exemplary course of FC

(
k f

)
for

bale silage from Example 1 is depicted in Figure 6; six film layers and b f = 0.75 m are assumed. For k f
variability, only the interval 0 < k f <

3
4 is considered, according to the applicability condition; the range

5
6 ≤ k f <

6
7 is omitted here to make the figure more readable.
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Figure 6. The film consumption index FC

(
k f

)
for the overlap ratio 0.1 < k f < 0.75; pl = 6 film layers,

film width b f = 0.75 m.

The index FC
(
k f

)
is a piecewise-constant function of the ratio k f , which is left-continuous in the

discontinuity points k f ,int, such that: πDbpl

2b f
(
1− v f εl f

)
Ω

(
k f ,int

)  = πDbpl

2b f
(
1− v f εl f

)
Ω

(
k f ,int

) , (14)
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i.e., the expression under ceiling function brackets in Equation (8) is an integer. It is proven in [21] that
under the rationale condition:

πDb ≥ 2b f
(
1− v f εl f

)
= 2b f r, (15)

every overlap ratio

k f ,u =
q− 1

q
, (16)

where q ∈ N , being discontinuity points of Ω
(
k f

)
(see Figure 8 in [21]), is also a discontinuity point of

FC
(
k f

)
, in which this function is right-continuous. We denote byKu the set of all irreducible fractions

k f ,u = 1
2 , 2

3 , 3
4 , . . . in which the dividend is the divisor minus one. For k f ,u, the condition expressed

by Equation (14) is in general not satisfied. The index FC
(
k f

)
is a piecewise-constant in the intervals

determined by discontinuity points k f ,int and a non-decreasing function in the intervals determined
by discontinuity points k f ,u. In any interval defined by two successive k f ,u ∈ Ku, there are many
discontinuity points k f ,int, as shown in Figure 6. The points k f ,u are independent of b f , while k f ,int are
dependent of b f . Figure 7 shows how b f influences k f ,int and better illustrates the piecewise-constant

character of FC
(
k f

)
in the near neighbourhood of k f ,u = 1

2 ; FC
(
k f

)
is depicted here for k f restricted to

the interval 0.5 ≤ k f ≤ 0.55 for three popular film widths b f = 0.35, 0.5, and 0.75 m. As the values
of FC are equal in some subintervals, they are slightly differentiated in Figure 7, in order to better
illustrate the co-linearity of these subintervals.
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Figure 7. The film consumption FC
(
k f

)
for 0.5 ≤ k f ≤ 0.55 and b f = 0.35, 0.5, and 0.75 m; pl = 6.

Note that for k f ,u ∈ Ku the applicability condition expressed by Equation (4) means that:

pl⌊
1

1−k f ,u

⌋ =
pl

q
= m, m ∈ N , (17)

i.e., that pl is the multiplicity of integer q uniquely determining the overlap ratio k f ,u.
In [21], the problem of film area S f , Equation (7), minimization with respect to the overlap ratio is

solved. Since k f does not influence the volume Vb of the bale, the solution of FC
(
k f

)
minimization task

is identical; it is summarized in the next result following directly from Proposition 3 in [21].

Proposition 2. Assume the bale and film dimensions Db, Hb, and b f are given and are such that the inequality
expressed by Equation (15) is satisfied. The solution of the problem of film usage FC minimization with respect
to the overlap ratio there exists and is not unique. Let:

χ0 =
πDbpl

2b f
(
1− v f εl f

) , and (18)
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Ω0 =
χ0

dχ0 e
. (19)

Then:

(i) if Ω0 = 1, then every k f ,u ∈ Ku defined by Equation (16), for which the applicability condition expressed
by Equation (17) holds, is an optimal overlap ratio;

(ii) if Ω0 < 1, then for any k f ,u ∈ Ku, satisfying the applicability condition from Equation (17) and any
0 ≤ δ ≤ δ0, where δ0 is defined by:

δ0 =
1−Ω0

q
, (20)

the ratio k f = k f ,u + δ results in optimal film usage. In both cases the optimal film usage is calculated by:

FCmin,k f
=

8(Db + Hb)b f

πD2
bHb

(
εl f + 1

)  πDbpl

2b f
(
1− v f εl f

) . (21)

Note that for the exemplary bale, the inequality expressed by Equation (15) is equivalent to the
obvious requirement that b f ≤ 2.0614·Db. For an arbitrary k f ,u ∈ Ku, the minimal film consumption
is reached regardless of the film width value. The optimal film usage FCmin,k f

is independent of k f ,u;
however, it depends on b f . For the exemplary bale assuming six film layers for b f = 0.4 m, we have
FCmin,k f

= 31.6229 m−1, b f = 0.6 m yields FCmin,k f
= 31.2069 m−1, while b f = 0.8 m results, again, in

FCmin,k f
= 31.6229 m−1.

In view of the above proposition, a natural way to describe this set of the optimal overlap ratios
is through the representation of k f values in the form of closed intervals

[
k f ,u, k f ,u + δ0

]
; Equations

(18)–(20) permit us to determine them. For any k f ,u ∈ Ku, if δ0 > 0, then the ratio k f ,u + δ0 is identical
to the discontinuity point k f ,int, which is the nearest right neighbor of k f ,u (see Figures 6 and 7).
The coefficient χ0, and consequently, also Ω0 and δ0, depend on the film width. The optimal overlaps
are referred to asKb f

, which for fixed b f belongs to the set-sum of intervals
[
k f ,u, k f ,u + δ0

]
for every

k f ,u ∈ Ku. Obviously, Ku ⊂ Kb f
for an arbitrary fixed film width. From a practical perspective,

however, only four such parameters k f ,u = 1
2 , 2

3 , 3
4 , 4

5 are worth considering; 50%, 67%, and 75%
overlaps, especially, are commonly used [5,10,13,14,16]. For a fixed film width, all k f ∈ Kb f

are
equivalent in the sense of optimal film consumption. A simple scheme for determining the set of
the optimal overlap ratios, for given film and bale parameters, is presented in [21] (Algorithm 1).
It is also proven in [21] that Ku is the complete set of overlap ratios that guarantee uniform film
distribution on the lateral surface of the cylindrical bale; however, the applicability condition expressed
by Equation (17) must be simultaneously satisfied. Thus, there exists parallelism between the uniform
film distribution and minimal film consumption. For any k f ,u ∈ Ku both properties are guaranteed
regardless of the dimensions of the bale and film, with or without optimal width. However, the optimal
film consumption does not necessarily guarantee the uniform distribution of film layers.

3.3. Optimal Design of the Film Width and Overlap Ratio

Combining the two problems considered above leads to the following task of simultaneous choice
of the optimal film width and overlap ratio by solving the following minimization problem:

min
b f , k f

FC
(
b f , k f

)
(22)

The notation FC
(
b f , k f

)
, indicating the dependence of FC on both the film width and the overlap

ratio, is used, locally. The goal function FC
(
b f , k f

)
is a lower semi-continuous function of both arguments.
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In view of Proposition 1, for any fixed overlap ratio, every optimal film width b f ,int is defined

by Equation (10). The b f -optimal quality index FCmin,b f
= FC

(
b f ,int

)
depends on the overlap ratio k f

according to the formula of Equation (11), as indicated in Figure 5. Since 1/Ω
(
k f

)
is the right-continuous

function of k f , increasing in the intervals determined by discontinuity points k f ,u ∈ Ku, for any k f ,u
such that the applicability condition holds index FCmin,b f

takes the minimal value equal to:

FCmin =
4(Db + Hb)pl

DbHb
(
εl f + 1

)(
1− v f εl f

) . (23)

On the other hand, the results of Proposition 2 state that for any film width b f being fixed, every
k f ∈ Kb f

satisfying Equation (4), is an optimal overlap ratio, and the optimal film usage FCmin,k f
is

given by Equation (21). This function is minimal if and only if the film width b f ,0 is such that:

πDbpl

2b f ,0

(
1− v f εl f

) =

 πDbpl

2b f ,0

(
1− v f εl f

) . (24)

Substituting Equation (24) into Equation (21) gives the optimal FCmin, Equation (23). Thus, we
have FCmin,k f

(
b f ,0

)
= FCmin. For brevity, we denote by B0 the set of all b f ,0 in the range of practically

meaningful film widths, for which Equation (24) is satisfied. Note that Equation (24) is, in fact, Equation
(10), for k f = k f ,u. Since for an arbitrary b f ,0 the coefficient χ0 given by Equation (18) is an integer, thus
Ω0 = 1 and Equation (20) yield δ0 = 0. The setKb f ,0

of optimal overlap ratios reduces toKu, i.e., for
optimal film width b f ,0 only the overlap ratios k f ,u result in minimal film usage. The next result is valid.

Proposition 3. Assume the bale dimensions Db and Hb and the number of film layers pl are given. The solution
of the film consumption minimization task stated in Equation (22) there exists and is not unique. Every k f ,u ∈ Ku,
for which the applicability condition expressed by Equation (17) is satisfied, is the optimal overlap ratio; B0 is the
set of optimal widths of un-stretched film. The optimal film consumption FCmin is given by Equation (23).

Since for every b f ,0 ∈ B0 the ratio χ0 introduced by Equation (18) is an integer, by Equations (5),
(18) and (24) we have:

i f = χ0 =
πDbpl

2b f ,0

(
1− v f εl f

) ; (25)

thus, every b f ,0 can be expressed as:

b f ,0 =
πDbpl

2i f
(
1− v f εl f

) =
πDbpl

2χ0
(
1− v f εl f

) . (26)

Thus, similar to the separate problem of the optimal film width selection, the relation between b f ,0
and the resulting number of entire film wrappings i f = χ0 is described by Equation (25) or, equivalently,
by Equation (26). From the computational point of view, the formula given by Equation (26) is more
useful than directly solving the definitional Equation (24).

In view of the above proposition, only exact k f ,u and the film widths b f ,0 are, simultaneously,
optimal. However, even the smallest disturbance in any of the wrapping process parameters may
result in the loss of the optimality. In particular, an overlap ratio other than the assumed may result
from inaccuracies in the functioning of the wrapper. From a mathematical perspective, such variability
entails uncertainty in the overlap ratio. The following section addresses some robustness issues.
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3.4. Robustness

As we ascertained above, for any optimal b f ,0 ∈ B0, only the overlaps k f ,u result in optimal film
consumption. Thus, the optimal b f ,0 does not provide any robustness to overlap ratio variations.
A non-optimal b f , for which δ0 > 0, implies the non-one-point intervals of optimal overlaps[
k f ,u, k f ,u + δ0

]
for every applicable k f ,u ∈ Ku. Both larger than k f ,u + δ0 as well as smaller than

k f ,u overlap ratios imply the growth of film consumption. Thus, the length of this interval, which
is estimated by δ0, can be treated as a measure of robustness to parameter uncertainty—robustness
margin [21]. The larger δ0 is, the greater robustness with respect to k f uncertainty is achieved. For the
exemplary bale and a few widths of the film, the robustness margins δ0 are shown in Table 3 for two to
ten pre-assumed film layers. Mostly, four, six, or eight layers of film are applied [5,14,31]; however,
two, 10, and even 16 film layers in which the silages are wrapped have also been considered [22,31].
Naturally, only k f ,u ∈ Ku, which satisfies the applicability condition, Equation (17), for a given pl, is
considered. The formula from Equation (20) means that the smaller q is, i.e., the smaller k f ,u is, the
bigger the resulting robustness margin is. This rule can be confirmed by an inspection of data in the
columns of Table 3, for any fixed pl, separately. Increasing k f ,u reduces the lengths of the intervals of

optimal overlap ratios. However, the difference between k f ,u and subsequent k f ,u ∈ Ku, equal to 1
q(q+1) ,

also decreases for an increasing k f ,u.

Table 3. The lengths δ0 of the intervals of the optimal overlap ratios (robustness margins) for
pl = 2, . . . , 10 pre-assumed film layers.

The Lengths δ0 of the Intervals
[
kf,u, kf,u + δ0

]
of Optimal Overlap Ratios (m)

kf,u b f = 0.4 m b f = 0.5 m b f = 0.6 m b f = 0.7 m b f =
0.7067 m

b f = 0.75 m b f = 0.8 m

pl = 2 film layers
1
2 0.02429 0.00526 0.04191 0.05827 0.06246 0.02882 0.05827

pl = 3 film layers
2
3 0.00785 0.00351 0.01619 0.01207 0.01512 0.00351 0.02412

pl = 4 film layers
1
2 0.00526 0.00526 0.01496 0.02882 0.03329 0.02882 0.02429
3
4 0.00263 0.00263 0.00748 0.01441 0.01664 0.01441 0.01215

pl = 5 film layers
4
5 0.00051 0.0021 0.00368 0.00367 0.00554 0.00598 0.00674

pl = 6 film layers
1
2 0.01177 0.00526 0.00526 0.01811 0.02268 0.00526 0.01177
2
3 0.00785 0.00351 0.00351 0.01207 0.01512 0.00351 0.00785
5
6 0.00392 0.00175 0.00175 0.00604 0.00756 0.00175 0.00392

pl = 7 film layers
6
7 0.00231 0.0015 0.00069 0.0015 0.00284 0.00543 0.0023

pl = 8 film layers
1
2 0.00526 0.00526 0.00026 0.01257 0.01719 0.01137 0.00526
3
4 0.00263 0.00263 0.00013 0.00627 0.0086 0.00568 0.00263
7
8 0.00132 0.00132 6.591E-05 0.00314 0.0043 0.00284 0.00132

pl = 9 film layers
2
3 0.002 0.0035 0.00785 0.002 0.0052 0.0035 0.002

pl = 10 film layers
1
2 0.00127 0.00526 0.00919 0.00919 0.01384 0.00026 0.00127
4
5 0.0005 0.0021 0.00367 0.00367 0.00554 0.0001 0.0005
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The selection of the film width b f and the respective overlap ratio, to guarantee the best robustness
on k f uncertainty, is now the subject of interest. For fixed k f ,u the robustness margin δ0 depends on the
film width. By Equations (18)–(20), we have:

δ0 =
1
q

1−
1

2b f (1−v f εl f )
πDbpl

⌈
πDbpl

2b f (1−v f εl f )

⌉
, (27)

where we conclude that δ0 is a semi-continuous increasing right-continuous function of the film width
b f in the intervals determined by discontinuity points b f ,0, Equation (24). The margin δ0 is illustrated
by Figure 8, where δ0 is depicted as a function of b f for three overlap ratios k f ,u. The upper bound δ0 of

δ0 for the range b f ,0 ≤ b f < b f ,0, where b f ,0 is a direct successor of b f ,0 in the set B0, results immediately
as the left-hand sided limit:

δ0 = lim
b f→b f ,0

−
δ0 =

2b f ,0

(
1− v f εl f

)
πDbplq

; (28)

for derivation see Appendix A.1. Thus, the larger b f ,0 is, the longer the interval of k f -optimal overlap

ratios may be, if the width of the film is chosen in the nearest left neighborhood of b f ,0. The above
rules are also illustrated in Figure 8.
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Figure 8. The robustness margin δ0 described by Equation (27) as a function of the width of un-stretched
film b f for overlap ratios k f ,u = 1

2 , 2
3 , 4

5 and six pre-assumed film layers.

3.5. Robustly Optimal Design of Wrapping Parameters

The optimal film usage is never achieved if b f < B0. Other than b f ,0, film width means a larger
than optimal FCmin film consumption, even if the overlap ratio is optimal; however, the robustness is
guaranteed in such a case. The selection of the best commercially available film width is resolved by
the following result proven in Appendix A.2. In various regions of the world, different film widths
dominate (see, e.g., [11]). Both the film consumption and the robustness with respect to the overlap
ratio uncertainties are taken into account.

Proposition 4. Let B f be the set of all considered film widths that may be commercially available. Assume
b f ,0 > b f ,0 is the direct successor of b f ,0 in the set B0. Let:

b f ,s = b f ,0 + ∆b f , (29)
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where b f ,s ∈ B f is commercially available width of the film such that:

b f ,0 ≤ b f ,s < b f ,0. (30)

Then:

(i) The k f -optimal film consumption index FCmin,k f
expressed by Equation (21) takes the minimal value in the

set B f if and only if the quotient:
∆b f

b f ,0
=

b f ,s − b f ,0

b f ,0
, (31)

is minimal in the set B f . The increase of the index FCmin,k f
:

∆FCmin,k f

(
b f ,s

)
= FCmin,k f

(
b f ,s

)
− FCmin, (32)

is described by:

∆FCmin,k f

(
b f ,s

)
= FCmin·

∆b f

b f ,0
. (33)

(ii) For b f ,s ∈
(
B f −B0

)
the length δ0 of the interval of overlap ratios ensuring k f -optimal film usage is given

by:

δ0 =
1
q
·

1
b f ,0
∆b f

+ 1
. (34)

The length δ0 takes the maximal value in the set B f if and only if the quotient ∆b f /b f ,0 is maximal in B f .

By the above proposition, the requirements concerning minimal film usage and significant
robustness are not consistent. To choose b f ,s ∈ B f the compromise is necessary, which must be resolved
on a case by case basis having in mind both the value of δ0 and the relative percentage error, calculated
by the following:

ERR =
∆FCmin,k f

(
b f ,s

)
FCmin

·100% =
∆b f

b f ,0
·100%. (35)

Proposition 4 clearly shows that the quotient ∆b f /b f ,0 is significant to synthesis of the algorithm
for optimal and robust design of the wrapping parameters. This quotient allows one to choose the best
film width b f ,s ∈ B f , estimate the film consumption deterioration according to formula from Equation
(33), and also enable easy determination of both the robustness margin δ0, as characterized by Equation
(34), and the relative error given by Equation (35), on the basis of which the overlap ratio is chosen
according to the design scheme presented below.

3.6. Algorithm

(1) Take initially k f ,u = (q− 1)/q such that the applicability condition expressed by Equation (17) is
fulfilled, i.e., pl/q is an integer.

(2) For any commercially available b f ,s ∈ B f find optimal b f ,0 ∈ B0 being the nearest lower neighbours
of b f ,s using the direct formula from Equation (26) or solving Equation (24).

(3) If a b f ,s is identical to b f ,0, then reject this b f ,s from consideration, i.e., consider only b f ,s ∈
(
B f −B0

)
.

(4) For any pair
(
b f ,s, b f ,0

)
compute the quotient ∆b f /b f ,0 according to Equation (31), and next

estimate robustness margin δ0 according to Equation (34).
(5) Select such b f ,s for which both respective robustness margin δ0 and the relative error of film

consumption described by Equation (35) are satisfactory.
(6) Choose the overlap ratio from inside of the interval

[
k f ,u, k f ,u + δ0

]
, e.g., k f = k f ,u +

δ0
2 .
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By Equations (27) and (34), the overlap ratio k f ,u = 1
2 , which means that q = 2, can be recommended

to maximize the robustness margin. In this case the applicability condition is fulfilled for any even pl.
Now, on the basis of the quotient ∆b f /b f ,0, this b f ,s ∈ B f for which the film consumption FCmin,k f

is
minimal, or such that the margin δ0 is maximal, or such that the trade-off between these requirements
is achieved, can be chosen. The following example illustrates the use of Proposition 4 and motivates
the above algorithm for wrapping parameter robust design. The example is also aimed at illustrating
the process of the best film width selection.

Example 2

The bale from the previous example is considered; bale height Hb = 1.2 m is assumed [5], and
k f = k f ,u = 1

2 is taken together with pl = 4, 6, 8, 10 for film wrapping layers. We assume that the film
widths b f ,s ∈ B f , given in the second column of Table 4, are integer multiples of 5 cm from the range
0.4 ≤ b f ,s ≤ 0.8 m. Since k f =

1
2 ∈ Ku, the film widths b f ,int and b f ,0 are identical for any fixed pl; they

depend on the number of film layers. In the range from 0.4 to 0.8 m for pl = 4, there are 12 optimal
film widths; for pl = 6 nineteen b f ,int = b f ,0 are given in the first column of Table 1, while for pl = 8 in
this range, there are 25 optimal film widths, and for pl = 10 there are as many as 31 b f ,0. For any pl
there are only nine values of b f ,0 such that the inequalities expressed in Equation (30) hold, and only
these b f ,0, which are necessary to estimate the quotient ∆b f /b f ,0, Equation (31), are given in Table 4 for
pl = 4, 6, 8, and 10. Furthermore, in the first row, the largest b f ,0 smaller than 0.4 m are specified in
order to estimate ∆b f /b f ,0 for b f ,s = 0.4 m. The quotients ∆b f /b f ,0 are given in the third column in

Table 4, where also the robustness margins δ0 and the indices FCmin,k f

(
b f ,s

)
are added. Additionally,

the left-hand sided limits (for derivation, see Appendix A.3) are as follows:

FCL
(
b f ,s

)
= lim

k f→k f ,u
−

FC
(
k f

)
=

8(Db + Hb)b f ,s

πD2
bHb

(
εl f + 1

)  πDbplq

2b f ,s
(
1− v f εl f

)
(q− 1)

, (36)

where q = 2, which characterize the film consumption if the actual overlap ratio k f is smaller than the
assumed k f ,u = 1

2 . The right-hand sided limits of film consumption, expressed as:

FCR
(
b f ,s

)
= lim

k f→(k f ,u+δ0)
+

FC
(
k f

)
= FC

(
k f ,int

)
, (37)

which are also given in Table 4. Here, k f ,int is the direct successor of k f ,int = k f ,u + δ0 in the set
of overlap ratios satisfying Equation (14) for b f ,s. The limit defined by Equation (37) characterizes
the film usage, if the actual overlap k f is greater than k f ,u + δ0. In the last column, the errors ERR,
Equation (35), are given. The globally optimal film consumptions are as follows: for pl = 4 we have
FCmin = 20.58566 m−1, for pl = 6 the respective FCmin = 30.87849 m−1, pl = 8 film layers means
FCmin = 41.17132 m−1, while pl = 10 entails FCmin = 51.46415 m−1.

By an inspection of the third column data in Table 4, it is evident that for all the considered
numbers of film layers, there are two film width, b f ,s = 0.45 m and b f ,s = 0.55 m, for which the quotient
∆b f /b f ,0 is minimal, i.e., minimal film consumption is achieved. For pl = 8, b f ,s = 0.6 m also results in
minimal ∆b f /b f ,0, while for pl = 10, this minimum is also achieved for b f ,s = 0.75 m. In all these cases,
ERR � 0.053%.

The maximal robustness margin δ0 is guaranteed by b f ,s = 0.7 m for pl = 4, 6, and 8, while for
pl = 10, the film width b f ,s = 0.65 m results in the maximal ∆b f /b f ,0. For pl = 4 the popular film width
b f ,s = 0.75 m [12,14] also yields the maximal δ0. The maximal robustness margin for pl = 4 implies an
increase of film consumption measured by ERR = 6.1165%, while for the other numbers of basic film
layers this error is smaller than 3.76%.

From these data, it follows, for example, that if ERR ≤ 5% and robustness margin δ0 ≥ 0.02
are assumed in the case of pl = 4, there are no practically accessible film widths satisfying these
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requirements, while for b f ,s = 0.8 m, the respective ERR = 5.105% slightly exceeds the assumed level.
For pl = 6, 8, 10, the errors are such that ERR ≤ 4%; however, none of the film widths b f ,s ∈ B f ensure
the pre-assumed robustness margin. Subsequently, ERR ≤ 4% and δ0 ≥ 0.01 are assumed. Now, a
recommendation for the film width based on the data states that a well-chosen b f ,s for pl = 4 can be
b f ,s = 0.6 m; for pl = 6 there are three acceptable film widths, b f ,s = 0.4, 0.7, and 0.8 m, of which
b f ,s = 0.7 m results in the maximal robustness margin. Two film widths, b f ,s = 0.7 and 0.75 m, are
acceptable for pl = 8 and only one, b f ,s = 0.65 m, seems to be acceptable for pl = 10. Note that
model-based simulations like this are helpful in understanding more deeply the impact of the model
variables and parameters on film usage.

Table 4. The optimal b f ,0 and commercially available b f ,s widths of un-stretched film, the quotient
∆b f

b f ,0

Equation (31), the robustness margin δ0 Equation (27), FCmin,k f

(
b f ,s

)
(k f –optimal film consumption),

sided estimations of FCmin,k f

(
b f ,s

)
, left-hand FCL

(
b f ,s

)
Equation (36), right-hand FCR

(
b f ,s

)
Equation (37),

the relative errors ERR, Equation (35); k f ,u = 1
2 , pl = 4, 6, 8, 10.

bf,0 (m) bf, s (m) ∆bf

bf,0
δ0 (−) FCmin,kf (bf,s) FCL(bf,s) FCR(bf,s) ERR (%)

pl = 4 film layers

0.39579 0.4 0.01063 0.00526 20.80457 41.60914 21.637 1.063
0.44976 0.45 0.00053 0.00026 20.59652 41.19304 21.533 0.053
0.49474 0.5 0.01064 0.00526 20.80457 41.60914 21.845 1.064
0.54971 0.55 0.00053 0.00026 20.59652 41.19304 21.741 0.053
0.58205 0.6 0.03085 0.01496 21.22066 41.19304 22.469 3.085
0.61842 0.65 0.05106 0.02429 21.63675 41.9212 22.989 5.106
0.65965 0.7 0.06116 0.02882 21.8448 42.23327 23.301 6.116
0.70677 0.75 0.06116 0.02882 21.8448 42.12925 23.405 6.116
0.76114 0.8 0.05106 0.02429 20.59652 41.60914 23.301 5.106

pl = 6 film layers

0.39058 0.4 0.02411 0.01177 31.62294 62.4137 32.455 2.411
0.44976 0.45 0.00053 0.00026 30.8948 61.78957 31.83099 0.053
0.49474 0.5 0.01063 0.00526 31.20685 62.41370 32.24708 1.063
0.54971 0.55 0.00053 0.00026 30.89478 61.78957 32.0390 0.053
0.59369 0.6 0.01063 0.00526 31.20685 62.41370 32.45513 1.063
0.64531 0.65 0.00726 0.00361 31.10283 62.20566 32.45513 0.726
0.67464 0.7 0.03758 0.01811 32.03903 62.62175 33.49535 3.758
0.74211 0.75 0.01063 0.00526 31.20685 62.41370 32.76719 1.063
0.78117 0.8 0.02411 0.01177 31.62294 63.24589 33.28731 2.411

pl = 8 film layers

0.39579 0.4 0.01064 0.00526 41.60914 82.38609 42.441 1.064
0.44976 0.45 0.00053 0.00026 41.19304 82.38609 42.129 0.053
0.49474 0.5 0.01063 0.00526 41.60914 83.21827 42.649 1.063
0.54971 0.55 0.00053 0.00026 41.19304 82.38609 42.337 0.053
0.59968 0.6 0.00053 0.00026 41.19304 82.38609 42.441 0.053
0.63837 0.65 0.01821 0.00894 41.9212 82.49011 43.274 1.821
0.68239 0.70 0.02579 0.01257 42.23327 83.01023 43.69 2.579
0.73295 0.75 0.02327 0.01137 42.12925 82.69816 43.69 2.327
0.79158 0.8 0.01063 0.00526 41.60914 83.21827 43.274 1.063

pl = 10 film layers

0.39898 0.4 0.00255 0.00127 51.59533 103.1907 52.428 0.255
0.44976 0.45 0.00053 0.00026 51.49131 102.9826 52.428 0.053
0.49474 0.5 0.01063 0.00526 52.01142 102.9826 53.052 1.063
0.54971 0.55 0.00053 0.00026 51.49131 102.9826 52.636 0.053
0.58897 0.6 0.01872 0.00919 52.42751 103.6067 53.676 1.872
0.63428 0.65 0.02478 0.01209 52.73958 104.1269 54.092 2.478
0.68714 0.70 0.01872 0.00919 52.42751 103.3987 53.884 1.872
0.74960 0.75 0.00053 0.00026 51.49131 102.9826 53.052 0.053
0.79797 0.8 0.00255 0.00127 51.59533 103.1907 53.26 0.255

The values marked by bold correspond to the minimal film consumption or maximal robustness margin and are
discussed in Example 2.
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3.7. Error Analysis

Taking into account the inequalities expressed by Equations (29) and (30), the increase ∆b f can be
bounded as follows:

∆b f < b f ,0 − b f ,0, (38)

where, by Equation (26) and an analogous equation describing b f ,0:

b f ,0 =
πDbpl

2
(
i f − 1

)(
1− v f εl f

) ,

which also results directly from Equation (A3), the distance:

b f ,0 − b f ,0 =
πDbpl

2
(
i f − 1

)
i f
(
1− v f εl f

) . (39)

Having in mind Equation (26) and the last expression in Equation (35), we see that the following
upper bound holds:

ERR =
∆b f

b f ,0
·100% <

1
i f − 1

·100% = ERRu, (40)

which means that the bigger i f is, i.e., the smaller b f ,s and the bigger pl are, the smaller error ERR
for the film width b f ,s may arise. Simultaneously, by Equation (39), decreasing b f ,s and increasing pl

reduces the distance between successive discontinuity points, b f ,0 and b f ,0, from which the estimation
ERRu resulting from inequality expressed in Equation (38) is closer (more accurate) for smaller b f ,s.
These rules can be confirmed by an inspection of data in Table 5, where the upper bounds ERRu are
given for three to 16 film layers, which are reachable for the first five overlap ratios k f ,u ∈ Ku, i.e.,
for which the applicability condition expressed by Equation (17) holds, and 0.4 ≤ b f ,s ≤ 0.8 m being an
integer multiple of 5 cm. Note that for pl ≥ 9 not only the original ERR, but also its upper bound do
not exceed 4%.

Table 5. The upper bounds ERRu defined in Equation (40) of the relative errors ERR Equation (35), for
the commercially available film widths b f ,s of un-stretched film for pl film layers.

The Upper Bounds ERRu of the Relative Errors ERR

bf,s (m)
pl

3 4 5 6 8 9 10 12 14 15 16

0.4 5.556 4.167 3.333 2.703 2.041 1.818 1.639 1.351 1.163 1.087 1.020
0.45 6.250 4.762 3.704 3.125 2.326 2.041 1.852 1.538 1.316 1.220 1.149
0.5 7.143 5.263 4.167 3.448 2.564 2.273 2.041 1.695 1.449 1.351 1.266
0.55 7.692 5.882 4.545 3.846 2.857 2.500 2.273 1.887 1.587 1.493 1.408
0.6 8.333 6.250 5.000 4.167 3.125 2.703 2.381 2.041 1.754 1.639 1.538
0.65 9.091 6.667 5.263 4.545 3.333 2.941 2.632 2.222 1.887 1.754 1.667
0.70 10.0 7.143 5.882 4.762 3.571 3.226 2.857 2.381 2.041 1.887 1.786
0.75 11.111 7.692 6.250 5.263 3.846 3.448 3.125 2.564 2.174 2.041 1.923
0.8 11.111 8.333 6.667 5.556 4.167 3.704 3.333 2.703 2.326 2.174 2.041



Agriculture 2019, 9, 248 21 of 27

4. Discussion

As previously stated, disturbance in the functioning of an actual bale wrapper is the main
justification for robustness studies. In view of Equation (A5), which can be rewritten as:

δ0 =
1
q

[
1−

b f ,0

b f ,0 + ∆b f

]
,

there is greater tolerance to overlap ratio uncertainty when the film width is increased between b f ,0 and
its successor in the set B0 of optimal film widths. Increasing the overlap above k f ,u + δ0 or decreasing
them below k f ,u causes a loss of optimality, even for very small uncertainties. A value smaller than
k f ,u may lead, especially for k f ,u = 1

2 , to dramatically big increases in film usage, which is estimated

and characterized by the left-hand sided limit FCL
(
b f ,s

)
described in Equation (36). The values of

FCL
(
b f ,s

)
given for the commercially available b f ,s in Table 4 for k f ,u = 1

2 are more than twice as large
as FCmin and almost twice as FCmin,k f

for respective film widths, regardless of the number of film
layers. It may be observed that the bigger k f ,u is, the smaller the increase in film consumption is, if the

overlap ratio decreases below k f ,u. For k f ,u = 2
3 the limit FCL

(
b f ,s

)
is about one and a half times bigger

than FCmin and FCmin,k f
. Additionally, Figure 6 shows how the overlap ratio uncertainty in the near

left-neighborhood of an arbitrary k f ,u influences film consumption. Simultaneously, the robustness
margin δ0 is reduced for larger k f ,u. A quick inspection of the data in Table 4 also leads to the conclusion
that a small increase of the overlap ratio above the right margin k f ,u + δ0 of the ‘optimality’ interval

results in significantly smaller increases in film usage, because the right-hand sided limit FCR
(
b f ,s

)
,

Equation (37), is such that 1.05 ≤ ϑ ≤ 1.078 for pl = 6, where the ratio is:

ϑ =
FCR

(
b f ,s

)
FCmin,k f

(
b f ,s

) .

For pl = 4, this ratio is characterized by 1.04 ≤ ϑ ≤ 1.0769; for pl = 8 and pl = 10, the estimations
are 1.02 ≤ ϑ ≤ 1.04 and 1.016 ≤ ϑ ≤ 1.032, respectively. Thus, paradoxically, optimal parameters
k f ,u ∈ Ku may lead to dramatically unfavorable film consumption if any disturbance appears, which,
therefore, must be absolutely avoided, while near-optimal parameters, not much bigger than k f ,u + δ0,
may result in almost optimal film usage. Both the reported properties suggest that, since the intervals
of optimal overlap ratios contain only the right neighborhood of k f ,u, it is reasonable to take k f ,u + δ0,

rather than the exact k f ,u, or such overlaps that belong to the interior of the interval
[
k f ,u, k f ,u + δ0

]
, as

in the Algorithm.
Proposition 4 demonstrates that the optimal and robust design of the film width and overlap

ratio generally lead to conflicting requirements. Based on the results of numerical studies conducted
for the exemplary bale, as seen in Table 6, the widths of practically available film from the range
0.4 ≤ b f ,s ≤ 0.8 m, which guarantee minimal film consumption or maximal robustness margins δ0, are
summarized for three to 10 basic film layers. Since b f ,0 does not depend on the specific k f ,u, also the
quotient ∆b f /b f ,0 is k f ,u-independent. Thus, the analysis concerning the choice of the film width and,
in particular, the recommendations summarized in Table 6, are suitable for any k f ,u ∈ Ku satisfying the
applicability condition for the assumed pl. However, the value of the margin δ0 depends on k f ,u, as
stated previously.
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Table 6. The minimal film consumption or maximal robustness margins δ0 attainable for the
commercially available film widths b f ,s of un-stretched film (marked by the sign ‘x’) for pl film layers.

The Minimal Film Consumption Maximal Robustness Margin

bf,s (m)
pl pl

3 4 5 6 7 8 9 10 3 4 5 6 7 8 9 10

0.4 x x
0.45 x x x x
0.5 x

0.55 x x x x
0.6 x x x

0.65 x x
0.70 x x x x
0.75 x x x x
0.8 x x

5. Conclusions

The combined problem of the optimal selection, in the film consumption sense, of the overlap
ratio and film width, jointly, was stated and solved for the first time; Proposition 3 abstracts this
solution. Complete sets of the optimal film widths and optimal overlap ratios were determined. These
parameters, although optimal, did not provide any robustness to overlap ratio variations, even for very
small uncertainties. It was shown that the robustness was achieved if non-optimal film widths were
applied. From a practical perspective, only commercially available film widths were to be taken into
account, for which this approach leads to an approximate value of the optimal FCmin. Thus, the problem
of the robustly optimal design of the wrapping parameters in the set of commercially available film
widths was stated and solved; Proposition 4 abstracts this solution. However, it was proven that the
requirements of the minimal film consumption and maximal robustness are incompatible. Subsequently,
to achieve both satisfactory robustness and small film usage, a new algorithm for wrapping parameter
design was proposed. What we must keep in mind, from a film consumption minimization point
of view, is that the numerical studies indicate that choosing an appropriate overlap ratio affects film
consumption more than choosing an optimal film width.

Usually, it is difficult to guarantee the robustness of the process design for parameter disturbances.
One large benefit of the presented model-based approach is that it allows for showing that small
uncertainties in the overlap ratios do not result in the increase of the film consumption with some
robustness margin. This is due to the properties of the ceiling and floor functions in the model
describing the film consumption. In particular, it was proven that the optimal overlap ratio does not
need to be exactly in a rational irreducible number form stated in Equation (16). Consequently, slight
increases of the commonly used 50%, 67%, and 75% overlaps did not result in the loss of the optimality
and guarantee desired robustness. Additionally, this fortunate result follows from the fact that the
ceiling function is a piecewise-constant.

Note that the optimality conditions and design rules were obtained under general and not limiting
assumptions concerning the bale and film dimensions, which can be chosen arbitrarily.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Appendix A

Appendix A.1 Derivation of the Limit Stated in Equation (28)

For fixed q by Equation (27), in order to estimate the left-hand sided limit of δ0 as b f tends to b f ,0,
it is enough to find:

lim
b f→b f ,0

−

2b f
(
1− v f εl f

)
πDbpl

 πDbpl

2b f
(
1− v f εl f

) .
By virtue of Equation (24), for any b f ,0 < b f < b f ,0, the equality holds: πDbpl

2b f
(
1− v f εl f

)  =
 πDbpl

2b f ,0

(
1− v f εl f

) ,
which yields:

lim
b f→b f ,0

−

2b f
(
1− v f εl f

)
πDbpl

 πDbpl

2b f
(
1− v f εl f

)  = 2b f ,0

(
1− v f εl f

)
πDbpl

 πDbpl

2b f ,0

(
1− v f εl f

) . (A1)

Since for b f ,0, by Equations (24) and (25) we have:

πDbpl

2b f ,0

(
1− v f εl f

) =

 πDbpl

2b f ,0

(
1− v f εl f

)  = i f , (A2)

where i f is the number if entire film wrappings; then, for b f ,0, the next equation is satisfied:

πDbpl

2b f ,0

(
1− v f εl f

) =

 πDbpl

2b f ,0

(
1− v f εl f

)  = i f − 1. (A3)

Combining Equations (A2) and (A3) yields:

2b f ,0

(
1− v f εl f

)
πDbpl

 πDbpl

2b f ,0

(
1− v f εl f

)  = i f

i f − 1

whence, in view of Equations (A1) and (27), the limit result is:

lim
b f→b f ,0

−
δ0 =

1
q

[
1−

i f − 1

i f

]
=

1
q
·
1
i f

,

which by Equation (A2) is equivalent to that described by Equation (28).

Appendix A.2 Proof of Proposition 4

To prove the first result of the Proposition, the increase ∆FCmin,k f

(
b f ,s

)
, defined by Equation (32), of

the index FCmin,k f
described by Equation (21) must be estimated. By Equations (23) and (21) we have:

∆FCmin,k f

(
b f ,s

)
=

8(Db + Hb)

Hb
(
εl f + 1

)  b f ,s

πD2
b

 πDbpl

2b f ,s
(
1− v f εl f

) − pl

2Db
(
1− v f εl f

) ,
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The conditions from Equations (30) and (24) imply: πDbpl

2b f ,s
(
1− v f εl f

)  =
 πDbpl

2b f ,0

(
1− v f εl f

)  = πDbpl

2b f ,0

(
1− v f εl f

) , (A4)

Including Equation (29), after simple algebraic manipulations, we obtain:

∆FCmin,k f

(
b f ,s

)
=

4(Db + Hb)pl

DbHb
(
εl f + 1

)(
1− v f εl f

) ·∆b f

b f ,0
,

whence the validity of thesis (i) follows immediately; by Equation (23) the rule stated in Equation
(33) results.

In order to prove thesis (ii) the overlap ratio δ0 given by Equation (27) for the film width b f ,s,
defined by Equation (29), is estimated. From Equations (27) and (29), having in mind Equation (A4),
we have:

δ0 =
1
q

1− 1
2(b f ,0+∆b f )(1−v f εl f )

πDbpl
·

πDbpl

2b f ,0(1−v f εl f )

, (A5)

which immediately yields Equation (34). Thus, maximal in the set B f −B0 relative increase described
by Equation (31) results in the largest (in this set) coefficient δ0, and thesis (ii) is proven.

Appendix A.3 Derivation of the Limit Expressed by Equation (36)

First the left-sided limit of Ω
(
k f

)
at discontinuity point k f ,u described by Equation (16) will be

determined. Since for:
=
k f ,u < k f < k f ,u,

where
=
k f ,u is direct predecessor of k f ,u in the setKu, the inequalities hold:

q− 1 <
1

1− k f
< q,

which yields: ⌊ 1
1− k f

⌋
= q− 1. (A6)

Thus, this left-sided limit there exists and in view of Equations (6), (A6), and (16) is as follows:

lim
k f→k f ,u

−
Ω

(
k f

)
= (q− 1) lim

k f→k f ,u
−

(
1− k f

)
=

q− 1
q

= k f ,u,

from which, by Equation (8), we have:

lim
k f→k f ,u

−
FC

(
k f

)
=

8(Db + Hb)b f

πD2
bHb

(
εl f + 1

)  πDbplq

2b f
(
1− v f εl f

)
(q− 1)

.
The limit expressed by Equation (36) follows immediately.
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Appendix B

Appendix B.1 Nomenclature

b f width of un-stretched film, m
b f r width of stretched film, Equation (1), m
b f ,int discontinuity points of the function FC with respect to film width, Equations (10) and (13), m
b f ,s commercially available width of the film, m
B f set of all film widths that may be commercially available
∆b f difference between b f ,s and b f ,0, Equation (29), m
b f ,0 film width optimal in the sense of the function FCmin,k f

, Equations (24) and (26), m
b f ,0 direct successor of b f ,0 in the set B0, m
B0 set of all optimal film widths b f ,0
Db bale diameter, m
Hb bale height, m
FC film consumption index, Equation (8), m−1

FCmin,b f
film consumption optimal with respect to the film width, Equation (11), m−1

FCmin,k f
film consumption optimal with respect to the overlap ratio k f , Equation (21), m−1

FCmin film consumption optimal with respect to film width and overlap ratio, Equation (23), m−1

∆FCmin,k f
increase of the film consumption index FCmin,k f

with respect to FCmin, m−1

FCL left-hand sided limit of film consumption index in the point k f ,u, Equation (36), m–1

FCR right-hand sided limit of film consumption index in the point k f ,u + δ0, Equation (37), m−1

ERR relative error of the increase of film usage with respect to FCmin, Equation (35), %
ERRu the upper bound of ERR expressed by Equation (40), %
i f number of entire wrappings, Equation (5)
k f overlap ratio
k f ,int discontinuity point of the function FC with respect to the overlap ratio, Equation (14)
k f ,u overlap ratio in the form of irreducible fraction expressed by Equation (16)
Ku the set of all overlap ratios k f ,u

k f ,u direct successor of k f ,u in the setKu

Kb f
set of the optimal overlap ratios for fixed film width b f

m integer number; twice the number of entire wrappings
nb number of rotations of the bale around its axis
N set of all positive integer numbers
pl pre-assumed number of basic film layers
S f surface area of the film used to wrap the bale, Equation (7), m2

v f Poisson’s ratio of the stretch film
Vb bale volume, m3

εl f unit deformation of the stretch film
Ω function of the overlap ratio k f defined by Equation (6)
Ω0 coefficient defined by Equation (19)
δ0 robustness margin of the optimal overlap ratio, Equations (20) and (27), m
δ increment of the overlap ratio k f = k f ,u + δ, m
δ0 upper bound of the robustness margin described by Equation (28), m
χ0 coefficient defined by Equation (18)

Appendix B.2 Mathematical Terminology

dx e the smallest integer not less than x, ceiling function
bx c the largest integer not greater than x, floor function
min

x
f (x) find the value of x, which minimizes the function f (x)
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12. Ivanovs, S.; Gach, S.; Skonieczny, I.; Adamovičs, A. Impact of the parameters of round and square haylage
bales on the consumption of the sealing film for individual and in-line wrapping. Agron. Res. 2013, 11, 53–60.

13. Gaillard, F. L’ensilage en balles rondes sous film étirable. Fourrages 1990, 123, 289–304.
14. Borreani, G.; Bisaglia, C.; Tabacco, E. Effects of a new-concept wrapping system on alfalfa round-bale silage.

Trans. ASABE 2007, 50, 781–787. [CrossRef]
15. Angelov, I.; Slavov, V.; Kalym, K.; Karaivanov, D. Kinematics of haylage bale in 3D space as a body of one fix

point and two rotations. Meccanica 2014, 49, 739–747. [CrossRef]
16. Round Balers. I-Bio+. Bale and Wrap in One Go. Available online: http://www.kuhn.com.pl/internet/webpl.

nsf/0/C12577680057083DC12579990053A8ED/$File/i-BIO_GB.pdf/ (accessed on 29 August 2019).
17. Balsari, P. La tecnica della fasciatura delle rotoballe per l’insilamento del foraggio. L’Inf. Agrar. 1990, 22,

33–47.
18. Muise, I.; Adams, M.; Cote, R.; Price, G.W. Attitudes to the recovery and recycling of agricultural plastics

waste: A case study of Nova Scotia, Canada. Resour. Conserv. Recycl. 2016, 109, 137–145. [CrossRef]
19. Nowak, J. Analysis and Evaluation of the Round Bale Silage Production; AR Publishing House: Lublin, Poland,

1997. (In Polish)
20. Baldasano, J.M.; Gassó, S.; Pérez, C. Environmental performance review and cost analysis of MSW landfilling

by baling-wrapping technology versus conventional system. Waste Manag. 2003, 23, 795–806. [CrossRef]
21. Stankiewicz, A. On the uniform distribution and optimal consumption of stretch film used for wrapping

cylindrical baled silage. Grass Forage Sci. 2019, 74, 584–595. [CrossRef]
22. Hong, S.; Kang, D.; Kim, D.; Lee, S. Analysis of bale surface pressure according to stretch film layer changes

on round bale wrapping. J. Biosyst. Eng. 2017, 42, 136–146. [CrossRef]
23. Bisaglia, C.; Tabacco, E.; Borreani, G. The use of plastic film instead netting when tying round bales for

wrapped baled silage. Biosyst. Eng. 2011, 108, 1–8. [CrossRef]
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