Next Article in Journal
Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture
Previous Article in Journal
Performance of Pinoxaden on the Control of Diclofop-Resistant Italian Ryegrass (Lolium perenne L. ssp. multiflorum) in Winter Wheat
Previous Article in Special Issue
Salt Tolerance of Six Switchgrass Cultivars
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessArticle
Agriculture 2018, 8(7), 115; https://doi.org/10.3390/agriculture8070115

Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions

1
Laboratório de Biotecnologia de Halófitas (BTH), Instituto de Oceanografia (IO), Universidade Federal do Rio Grande—FURG, Av. Itália km 8, Rio Grande, RS 96203-900, Brazil
2
Laboratório de Fitoplâncton e Microorganismos Marinhos, Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
3
Laboratório de Micotoxinas e Ciência de Alimentos, Escola de Química e Alimentos (EQA), Universidade Federal do Rio Grande (FURG), Av. Itália, km 8, Rio Grande, RS 96203-900, Brazil
*
Author to whom correspondence should be addressed.
Received: 17 June 2018 / Revised: 17 July 2018 / Accepted: 18 July 2018 / Published: 23 July 2018
(This article belongs to the Special Issue Response and Tolerance of Agricultural Crops to Salinity Stress)
View Full-Text   |   Download PDF [601 KB, uploaded 23 July 2018]   |  

Abstract

Small succulent halophytic shrubs of the genera Salicornia and Sarcocornia (Salicornioideae, Amaranthaceae) are commonly named sea asparagus and consumed worldwide as green salad in gourmet food, as conserves, and beverages. Their shoots are rich in bioactive compounds and plants show high yields in a wide range of salinities, but little is known about how salt cultivation conditions affect their chemical composition. Two genotypes (BTH1 and BTH2) of the Brazilian sea asparagus Salicornia neei Lag. were evaluated for salt tolerance and changes in shoot concentrations of organic metabolites and antioxidant activity under different salt exposure in both greenhouse and field conditions. All greenhouse plants received full strength modified Hoagland solution in deionized water with a basic electrical conductivity (EC) of 1.7 dS m−1, and with NaCl concentrations (in mM) of ~0.1 (control), 34, 86, 171, 513, and 769. After fifty days of cultivation, both S. neei genotypes showed high salt tolerance and grew better under low salinities (34–86 mM NaCl) than under control salinity. Shoots of BTH1 genotype appeared to be undergoing lignification and used their high carotenoid content to dissipate the oxidative power, and the zeaxanthin content and de-epoxidation state of xanthophylls (DES) were positively affected by salinity. Under increasing salinity, BTH2 genotype had higher relative content of chlorophyll b, which may have lowered the plant photo-oxidation rate, and increased shoot concentration of the flavonoid quercetin (up to 11.6 μg g−1 dw at 769 mM NaCl), leading to higher antioxidant capacity. In the field experiment, after 154 days of irrigation with saline (213 mM NaCl) shrimp farm effluent, BTH2 plants grew taller, produced more metabolites (e.g., total phenolics, total free flavonoids, quercetin, and protocatechuic acid) and had a greater antioxidant capacity of shoots than that of BTH1 plants and that of traditional crops irrigated with fresh water. Yield and bioactive compound composition of S. neei genotypes’ shoots can be enhanced by cultivation under moderate saline conditions. View Full-Text
Keywords: halophyte; salt stress; functional food; shrimp farm effluent; breeding program halophyte; salt stress; functional food; shrimp farm effluent; breeding program
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

de Souza, M.M.; Mendes, C.R.; Doncato, K.B.; Badiale-Furlong, E.; Costa, C.S.B. Growth, Phenolics, Photosynthetic Pigments, and Antioxidant Response of Two New Genotypes of Sea Asparagus (Salicornia neei Lag.) to Salinity under Greenhouse and Field Conditions. Agriculture 2018, 8, 115.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Agriculture EISSN 2077-0472 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top