
Article

A Programmable Aerial Multispectral Camera System
for In-Season Crop Biomass and Nitrogen Content
Estimation
Jakob Geipel 1,*, Johanna Link 1, Jan A. Wirwahn 2 and Wilhelm Claupein 1

Received: 29 October 2015 ; Accepted: 29 December 2015 ; Published: 18 January 2016
Academic Editor: Yanbo Huang

1 Institute of Crop Science, University of Hohenheim, Fruwirthstr. 23, Stuttgart 70599, Germany;
Johanna.Link@uni-hohenheim.de (J.L.); Wilhelm.Claupein@uni-hohenheim.de (W.C.)

2 Institute for Geoinformatics, University of Münster, Heisenbergstr. 2, Münster 48149, Germany;
jan.wirwahn@uni-muenster.de

* Correspondence: jakob.geipel@uni-hohenheim.de; Tel.: +49-711-459-22938

Abstract: The study introduces a prototype multispectral camera system for aerial estimation
of above-ground biomass and nitrogen (N) content in winter wheat (Triticum aestivum L.). The
system is fully programmable and designed as a lightweight payload for unmanned aircraft systems
(UAS). It is based on an industrial multi-sensor camera and a customizable image processing
routine. The system was tested in a split fertilized N field trial at different growth stages in
between the end of stem elongation and the end of anthesis. The acquired multispectral images
were processed to normalized difference vegetation index (NDVI) and red-edge inflection point
(REIP) orthoimages for an analysis with simple linear regression models. The best results for
the estimation of above-ground biomass were achieved with the NDVI (R2 = 0.72–0.85, RMSE
= 12.3%–17.6%), whereas N content was estimated best with the REIP (R2 = 0.58–0.89, RMSE =
7.6%–11.7%). Moreover, NDVI and REIP predicted grain yield at a high level of accuracy (R2

= 0.89–0.94, RMSE = 9.0%–12.1%). Grain protein content could be predicted best with the REIP
(R2 = 0.76–0.86, RMSE = 3.6%–4.7%), with the limitation of prediction inaccuracies for N-deficient
canopies.

Keywords: camera; multispectral; nitrogen; precision agriculture; protein; remote sensing; UAS;
UAV; winter wheat (Triticum aestivum L.); yield

1. Introduction

Extensive use of nitrogen (N) leads to negative environmental impacts, like eutrophication, acid
rains, drinking water contamination and nitrous oxide emissions [1–5]. Nevertheless, N plays a major
role in crop growth and crop quality in wheat (Triticum L.) production [6]. Farmers have to achieve
a certain quantity and quality of yield. Thus, they require N fertilization strategies that may ensure
good outcomes for both yields and the environment. The calculation of appropriate amounts of N
and the correct timing of the fertilization are crucial to supply the crop with sufficient nutrients at all
stages of crop development. Moreover, it decreases the risk of N loss through leaching [7] and nitrous
oxide emissions [8].

In wheat cultivation, split N application is a common way to influence grain yield and
grain protein content. Several studies have shown that N applications before flowering increase
mainly grain mass [9], whereas N applications around flowering increase mainly grain protein
content [10,11]. In the past, farmers often used simplified methods to estimate the N demand for late
N applications. Nowadays, rules of thumb like 1 kg N per 1000 kg of expected grain yield are more
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and more replaced by methods that take soil available N, previous N applications, above-ground
biomass and its current N content into account [12,13]. A common N recommendation method is
to measure the N content in plant leaves during the vegetative period and to compare it to a critical
amount of N, required for a maximum of biomass production [14–16]. The critical N content in winter
wheat (Triticum aestivum L.) was defined by Justes et al. [17,18] in a universal equation based on the
actual above-ground biomass. Thus, recommended rates can be calculated from actual estimates of
biomass and N content alone.

As sampling of a representative amount of probes in a heterogeneous field is a costly and
time-consuming task, farmers increasingly utilize online systems to collect site-specific information,
to calculate appropriate amounts of fertilizer and to apply the dressing at the same time [19]. Most of
these systems are based on optical sensors, which measure the plant canopy reflection to calculate
targeted N prescription with a proprietary algorithm, e.g., the Yara N-Sensor (Yara International ASA,
Oslo, Norway), the ISARIA crop sensor (Fritzmeier GmbH & Co. KG, Großhelfendorf, Germany) and
the GreenSeeker (Trimble Navigation Ltd., Sunnyvale, CA, USA).

Within the last few years, remote sensing with unmanned aerial vehicles (UAVs) or unmanned
aircraft systems (UASs) became popular in the precision agriculture domain. These systems are able
to provide data at high spatial and temporal resolutions for crop and soil monitoring [20]. Commonly,
researchers utilize image-based systems in the visual and near-infrared radiation spectrum [21],
giving a more comprehensive impression of the field than spot measurements with ground-based
detection systems. Aasen et al. [22] gave a detailed overview and definition of the different types
of imaging systems, which are currently in use on-board UAVs. Generally, imaging systems can be
classified as multispectral systems with few bands [23–26] and as more sophisticated hyperspectral
systems with a multitude of bands [22,27,28]. The hyperspectral systems combine the benefits of high
spectral and spatial resolution, but are still rare and expensive.

Above-ground biomass and N content of wheat are known to be detectable with a limited
number of bands [16,29,30]. Therefore, this study focuses on the development of a multispectral
camera system capable of estimating parameters for the calculation of optimal N applications. The
system is intended to operate on-board a UAS, to be lightweight and fully programmable for future
applications. To ensure operability in this context, the system was tested in a split fertilized N field
trial in winter wheat before and after the late N application.

2. Materials and Methods

The camera system was designed as a lightweight payload for a UAS (see Figure 1a). It is
based on an industrial multi-sensor camera (D3, VRMagic GmbH, Mannheim, Germany), with four
identical monochrome imaging sensors, four identical lens systems and four different bandpass
filters (bk Interferenzoptik Elektronik GmbH, Nabburg, Germany) (see Figure 1b). It offers several
hardware interfaces and was coupled to a luminosity sensor to measure ambient solar radiation for
exposure time calculation. Moreover, it was connected to the UAS’s processing unit via Ethernet
connection. The specifications of all camera system components are given in Table 1.

The camera system is able to measure four narrow wavelength bands in the so-called red-edge
region, a transition zone in between the visual and the near-infrared radiation spectrum, which is
sensitive to leaf chlorophyll content [31–33]. For this study, the wavelength bands at 670, 700, 740 and
780 nm were selected. They can be used to approximate the normalized difference vegetation index
(NDVI) [34] and the red-edge inflection point (REIP) [33]. The formulas are given in Equations (1)
and (2), with Rnm being the reflectance at the four narrow bands.

NDVI =
(R780 − R670)

(R780 + R670)
(1)

REIP = 700 + 40×
( (R670+R780)

2 − R700)

(R740 − R700)
(2)
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Figure 1. Carrier platform “Hexe” (a) with the mounted VRMagic D3 camera system and four
attached Aptina imaging sensors (b). The five main steps of the image acquisition and processing loop
(c): (i) exposure time measurement; (ii) simultaneous image acquisition; (iii) vignetting correction;
(iv) lens distortion correction; and (v) image-to-image registration.

Table 1. Overview of the camera system specifications. The system consists of an industrial D3
camera platform, four identical imaging sensors and lens systems, four specific bandpass filters and a
luminosity sensor to measure ambient solar radiation.

Component Parameter Value Parameter Value

D3 platform Name VRmD3MFC
CPU 1-GHz ARM Cortex-A8 Core Memory 32 GB flash
DSP 700-MHz C674x RAM 2 GB DDR3-800

Image sensor Name Aptina MT9V024
Size 4.51 mm (H) × 2.88 mm (V) Pixel size 6 µm × 6 µm

Resolution 752 px (H) × 480 px (V) Shutter Global
Dynamic range 10 bit (1024) Quantum eff. ~49%, 47.5%, 44%, 41%

Type CMOS monochrome (1/3 in) (670, 700, 740, 780 nm)

Lens system Focal length 3.6 mm F-number 1.8

Filter Type Bandpass interference filter
Wavelengths 670, 700, 740, 780 nm Tmax ≥70, typically 85%

Center ±2 nm FWHM 10 ±2 nm

Luminosity Name TSL 2561
Sensitivity ~350–900 nm Dynamic range 0.1–40,000 lx

Both NDVI and REIP are well-known measures for winter wheat properties, such as
above-ground biomass, N content and grain yield. The REIP is commonly used to estimate crop
N content, whereas the NDVI is often used for biomass estimation and grain yield prediction [16,30].

2.1. Image Acquisition Loop

The camera system is fully programmable and was operated with an image acquisition and
processing routine of five main steps (see Figure 1c): (i) the ambient solar radiation is detected by the
luminosity sensor and processed to an optimal exposure time; (ii) four individual images are acquired
simultaneously and saved to the flash memory; (iii) a vignetting correction is applied to each image
for the compensation of brightness reduction at the image borders; (iv) the lens distortion error is
corrected by re-sampling each image to a rectilinear projection; and (v) the four images are spatially
co-registered by a perspective transformation. Steps (i) and (ii) are always performed on-board the
camera, whereas Steps (iii)–(v) can be performed on-board or in post-processing.
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2.1.1. Exposure Time

The exposure time is an important parameter for an imaging system. It controls the shutter and,
as a consequence, the amount of time the imaging sensor is exposed to electro-magnetic radiation.
Finding an optimal exposure time prevents the sensor from under- and over-exposure and allows one
to make use of the sensor’s full dynamic range. As ambient solar radiation typically changes during
a flight mission, the exposure time needs to be adjusted according to these changes. Therefore, the
camera system was set up with a TSL 2561 luminosity sensor (Adafruit Industries, New York, NY,
USA) to detect the changes on-the-fly (while flying). The sensor is equipped with two photo-diodes
and is sensitive to the visible and near-infrared radiation spectrum (~350–900 nm). It is connected to
the camera system via an i2c interface and read-out every time before image acquisition. To avoid
angular effects of the radiation’s geometry, the sensor is covered with an ordinary ping-pong ball,
which serves as a cosine corrector to diffuse the incoming radiation (see, i.e., Figure 2a).

Figure 2. Carrier platform “Hexe” with an attached TSL 2561 luminosity sensor, covered by a
ping-pong ball, which serves as a radiation diffuser (a); exemplary histogram of a calibration image
comprising soil, vegetation, bright and shadowed areas (b); exposure time calibration functions for
each sensor/filter combination and the final mean exposure time calibration function (c).

To estimate optimal exposure time, several imagery sets were acquired under variable radiation
conditions. The camera was set up on a platform 5 m above-ground and targeted towards two
white and black reference targets in a scene comprising soil, vegetation, bright and shadowed areas,
representing a typical surrounding for in-field operation. Images were acquired in an automatic loop,
incrementing the exposure time from a fraction of a ms (under-exposure) to 10 ms (over-exposure).
For each image, exposure time and luminosity sensor readings were saved for analysis. The
procedure was performed from morning to evening during different days in late spring. The
imagery sets were analyzed for their histogram stretch. Images without under- or over-exposure
(clipping) and a spread of ≥60% of the 10-bit dynamic range were selected as valid (see Figure 2b).
Approximately 2500 images were selected per band. Corresponding exposure times and luminosity
readings were regressed for each band individually by a power function (see Figure 2c). All functions
follow the same trend and increasingly converge for higher luminosity values. As bigger differences
only appear at relatively dark ambient conditions, all functions were averaged to a mean exposure
time function for all four sensor/filter combinations.

2.1.2. Sensitivity, Vignetting and Lens Distortion

After image acquisition, the images receive radiometric and geometric corrections, accounting
for their specific sensor/filter/lens combination [35]. First, the images undergo two radiometric
corrections: (i) compensation of the image sensor’s change in sensitivity at different wavelengths;
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and (ii) the correction of vignetting, the radial reduction of brightness towards the image borders [35].
Second, a geometric correction is performed to remove the rectilinear projection error, which is caused
by the lens system [36]. All correction parameters are system constants and need to be determined
only once or after system changes.

To reduce the effect of sensitivity on the radiometric intensity of all images, the sensors’ quantum
efficiency (QEnm) values (see Table 1) were used to calculate correction factors for a radiometric
normalization. In this setup, the sensor’s sensitivity is lowest in the near-infrared band (QE780 ~41%).
This value was used as a reference for the calculation of the correction factors of all other images
( fQE = QE780/QEnm). In the acquisition loop, these factors are applied to the radiometric intensities
of the images at 670, 700 and 740 nm before performing the vignetting correction. In order to quantify
the effect of vignetting, the brightness gradient from each image center to the borders was determined
by capturing a white target with defined reflectivity (~99%). The images were acquired on a cloudy
day under the assumption of diffuse light conditions. The radiometric intensities of these reference
images were, again, normalized to the mean reflection in the image and then inversed to create a
correction factor matrix for each band. The matrices are applied to the captured images as a second
radiometric correction. This correction does not only account for vignetting effects, but also for flaws
of the sensor, lens and filter [35]. In the next step, the geometric distortion, deriving from the lens
system, is corrected. Lens systems typically cause rectilinear projection errors, which need to be
removed to preserve linear objects as straight lines [36]. Therefore, the parameters of distortion were
estimated by camera calibration with the software Agisoft Lens 0.4.1 (Agisoft LLC, St. Petersburg,
RU). These parameters are used to re-sample the images to a rectilinear projection as a first geometric
correction.

2.1.3. Image-To-Image Registration

In the last step, the four individual images are geometrically aligned, cropped to a common
extent and stacked to a multi-layered image. The implemented image-to-image registration
procedure utilizes a perspective transformation to re-sample the images into a common coordinate
system [37]. The transformation and cropping parameters were determined experimentally. The
camera system was triggered at altitudes of 10 and 20 m above a sports ground facing a pattern of
lines. The captured images were corrected for the lens distortion effects and, consequently, manually
registered to identify the transformation parameters for image-to-image registration and cropping.
As the optical axes of the lens systems were not aligned perfectly parallel, the parameters of projection
vary for different distances [37]. As a consequence, the results of the manual registration were used to
create a function of distance to calculate the parameters for any flight altitude, assuming a nadir view.
The registration, therefore, depends on a measure of distance, which is provided as flight altitude by
the UAS’s control unit.

2.2. Carrier Platform

The camera system was installed on “Hexe”, a modified MikroKopter (HiSystems GmbH,
Moormerland, Germany) Hexa XL aerial carrier platform (see Figure 1a). “Hexe” is an unmanned
aircraft system with standard multi-copter navigation capabilities. It is equipped with an inertial
measurement unit (IMU) and a differential global navigation satellite system (GNSS) receiver.
Moreover, it features an additional accelerometer to improve altitude accuracy. It can be assembled
with a payload of ~1 kg and is powered by a 5000 mAh lithium polymer battery for an
operation time of approximately 10 min. “Hexe” offers on-board sensor control and sensor data
processing by a software framework, running on a Raspberry Pi 1 Model B single-board computer
(Raspberry Pi Foundation, Caldecote, UK). The framework retrieves the navigation data and all
sensor measurements for on-board data fusion, logging and broadcasting [38]. It shares the
navigation information, i.e., the altitude, with the attached camera system. In addition to the
multispectral camera system, “Hexe” was equipped with a simple RGB camera with a resolution
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of 2592 × 1944 pixels (Raspberry Pi Foundation, Caldecote, UK). Both systems were installed on a
roll- and pitch-stabilized gimbal to ensure a best-possible nadir view.

2.3. Field Trial

The camera system was tested on a field trial, established at the Ihinger Hof (48.74◦ N, 8.92◦ E),
a research station of the University of Hohenheim. The region has a temperate climate with an annual
average temperature of 7.9 ◦C and an average precipitation of 690 mm. This season had 1266 growing
degree days with an average winter temperature of 3.3 ◦C and an average summer temperature of
16.0 ◦C. The field trial was laid out on silty clay soil, comprising an area of 840 m2. One cultivar of
winter wheat (“Pamier”) was treated with seven N fertilization levels of 0, 4, 8, 12, 16, 20 and 24 g·m−2

in a randomized complete block design with three replicates. Figure 3 gives an overview of the 21
plots, each of a size of 10 × 4 m. The total amount of N was split into three dressings and applied at
growth stages Z 20, Z 31 and Z 51 (see Table 2) [39]. The growth stages correspond to the beginning
of tillering, the beginning of stem elongation and the beginning of ear emergence, respectively. An
analysis of soil N before the first dressing showed a uniform level of 1.6 g·m−2 for all plots. Plant
protection followed common practice.

Figure 3. N field trial in winter wheat with 21 plots of a size of 10 × 4 m each. Seven N fertilization
levels of 0, 4, 8, 12, 16, 20 and 24 g·m−2 were tested in a randomized complete block design with
three replicates.
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Table 2. Overview of the applied N dressings for each treatment (Nx) at different growth stages (Z)
and the accumulated precipitation (P) since the last dressing.

Date Z N0 N4 N8 N12 (g·m−2) N16 N20 N24 P (mm·m−2)

20 March 2015 20 0 2 3 4 6 8 10
24 April 2015 31 0 2 3 4 6 8 10 43.8

26 May 2015 39–41 70.7
2 June 2015 51 79.7
5 June 2015 51 0 0 2 4 4 4 4 79.7

10 June 2015 61 46.0
17 June 2015 69 46.4

5 August 2015 90 104.3

2.4. Measurements

Four flight missions were performed during mid-season crop development. The missions were
conducted 10 and 3 days before, as well as 5 and 12 days after the third N dressing (Z 39–41, Z 51, Z 61,
Z 69). The growth stages correspond to the end of stem elongation, the beginning of ear emergence,
the beginning of anthesis and the end of anthesis. The flight missions comprised the N field trial
and an adjacent field trial, covering a total area of approximately 2500 m2. The adjacent field trial
is not part of this study. The white reference target was laid out beside the plots. Aerial images
were acquired at a scheduled flight altitude of 25 m, a forward lap of 95%, a side lap of 60% and
a desired ground resolution of 0.04 m·px−1. The azimuthal orientation at image acquisition was
constant during the missions (~320◦). The image processing loop (see Figure 1c) was performed
during flight, which resulted in an acquisition rate of approximately 0.25 Hz. Six ground control
points were measured with a real-time kinematic GNSS receiver (Trimble Navigation Ltd., Sunnyvale,
CA, USA). Table 3 gives an overview of all mission parameters.

Table 3. Overview of the performed flight missions at different growth stages (Z). The table comprises
the mission date, the number of images (n) for subsequent processing, the scheduled flight altitude
(A), the number of ground control points (G), the desired image ground resolution (R), the mission
time (T), the weather conditions (W), the solar zenith (Ze) and azimuth angle (Az) and the wind
speed (S).

Date Z n A (m) G R (m·px−1) T W Ze (◦) Az (◦) S (m·s−1)

26 May 2015 39–41 121 25 6 0.04 10–11 a.m. clear sky 44 114 2
2 June 2015 51 128 25 6 0.04 10–11 a.m. clear sky 43 113 3

10 June 2015 61 132 25 6 0.04 2–3 p.m. clear sky 29 212 2
17 June 2015 69 135 25 6 0.04 2–3 p.m. clear sky 29 212 1

After every mission, ground-truth information was acquired by destructive sampling of
above-ground biomass in an area of 0.6 m2 per plot. The crops were cut as close to the soil surface as
possible, and fresh matter was determined. Probes of the samples were dried to constant mass in a
drying cabinet at 80 ◦C and analyzed for dry matter (DM) and N content. N content was determined
by near-infrared spectroscopy (NIRS XDS, FOSS, DK). Harvest took place on 5 August 2015. Again,
each plot was sampled in the same way as after the flight missions. The samples were analyzed for
grain yield and N content. Grain protein content was derived by multiplication of the N content with
a universal conversion factor of 6.25.

2.5. Image Processing

The images were processed to multispectral orthoimages, using the 3D reconstruction software
Agisoft PhotoScan Professional Edition 1.1.6 (Agisoft LLC, St. Petersburg, Russia). The images,
the ground control point coordinates and the flight log, containing the coarse image locations, were
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imported. After the first step of coarse alignment, manual identification of the ground control points
was performed to optimize the alignment procedure. In the next step, the 3D scene was reconstructed
as a point cloud and triangulated to build a digital elevation model. In the last step, the images were
mosaicked to an orthoimage and exported in the GeoTIFF format (WGS84/UTM32N) for each flight
mission, individually. The mosaicking method followed the description of Bendig et al. [40] utilizing
the radiometric information from the best centered image in case of overlap. Color correction was
not performed.

Further processing was conducted with the statistical computation software R [41], making use
of the “spatial” and “raster” packages [42,43]. The radiometric intensities at the position of the
white reflection target were used to compute averaged normalization factors for the four bands.
Subsequently, all bands were normalized with these factors to transform the radiometric intensities
into reflectance values. According to Equations (1) and (2), the NDVI and REIP layer were calculated
for each orthoimage. The field trial’s plot information was imported as polygonal shapefile. Each plot
was reduced to a size of 6× 1 m to account for plot boundary effects (e.g., inaccuracies in fertilization)
and for excluding the reference sample areas from analysis (see Figure 3). Consequently, a spatial
query was performed to extract the NDVI and REIP values of the raster cells, which fall inside a
polygon. For each polygon, a summary statistics was calculated to average the values of the NDVI
and the REIP.

2.6. Regression Analysis

In the last step of processing, a simple linear regression analysis was carried out to confirm the
multispectral camera system’s ability to detect and predict certain parameters of interest. The analysis
was split into two parts: (i) a regression analysis to infer the sampled information at each flight
mission; and (ii) a regression analysis to predict the sampled information at harvest (Z 90). The
averaged NDVI and REIP values served as independent variable. They were used to estimate
above-ground biomass and N content, as well as to predict grain yield and grain protein content.
The models were evaluated by comparison of the coefficients of determination (R2), the root mean
square error (RMSE), the relative RMSE and the bias. The quality of each model was assessed by
leave-one-out cross-validation and the resulting root mean square error of validation (RMSEV).

3. Results

The on-board camera system was able to capture multispectral images for all UAS flight
missions. Reference samples were taken and analyzed to ensure the comparison to real ground truth
data. The regression analyses indicate valuable first results.

3.1. Image Acquisition Loop

The camera system worked as expected. It performed all steps of the acquisition loop during the
flight mission. One iteration, comprising the steps from exposure time definition to image-to-image
registration, took approximately 4 s of time. The exposure time function led to an acquisition of
images with a contrast stretch ≥60% of the 10-bit dynamic range. Due to the approximated mean
exposure time function, some images had clipping effects at the white reference target.

Registered multispectral images were cropped to a common extent of 732 × 464 px and showed
a geometrical error in alignment accuracy (see Figure 4). The error was unevenly distributed
throughout the image. Objects that were near the image’s center showed a smaller displacement
in alignment (~2 px), whereas objects at the image’s border showed a larger displacement (~6 px).
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Figure 4. Image-to-image registration accuracy at different locations within the image. Two registered
multispectral images are presented as false color images. The first image sets focus on two black
and white reference targets (a); whereas the second image captures the targets at its border (d);
two transects of a length of 50 px were selected to investigate the spatial displacement of the
four registered bands (b,e); the reflectance along the transects is shown on the right. The spatial
displacement can be observed on the x-axis, and the reflectance can be observed on the y-axis. The
figures indicate that the spatial alignment is better in the center of an image (~2 px) (c); and it is worse
in the border region (~6 px) (f).

3.2. Measurements

The laboratory analysis of the samples from Z 39–41 to Z 69 are presented in Table 4. Due to an
error in the procedure, one sample could not be analyzed for Z 51 and Z 69, respectively. Average
biomass showed an increase from 381.8–1351.3 g·m−2 over time. Mean N content was stable at
Z 39–41 and Z 51 (1.5 g 100 g−1), decreased at Z 61 (1.2 g 100 g−1) and increased slightly at Z 69
(1.3 g 100 g−1).

Table 4 also shows the results of the samples at harvest (Z 90). Grain yield ranged from
180.4–820.7 g·m−2. The yield increased almost linearly with the amount of fertilized N (see Figure
5a). Grain protein content ranged from 13.7–19.6 g 100 g−1. The protein content did not increase
linearly with the amount of fertilized N (see Figure 5b). Its minimum was at an N level of 4 g·m−2,
whereas its maximum was reached at a level of 24 g·m−2.
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Table 4. Descriptive statistics (minimum, mean, maximum and standard deviation (SD)) of
above-ground biomass, N content, grain yield and grain protein content, sampled at different growth
stages (Z).

Variable Z Minimum Mean Maximum SD

Biomass (DM) (g·m−2) 39–41 91.9 381.8 665.5 130.13
51 241.8 512.1 848.0 165.17
61 444.4 955.5 1447.3 324.26
69 486.1 1351.3 2076.0 432.97

N content (g 100 g−1) 39–41 1.1 1.5 2.0 0.30
51 1.1 1.5 2.2 0.36
61 0.9 1.2 1.9 0.28
69 0.9 1.3 1.7 0.24

Grain yield (g·m−2) 90 180.4 489.7 820.7 178.74
Grain protein content (g 100 g−1) 90 13.7 17.0 19.6 1.65
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Figure 5. Grain yield (a) and grain protein content (b) at different levels of fertilization, sampled at
harvest (Z 90). The points represent the mean values, whereas the whiskers represent the minima and
maxima. Letters indicate the results of a Tukey’s HSD multiple comparison test (α = 0.05).

3.3. Image Processing

An orthoimage was computed from the acquired aerial imagery for each growth stage.
The resulting RMSEs of the ground control point residuals ranged from 0.027–0.032 m in the
horizontal and from 0.035–0.046 m in the vertical direction. The orthoimages were produced with
a ground resolution of 0.04 m·px−1, leading to an analysis at the canopy level with mixed signals,
comprising soil and plant reflection [44]. The signals were used to compute the NDVI and the REIP
layer, which were analyzed for the selected plot areas (see Figure 6). At Z 39–61, the average NDVI
values were constant around 0.79 with a standard deviation of 0.07 and decreased at Z 69 (0.68 ±
0.10). The average REIP values were higher for Z 51 and Z 61 (~739 ± 4.2), whereas they were lower
for Z 39–41 and Z 69 (~735 ± 4.7).
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Figure 6. Exemplary red-edge inflection point (REIP) orthoimage with sampled above-ground
biomass N content values (g 100 g−1) at growth stage Z 51. One sample is missing due to an erroneous
laboratory analysis.

3.4. Regression Analysis

The regression results are grouped by the two aims of this analysis: (i) estimation of biomass and
N content; and (ii) prediction of grain yield and grain protein content. All regressions were significant
(p < 0.001). Table 5 shows the results of the biomass and N content estimation. The table indicates
that the NDVI performed better than the REIP. The NDVI estimated the biomass best at Z 39–41, Z 51
and Z 69 with coefficients of determination (R2) of 0.78, 0.85 and 0.84 and relative RMSE values of
15.7%, 12.3% and 12.3%. The REIP estimated the biomass best at Z 61 with an R2 of 0.77 and a relative
RMSE of 15.8%. Figure 7a displays the regression lines for the NDVI at the different growth stages.
The relationship between NDVI and biomass appeared to be linear for all growth stages, whereas the
slopes of the regression lines increased with the gain in biomass over time.

For N content estimation, the REIP gave the best results. The R2 showed values of 0.83, 0.89, 0.81
and 0.58 with relative RMSE values of 8.3%, 7.6%, 10.3% and 11.7% (Z 39–69). The REIP performed
best at growth stage Z 51 and worst at growth stage Z 69. The regression plots for the REIP are shown
in Figure 7b. The figure indicates a linear relationship of REIP and N content at all growth stages.

Table 6 comprises the results for the prediction of grain yield and grain protein content. The REIP
performed better than the NDVI for the prediction of both, grain yield and grain protein content.
For grain yield, the REIP showed R2 values of 0.90, 0.92, 0.91 and 0.94 and relative RMSE values
of 11.2%, 9.9%, 10.8% and 9.0%. The NDVI performed slightly worse with R2 values of 0.89, 0.89,
0.90 and 0.91 and relative RMSE values of 11.6%, 12.1%, 11.0% and 10.9%. Although REIP and
NDVI performed well at all growth stages, the prediction performance even improved with time.
Figure 8a displays the regression results for the REIP and grain yield, indicating a linear relationship
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in between the two variables. The regression lines at Z 51 and Z 69 followed a similar pattern,
being only translated in parallel at different growth stages. At Z 51, the regression line showed an
increased slope.

Table 5. Results of linear regressions (p < 0.001) at different growth stages (Z) with the above-ground
biomass and N content as the dependent variable (DV), as well as the NDVI and the REIP as
the independent variable (IDV). The table comprises the number of samples (n), the coefficient of
determination (R2), the RMSE, the relative RMSE, the bias and the RMSE of validation (RMSEV),
derived from a leave-one-out cross-validation.

DV IDV Z n R2 RMSE RMSE (%) Bias RMSEV

Biomass (DM) (g·m−2) NDVI 39–41 21 0.78 59.9 15.7 0 66.4
51 20 0.85 62.8 12.3 0 69.1
61 21 0.72 168.1 17.6 0 185.4
69 20 0.84 166.8 12.3 0 179.8

REIP 39–41 21 0.74 65.1 17.1 0 73.0
51 20 0.81 69.7 13.6 0 80.4
61 21 0.77 150.8 15.8 0 167.6
69 20 0.70 230.6 17.1 0 253.7

N content (g 100 g−1) NDVI 39–41 21 0.75 0.15 10.2 0 0.17
51 20 0.73 0.18 11.9 0 0.20
61 21 0.63 0.17 14.3 0 0.19
69 20 0.53 0.16 12.5 0 0.19

REIP 39–41 21 0.83 0.12 8.3 0 0.13
51 20 0.89 0.11 7.6 0 0.13
61 21 0.81 0.12 10.3 0 0.14
69 20 0.58 0.15 11.7 0 0.17
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Figure 7. Linear regressions with (a) the above-ground biomass as the dependent and the NDVI
as the independent variable and (b) with the N content as the dependent variable and the REIP
as the independent variable at different growth stages (Z). The regression lines are displayed with
corresponding colors.

For the prediction of grain protein content, the REIP showed R2 values of 0.77, 0.76, 0.82 and 0.86
and relative RMSE values of 4.5%, 4.7%, 4.1% and 3.6%. Again, it performed better than the NDVI at
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all growth stages. Figure 5b shows a nonlinear distribution for the grain protein content. This pattern
is also apparent in Figure 8b. The simple linear regressions with the REIP as the independent variable
approximated the overall trend of increasing protein content with higher N content. Nevertheless,
they could not account for the drop in protein content at low N levels. The lines show a similar
pattern as for the grain yield.

Table 6. Results of linear regressions (p < 0.001) at different growth stages (Z) with the final grain
yield and grain protein content as the dependent variable (DV), as well as the NDVI and the REIP
as the independent variable (IDV). The table comprises the number of samples (n), the coefficient
of determination (R2), the RMSE, the relative RMSE, the bias and the RMSE of validation (RMSEV),
derived from a leave-one-out cross-validation.

DV IDV Z n R2 RMSE RMSE (%) Bias RMSEV

Grain yield (g·m−2) NDVI 39–41 21 0.89 56.7 11.6 0 64.5
51 21 0.89 59.1 12.1 0 65.8
61 21 0.90 54.1 11.0 0 60.7
69 21 0.91 53.5 10.9 0 59.9

REIP 39–41 21 0.90 54.8 11.2 0 60.4
51 21 0.92 48.3 9.9 0 53.1
61 21 0.91 52.9 10.8 0 58.7
69 21 0.94 44.2 9.0 0 49.2

Grain protein content (g 100 g−1) NDVI 39–41 21 0.72 0.86 5.1 0 0.96
51 21 0.71 0.87 5.1 0 0.99
61 21 0.72 0.85 5.0 0 0.95
69 21 0.74 0.83 4.9 0 0.94

REIP 39–41 21 0.77 0.77 4.5 0 0.84
51 21 0.76 0.79 4.7 0 0.89
61 21 0.82 0.69 4.1 0 0.76
69 21 0.86 0.61 3.6 0 0.68
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Figure 8. Linear regressions with (a) the grain yield and (b) the grain protein content as the dependent
variable and the REIP as the independent variable at different growth stages (Z). The regression lines
are displayed with corresponding colors.
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4. Discussion

This study describes a programmable multispectral camera system for in-season aerial crop
monitoring. The selected hardware components were successfully integrated into a multi-rotor UAS.
The system proved to work in a use case for the estimation of above-ground biomass and N content,
as well as for the prediction of grain yield and grain protein content in winter wheat.

4.1. Image Acquisition Loop

The image acquisition loop was able to account for exposure time measurement, image
acquisition, radiometric corrections, lens distortion removal and image-to-image registration.
Although having implemented a fully-operational system, some improvements may be considered
in a future revision.

First, clipping effects occurred in some images at the white reference target. Therefore, an
adjustment of the exposure time function is needed to prevent clipping effects in case highly reflective
reference targets are used. A more elaborated approach would include a sensor, which registers
the incident radiation for each band individually. After radiometric cross-calibration with the
imaging sensors, this would not only allow one to set the optimal exposure time, but also to use
the information to compute reflectance values without the need of a white reference target.

Second, the system does not account for dark current. Dark current is characterized as a small
amount of electric current flowing through an imaging sensor, even at times that the sensor is not
exposed to radiation. This electric current adds some noise to each readout of the sensor. Part of the
noise is a constant of the electronic components used, whereas the rest of the noise depends on the
combination of exposure time and the sensor’s temperature [35]. Kuusk [45] describes a method to
estimate dark current as a function of exposure time and temperature. Thus, equipping the camera
system with a temperature sensor and performing the proposed calibration routine appears to be a
valid approach to minimize this noise.

Third, the image-to-image registration procedure shows spatial alignment errors of up to 6 px.
This is equivalent to a shift of 0.24 m for images, which were captured at an altitude of 25 m. Although
the selected mosaicking routine of the Agisoft PhotoScan 3D reconstruction software makes use of
the information from the most centered pixels of an image, one can still assume alignment errors
of ~2 px throughout an orthoimage. For measurements of homogeneous dense plant canopies, this
can be considered sufficient. For better registration results, more accurate altitude information than
the one the UAS’s navigation sensors are able to supply is required. In that case, more sophisticated
methods like automatic feature detection based image-to-image registration algorithms should be
considered [46,47].

Fourth, the processing speed of the image acquisition loop does not allow one to run the
complete loop on fixed-wing carrier platforms. As these platforms operate at higher speeds,
the current acquisition rate would lead to images without overlap. A possible solution is to
perform exposure time measurement and image acquisition on-the-fly, whereas all other steps are
carried out in post-processing. This guarantees acquisition rates of more than 1 Hz, which are
well suited for fixed-wing operations. Applying this solution would reduce the possibilities that
a fully-programmable camera system is generally able to offer to future tasks in the precision
agriculture domain. Regarding the opportunities that robotic fleets and real-time data processing
raise for automatized crop management [48–50], an improvement in the performance of the
processing algorithm and utilization of the digital signal processor on-board the D3 camera platform
appears to be better suited, if the system shall be used as a fixed-wing carrier payload.

Finally, all radiometric calibrations were performed in natural environments, assuming optimal
conditions. Therefore, calibration in a controlled laboratory environment should be considered.
Aasen et al. [22], for example, describe a comprehensive method for the calibration of a hyperspectral
imaging system.
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4.2. Measurements

The field trial was laid out with a wide spread of N fertilization steps to ensure differences
in biomass and N content. As expected, the total amount of biomass increased during crop
development, whereas the N content decreased due to dilution processes. Although biomass
increased over time, the N content at growth stage Z 69 increased slightly compared to Z 61 due
to the uptake of the additional N, fertilized in N8–N24 twelve days before. The samples at Z 61 did
not show this effect, as the time span of five days was not sufficient to absorb the N.

The differences in treatments became also visible in grain yield and grain protein content. The
grain yield increased almost linearly with the amount of fertilized N, clearly distinguishing the
treatments from each other. As the maximum treatment probably did not exceed the critical N
level, yield loss effects did not occur. The grain protein content shows the expected drop at low
N application (N4) and then increased steadily [13].

4.3. Image Processing

The mosaicked bands of the orthoimages were normalized to the reflection of a white reference
target in order to transform the signal intensities into reflectance values for further processing of the
NDVI and the REIP. This method has the limitation that the normalization is performed uniformly
over the resulting mosaic and not on each image individually. In addition, stable atmospheric
conditions during the flight are assumed. A sensor, registering the incident radiation for each band
every time at acquisition, could eliminate this drawback and enable the system for real-time analysis
(see Section 4.1).

4.4. Regression Analysis

The linear regression analysis proved the operability of the camera system for winter wheat
fertilization scenarios. Both parameters, actual above-ground biomass and N content, could be
estimated with simple linear regression models at a good level of accuracy. The regression results
were compared to an extensive study of Erdle et al. [16], which comprises the investigation of four
commercially available spectral sensor systems in winter wheat at stem elongation, booting and
anthesis in the years 2008 and 2009.

The NDVI appears to be best suited for the estimation of above-ground biomass. The findings
indicate that the models were slightly more sensitive before anthesis. Erdle et al. [16] describe a similar
trend, although their findings indicated bigger differences with higher R2 values before the beginning
of anthesis and smaller ones during the anthesis. This decrease of model accuracy with time is not
reflected in the present study, probably due to the pronounced differences in N treatments and a
weak occurrence of the typical NDVI saturation at denser crop stands [16,29]. The REIP proved
to be a good estimator over all growth stages, as well, showing a trend that is also apparent in
Erdle et al. [16].

For the estimation of the N content, the REIP performed better than the NDVI. Its R2

values were high at Z 39–61 and show a reduction at Z 69, a trend that is also observable in
Erdle et al. [16]. The REIP follows the observation of Collins [51] showing a shift to a longer
wavelength during the vegetative period and shift backwards with the onset of senescence. With
the chlorophyll content decrease, the canopy’s reflection considerably changes [31] and influences
the accuracy of the regression model at Z 69.

In addition to the estimation of above-ground biomass and N content, simple linear regressions
were conducted to predict grain yield and grain protein content. As N applications before flowering
increase mainly grain mass [9], the pronounced differences in N treatment are also apparent in the
grain yield data. As a consequence, both REIP and NDVI proved to be good predictors at all growth
stages. The results indicate a relatively stable slope of the regression line throughout all models
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for both predictors. The models primarily differ in the intercept, depending on the mean canopy
reflection at the distinct growth stages.

Grain protein content was predicted best by the REIP, whereas the prediction accuracy increases
with time. The models reflect the trend of increasing protein content with a rise in the amount of
N, but they cannot account for the drop, which is typical for low N applications [13]. Therefore, the
simple linear regression models may be used for the prediction of grain protein content in sufficiently
fertilized wheat fields, but should be avoided if N deficiency is present.

Although being comparable to similar studies of canopy reflection, the presented results shall be
regarded as indicators, only. As the analysis is based on a single experiment with a wide spread of N
treatments and a relative small amount of plots, further research is needed to calibrate this system to
be utilized in real-world scenarios.

5. Conclusions

This study introduces a multispectral camera system and demonstrates its ability to estimate
above-ground biomass and N content, as well as to predict grain yield and grain protein content
in winter wheat. The system was designed as a lightweight payload for a UAS, being fully
programmable and customizable for future tasks. It is based on a real-time image processing routine,
which proved to cover all steps from exposure time determination, image acquisition, radiometric
and geometric image correction and image-to-image registration. The system was successfully
tested in a split fertilized N field trial in winter wheat at different growth stages in between the
end of stem elongation and the end of anthesis. The acquired multispectral images could be
processed to representative NDVI and REIP orthoimages. They were analyzed, using simple linear
regression models, which showed good results for the estimation of above-ground biomass with the
NDVI (R2 = 0.72–0.85, RMSE = 12.3%–17.6%) and for the estimation of N content with the REIP
(R2 = 0.58–0.89, RMSE = 7.6%–11.7%). Grain yield could be predicted with both the NDVI and the
REIP at a high level of accuracy (R2 = 0.89–0.94, RMSE = 9.0%–12.1%). Grain protein content was
predicted best with the REIP (R2 = 0.76–0.86, RMSE = 3.6%–4.7%), with the limitation of not being
sensitive for low-fertilized canopies. Further research is needed to calibrate the system for real-world
scenarios.

The results indicate that a UAS, equipped with this camera system, offers the possibility of
acquiring accurate actual canopy information at a large scale. Possible improvements, like the
implementation of a sensor to measure ambient solar radiation for each band individually and the
enhancement of the calibration and processing routine, enable the UAS to operate within a sensor
web-enabled infrastructure for future real-time applications of robotic crop management [48–50,52].
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