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Abstract: Effective estimation of crop yields at a regional scale holds significant importance in
facilitating decision-making within the agricultural sector, thereby ensuring grain security. However,
traditional ground-based measurement techniques suffer from inefficiencies, and there exists a need
for a reliable, precise, and effective method for estimating regional rice yields. In this study, we
employed four machine-learning techniques: partial least squares regression (PLSR), support vector
regression (SVR), random forest regression (RFR), and back propagation neural network (BPNN). We
combined these methods with multi-temporal rice NDVI (normalized difference vegetation index)
data for rice yield estimation. Following an accuracy evaluation and a spatial analysis, the key
findings of our study are as follows. (1) The RFR model emerged as the most accurate for rice yield
estimation, achieving an R2 of 0.65, an RMSE of 388.79 kg/ha, and an rRMSE of 4.48%. While PLSR
and SVR demonstrated comparable accuracy, they were both inferior to RFR. (2) Using the top seven
predictors with the highest importance rankings as inputs for the RFR model (NDVI values on the 6th,
17th, 33rd, 44th, 71st, 90th, and 106th days after the rice transplanting stage) achieved comparable
accuracy while reducing information redundancy. (3) The proposed model demonstrated good spatial
applicability (MI = −0.03) for rice yield estimation in Jiangsu, China. (4) A high spatial resolution
yearly rice yield dataset (1 km) spanning from 2001 to 2020 was generated using the proposed model
and is accessible on the Zenodo database. In conclusion, this study has demonstrated the efficacy
of combining multi-temporal remote sensing data with machine-learning techniques for accurate
rice yield estimation, thereby aiding agricultural authorities and production enterprises in the timely
formulation and refinement of cropping strategies and management policies for the ongoing season.

Keywords: rice yield prediction; multi-temporal remote sensing; machine learning; spatial analysis

1. Introduction

Rice is a staple food crop globally and holds particular significance as the primary
grain for the Chinese populace. Therefore, precise and efficient regional-scale estimation of
rice yield is pivotal for informed agricultural management decisions and the enhancement
of production efficiency. The traditional methods of ground-based rice yield measurements
are not only inefficient but also expensive and labor-intensive. However, the advancement
of quantitative remote sensing (RS) technologies has presented a cost-effective and accurate
means for estimating crop yields at a regional level [1]. These remote sensing technologies
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facilitate large-scale analysis of rice yields, significantly boosting efficiency while reducing
the costs associated with ground sampling and data acquisition [2,3].

The utilization of empirical regression between remote sensing information and crop
yield has become a widely adopted method for yield estimation. For instance, Li et al. [4]
successfully correlated remote sensing and meteorological data with crop yield, achieving
accurate estimations for China’s three primary crops: maize, wheat, and rice. Similarly,
Fernandez-Ordoñez et al. [5] employed empirical regression to align Spot-5 satellite ob-
servations with maize yield, yielding promising results. Currently, numerous studies
leverage comprehensive vegetation indices, such as the normalized difference vegetation
index (NDVI) [6], conditional temperature condition index (TCI) [7], vegetation conditional
index (VCI) [8], and vegetation temperature condition index (VTCI) [9], to investigate the
integrated conditions’ impact on plant growth. These vegetation indices offer a straightfor-
ward and practical approach to estimating crop yield using just a single remote sensing
observation [10]. However, this solitary measurement may not accurately reflect the crop’s
growth status throughout its entire life cycle. Additionally, there is a lack of clarity regard-
ing the most opportune stage for remote sensing in crop yield estimation. Consequently,
it remains uncertain whether yield prediction can be reliably achieved through remote
sensing data spanning multiple time periods or long time series. Cheng et al. [11,12] have
explored the use of cumulative or averaged crop physiological indicators derived from
MODIS data, including gross primary productivity, evapotranspiration, leaf area index,
and land surface temperature, to estimate maize and wheat yields in China. They have
also analyzed the optimal lead time for yield prediction through traversal methods. While
these physiological indicators theoretically correlate with crop yield, the limited accuracy
of MODIS-derived crop physiological data introduces uncertainties into yield predictions.
Therefore, identifying rational predictors beforehand is crucial for accurate crop yield
forecasting, but it is not clear at present.

Furthermore, the relationship between remote sensing indicators (whether simple
vegetation indices or complex physiological indicators) and crop yield is generally intricate
and nonlinear [10]. Traditional statistical algorithms, such as multiple linear regression,
struggle to capture this complex nonlinearity. Machine-learning algorithms, including
deep-learning methods, are versatile and widely used statistical regression techniques
that effectively address this nonlinear challenge. Currently, numerous machine-learning
algorithms have been applied to model the relationship between remote sensing indicators
and target variables. For instance, Cheng et al. [13] utilized multiple machine-learning
algorithms to establish a robust correlation between field soil moisture content and remote
sensing observations, achieving impressive accuracy. Yang et al. [14] employed the gradient
boosting decision tree algorithm alongside satellite remote sensing to precisely predict
downward shortwave radiation in China. Mojaddedi et al. [15] combined remote sensing
data with GIS using an ensemble machine-learning algorithm to assess flood risk. Moreover,
various machine-learning (ML) algorithms, such as gradient boosted regression trees
(GBDT) and random forest regression (RFR), have been directly employed to reveal the
correlation between crop yield and remote sensing observations [16]. Cheng et al. [11,12],
for example, accurately mapped maize and wheat yields in China using the random forest
algorithm. Cao et al. [17] effectively predicted winter wheat yield in China using a deep
neural network algorithm. Overall, machine-learning algorithms demonstrate significant
potential for crop yield prediction, but determining the optimal algorithm remains an
open question.

Rice, a staple food grain in China, is widely cultivated across the country with sig-
nificant variations in harvest periods and yield distribution influenced by climatic con-
ditions [18], environmental factors, and varying planting intensities in different growing
regions [19]. The traditional ground-based sampling methods for rice yield estimation are
not only inefficient but also prone to subjective biases [20]. To address these limitations, this
study focuses on Jiangsu Province in China, examining rice yield data from 2001 to 2020.
We utilize long-term satellite observations from MODIS to predict rice yield by integrating
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various machine-learning algorithms and assessing their predictive accuracy. The objectives
of this research are fourfold: (1) to compare the performance of different machine-learning
algorithms in estimating rice yield; (2) to investigate the feasibility of using multi-temporal
remote sensing observation data for rice yield prediction and to identify the most optimal
observation periods; (3) to analyze the spatial applicability of the proposed model across
Jiangsu Province, China; and (4) to generate a high spatial resolution of rice yield dataset of
Jiangsu, China. By achieving these aims, we aim to provide a more efficient and reliable
means of monitoring and predicting rice yield, crucial for food security and agricultural
sustainability in the region.

2. Materials and Methods
2.1. Study Area

Jiangsu Province, situated in the southeast of China, is renowned for its dense network
of rivers and lakes. Spanning a longitude of 116◦21′ to 121◦54′ E and a latitude of 30◦46′ to
35◦08′ N, it covers an area exceeding 100,000 km2, as depicted in Figure 1. The province ex-
periences an annual average temperature ranging from 13.6 to 16.1 ◦C, gradually decreasing
from south to north. It receives an annual precipitation of 704 to 1250 mm. Topographically,
Jiangsu is predominantly flat, interspersed with hills, and is home to numerous rivers and
lakes. The province boasts a rice planting area of approximately 2.2 million hectares. In
Figure 1, the green areas illustrate the widespread and evenly distributed rice planting
regions across Jiangsu, China.
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2.2. Data Sources

In this study, the MOD09 atmospherically corrected surface reflectance dataset, re-
trieved from the Atmospheric Archive and Distribution System Distributed Activity Archive

http://www.resdc.cn
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Center (NASA LAADS DAAC, accessible at http://ladsweb.modaps.eosdis.nasa.gov), was
utilized to compute the normalized difference vegetation index (NDVI). This index served
to delineate the crop growth status in Jiangsu, China. Specifically, the NDVI was derived
using the surface reflectance values of the red © and near-infrared (NIR) bands:

NDVI =
NIR − R
NIR + R

(1)

NDVI is a commonly utilized spectral metric that reliably characterizes vegetation
growth status [21]. The MOD09 dataset, boasting a spatial resolution of 1 km × 1 km
and daily temporal resolution, underwent preprocessing to interpolate missing NDVI
values caused by cloud cover using the Savitzky–Golay filtering algorithm [22]. This
comprehensive approach resulted in a temporally and spatially consistent long-term NDVI
dataset. To focus specifically on rice-planted areas, a rice planting area layer sourced
from the Resource and Environment Science and Data Center of the Chinese Academy
of Science (http://www.resdc.cn) was employed to mask the NDVI data. Additionally,
a rice phenology product developed by Luo et al. (available at https://doi.org/10.6084/
m9.figshare.8313530 [23]) was incorporated to filter NDVI observations exclusively within
the rice growth period. This product provides yearly temporal resolution and a spatial
resolution of 1 × 1 km, indicating the day of the year from the transplanting stage to the
maturity stage. Figure 2 illustrates the average NDVI variation throughout this period,
revealing a range from 0.29 to 0.68.
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Figure 2. The NDVI of rice variation after transplanting stage.

County-level rice yield data spanning from 2001 to 2020 were sourced from the Rural
Statistical Yearbook of the National Bureau of Statistics (RSYNBS) of Jiangsu Province,
China (accessible at National Bureau of Statistics of China, http://www.stats.gov.cn/). This
study encompasses recorded rice yields from a total of 96 counties. Before utilizing the
recorded yield data, it underwent filtering based on several criteria: (1) yields falling outside
the biophysically feasible range (specifically, rice yields below 1000 kg/ha or exceeding
15,000 kg/ha were excluded); (2) yields deviating more than three standard deviations
from the 2001–2020 average; and (3) counties with rice planting areas under 10,000 ha
were also excluded [12,17]. Following this rigorous filtering process, a total of 925 samples
remained for analysis. These samples were divided into two sets: 80% for model training
and the remaining 20% for testing. Figure 3 illustrates the distribution of rice yields at the
county level. As evident from Figure 3a, the rice yield distribution generally follows a
normal pattern.

http://ladsweb.modaps.eosdis.nasa.gov
http://www.resdc.cn
https://doi.org/10.6084/m9.figshare.8313530
https://doi.org/10.6084/m9.figshare.8313530
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Agriculture 2024, 14, 638 5 of 15

Agriculture 2024, 14, x FOR PEER REVIEW 5 of 16 
 

 

county level. As evident from Figure 3a, the rice yield distribution generally follows a 

normal pattern. 

 

Figure 3. Distribution of recorded rice yield at county level: (a) histogram and (b) spatial distribution 

of the average value. 

2.3. Methodology 

2.3.1. Regression Algorithms 

After reviewing previous studies [10,12], we selected four regression algorithms—

partial least squares regression (PLSR), support vector regression (SVR), random forest 

regression (RFR), and back propagation neural network (BPNN)—to model rice yield 

based on multi-temporal phase NDVI. Using the rice phenology product as a filter, we 

extracted approximately 109 NDVI dates as potential predictors for rice yield estimation. 

(1) Partial least squares regression (PLSR) 

The partial least squares regression (PLSR) algorithm is a multivariate statistical anal-

ysis method based on principal component analysis (PCA), which combines the charac-

teristics of PCA, canonical correlation analysis, and linear regression analysis. The core 

objective of the PLSR algorithm is to find a linear regression model between independent 

variables (predictors) and dependent variables (responses) while addressing the issue of 

multicollinearity among the independent variables. 

By projecting the independent and dependent variables onto a new low-dimensional 

space, the PLSR algorithm reduces the dimensionality of the dataset and extracts the most 

useful information for prediction. In this process, the algorithm maximizes the covariance 

between the projected independent and dependent variables to ensure that the extracted 

principal components best explain the variation in the dependent variable. Specifically, 

the main steps of the PLSR algorithm include selecting projection directions, calculating 

projection coefficients, performing regression analysis on the projected variables, cross-

validating the regression results, and selecting the best predictive model. Through these 

steps, the PLSR algorithm can establish a stable and highly accurate linear regression 

model. 

(2) Support vector regression (SVR) 

Support vector regression (SVR) is a supervised learning algorithm. The basic idea of 

SVR is to find an optimal hyperplane in high-dimensional space that best fits the data, 

such that the distance between the sample points on either side of the hyperplane is min-

imized, thus achieving regression prediction. Unlike traditional regression models, SVR 

Figure 3. Distribution of recorded rice yield at county level: (a) histogram and (b) spatial distribution
of the average value.

2.3. Methodology
2.3.1. Regression Algorithms

After reviewing previous studies [10,12], we selected four regression algorithms—partial
least squares regression (PLSR), support vector regression (SVR), random forest regres-
sion (RFR), and back propagation neural network (BPNN)—to model rice yield based on
multi-temporal phase NDVI. Using the rice phenology product as a filter, we extracted
approximately 109 NDVI dates as potential predictors for rice yield estimation.

(1) Partial least squares regression (PLSR)
The partial least squares regression (PLSR) algorithm is a multivariate statistical

analysis method based on principal component analysis (PCA), which combines the char-
acteristics of PCA, canonical correlation analysis, and linear regression analysis. The core
objective of the PLSR algorithm is to find a linear regression model between independent
variables (predictors) and dependent variables (responses) while addressing the issue of
multicollinearity among the independent variables.

By projecting the independent and dependent variables onto a new low-dimensional
space, the PLSR algorithm reduces the dimensionality of the dataset and extracts the most
useful information for prediction. In this process, the algorithm maximizes the covariance
between the projected independent and dependent variables to ensure that the extracted
principal components best explain the variation in the dependent variable. Specifically, the
main steps of the PLSR algorithm include selecting projection directions, calculating projec-
tion coefficients, performing regression analysis on the projected variables, cross-validating
the regression results, and selecting the best predictive model. Through these steps, the
PLSR algorithm can establish a stable and highly accurate linear regression model.

(2) Support vector regression (SVR)
Support vector regression (SVR) is a supervised learning algorithm. The basic idea of

SVR is to find an optimal hyperplane in high-dimensional space that best fits the data, such
that the distance between the sample points on either side of the hyperplane is minimized,
thus achieving regression prediction. Unlike traditional regression models, SVR assumes
that there is a certain deviation between the model output and the true output, that is, if
the predicted value of the sample falls within a band-shaped region centered on the true
output with a certain width interval, it is considered correct. Therefore, the loss function of
SVR only calculates the loss of those sample points that fall outside the interval band, thus
achieving robustness to noise and outliers.

In SVR, support vectors refer to those sample points that fall outside the margin zone,
and they play a decisive role in determining the position and direction of the hyperplane.
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Because SVR only focuses on sample points outside the margin zone, the number of
support vectors is usually much smaller than the number of sample points required by
traditional regression models, which makes SVR have better performance in handling
high-dimensional data and large-scale datasets.

(3) Random forest regression (RFR)
Random forest regression (RFR) is an ensemble learning method based on regression

trees. Regression trees are a type of decision tree that uses tree models for regression
problems. In a regression tree, each leaf node represents not a category but a predicted
value. This predicted value is usually the mean of the samples contained in the leaf node.
The construction process of regression trees involves continuously partitioning the dataset
according to a certain feature so that the variance of the partitioned subsets is as small
as possible, that is, the data are distributed as close as possible to the mean. This process
is repeated until a certain stopping condition is met, such as the change coefficient of a
branch being less than a certain value or the number of elements contained in the current
node being less than a certain value. Finally, each leaf node outputs a predicted value,
which is the output mean of the training set elements contained in that leaf node. RFR
obtains the final regression result by constructing multiple decision trees and averaging or
weighted-averaging their prediction results.

RFR uses ensemble learning to average or weight the prediction results of multiple
regression trees, thereby reducing the risk of overfitting of a single decision tree and
improving the generalization ability of the model. At the same time, RFR has strong
fitting ability for data with nonlinear relationships, so it performs well in dealing with
complex problems.

(4) Back propagation neural network (BPNN)
Back propagation neural network (BPNN) is a multilayer, feedforward, neural network.

This network is trained according to the error backpropagation algorithm, and its topology
includes an input layer, a hidden layer, and an output layer. The core idea of the BP neural
network is that the learning process consists of two processes: forward propagation of
signals and backward propagation of errors. In the forward propagation process, neurons
in the input layer receive and transmit information to the hidden layer, which processes
and transforms the information before passing it to the output layer. If there is an error
between the actual output and the expected output of the output layer, then it enters the
error backpropagation stage. In this stage, the error signal is propagated backward from
the output layer to the input layer by layer, and the weights of neurons in each layer are
adjusted based on the error signal to reduce the error between the actual output and the
expected output. This process is repeated until the error is reduced to a desired level or
reaches a preset learning iteration number. The BPNN has strong pattern classification
ability and multi-dimensional function mapping ability, which can solve some problems
that simple perceptrons cannot manage.

Figure 4 provides a flowchart that outlines the process of building the rice yield
estimation model.

2.3.2. Validation Metrics

In this study, we employed three metrics—determination coefficient (R2), root mean
square error (RMSE), and relative root mean square error (rRMSE)—to quantitatively assess
model performance. These metrics are computed as follows:

R2 =
∑n

i=1
(
YEi − YE)

2

∑n
i=1

(
YRi − YR)2

, (2)

RMSE =

√
1
n∑n

i=1(YEi − YRi)2 , (3)

rRMSE =
RMSE

YR
× 100%, (4)
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where YE is the estimated rice yield and YR is the recorded rice yield; n is 800, i.e., the count
of samples. The three metrics R2, RMSE, and rRMSE have been widely employed to assess
model performance [11–13,24]. R2 varies from −1 to 1; a value closer to 1 indicates that the
estimated rice yield is more consistent with the recorded rice yield. The smaller the values
of RMSE (kg/ha) and rRMSE (%), the more accurate is the proposed model.
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2.3.3. Spatial Analysis

Crop yield typically exhibits significant spatial heterogeneity due to variations in
crop variety, environmental conditions, and management practices [25]. It is crucial to
consider both the spatial variability of crop yield and the reliability of yield estimation [26].
The spatial applicability of the rice yield estimation model is as equally important as its
accuracy. Therefore, the global Moran Index (MI) was introduced to analyze the spatial
applicability of the proposed model [10]. The county-level estimation errors, representing
the differences between the estimated and recorded yields for each county, were used to
calculate the MI. Originally developed for spatial autocorrelation analysis, the MI ranges
from −1 to 1. Values close to −1 indicate strong negative spatial autocorrelation, while
values close to 1 suggest strong positive spatial autocorrelation. A value of zero indicates
no spatial autocorrelation. In the context of county-level estimation errors, an MI of 0
suggests that the estimation errors are randomly distributed, indicating that the model
performs similarly across different spatial locations. Conversely, if the MI is close to 1 or −1,
it indicates a clustered error distribution across space, suggesting poor spatial applicability
of the model. For more details, please refer to the study by [12].
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3. Results
3.1. Accuracy of Different Regression Algorithms for Rice Yield Estimation

In this study, four widely used machine-learning algorithms, partial least squares re-
gression (PLSR), support vector regression (SVR), random forest regression (RFR), and back
propagation neural network (BPNN), were used for fitting the correlation between rice yield
with multi-temporal phase NDVI. Figure 5 presents the accuracy of the different machine-
learning algorithms using all NDVI (total of 109 dates) as inputs. BPNN obtained the worst
estimation of rice yield with R2 = 0.21, RMSE = 667.92 kg/ha, and rRMSE = 7.71%. PLSR
and SVR obtained comparable results and were slightly better than BPNN; the accuracy was
R2 = 0.34, RMSE = 513.24 kg/ha, and rRMSE = 5.92% and R2 = 0.34, RMSE = 516.72 kg/ha,
and rRMSE = 5.96%, respectively. RFR resulted in the best accuracy for rice yield estima-
tion with R2 = 0.65, RMSE = 388.79 kg/ha, and rRMSE = 4.48%. In general, RFR had a
significantly improved accuracy when compared with the other algorithms.
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3.2. Optimal Predictors for Rice Yield Estimation

In this study, multi-temporal phase NDVI data from the MOD09 dataset, spanning
109 observation dates, were collectively utilized for rice yield estimation. However, the
inclusion of numerous predictors resulted in information redundancy and augmented
model complexity. To address this, the correlation between the 109 NDVI dates was
computed, as illustrated in Figure 6. The analysis revealed a notable correlation between
NDVI values at different rice growth stages, ranging from 0.01 to 0.97. Notably, a higher
correlation was observed between NDVI values at dates that were temporally closer to
each other.
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The importance of NDVI values at different dates in rice yield estimation was deter-
mined using the Gini index during the random forest regression (RFR) model building
process [12]. Figure 7 illustrates the results of this analysis, revealing that NDVI at most
dates had an importance score of less than 0.02. Only six specific dates of NDVI had
an importance score exceeding 0.02 when using the RFR algorithm. These critical dates
occurred on the 17th (0.083), 33rd (0.034), 44th (0.024), 71st (0.077), 90th (0.038), and 106th
(0.076) days after the rice transplanting stage, respectively. In general, these significant
dates were evenly distributed across the entire rice growth period.

To ascertain the optimal number of predictors, the NDVI values from different dates
were successively excluded in descending order of importance, and the remaining NDVIs
were utilized in the random forest regression (RFR) model for rice yield estimation. Figure 8
illustrates the estimation accuracy of rice yield as certain predictors were excluded. The
accuracy exhibited minimal fluctuation until the NDVI of 102 dates was excluded with the
coefficient of determination (R2) ranging from 0.61 to 0.67 (0.65 ± 0.02) and the root mean
square error (RMSE) varying between 387.15 and 403.97 (392.15 ± 3.37) kg/ha. However,
beyond this point, the accuracy deteriorated significantly with R2 decreasing from 0.61 to
0.08 and RMSE increasing from 403.97 to 662.83 kg/ha. Therefore, it can be concluded that
the top seven predictors with the highest importance rankings (NDVI on the 6th, 17th, 33rd,
44th, 71st, 90th, and 106th days after the rice transplanting stage) are sufficient for yield
estimation using RFR, achieving comparable accuracy to models that include all predictors.
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3.3. Spatial Analysis

In addition to accuracy metrics, such as R2, RMSE, and rRMSE, for rice yield estimation,
spatial adaptability is a crucial factor for assessing a model’s overall performance. As shown
in Figure 9, the average bias of the optimal model (RFR with seven predictor inputs) in
estimating rice yield at the county level ranged from −223.69 to 149.85 kg/ha with a
normal distribution. Generally, the bias distribution did not exhibit any distinct clustering
patterns. Therefore, the Moran Index (MI) was employed as a quantitative measure to
assess the model’s adaptability to spatial heterogeneity and variations arising from regional
differences and crop management practices (e.g., crop varieties, maturity, fertility cycles,
fertilizer application characteristics, and planting density). Using ArcGIS 10.2 software,
we calculated the MI and obtained results indicating a highly significant discrete pattern
(MI = −0.03, p = 0.85) in the RFR-estimated results. This suggests that the proposed model
exhibits strong spatial adaptability for rice yield estimation in Jiangsu, China.
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3.4. Pixel-Level Rice Yield Mapping

Understanding the spatial and temporal patterns of crop yields is fundamental for
shaping agricultural policies. However, the data typically provided by statistical yearbooks,
which are aggregated at the county level, lack the granularity necessary to capture more
nuanced variations in crop yields. Remote sensing technology, on the other hand, offers
high-resolution observations of the Earth’s surface, making it a valuable tool in this context.
In this study, we leveraged the power of remote sensing to generate rice yield estimates for
Jiangsu Province, China, covering the period from 2001 to 2020. Our approach involved
using random forest regression with carefully selected NDVI data from seven key dates.
As demonstrated in Figure 10, the resulting dataset offers an unprecedented level of detail,
reflecting rice yield distributions at a resolution of 1 km. This high-resolution dataset
holds significant potential for informing agricultural policy decisions and facilitating future
research in related fields. Interested parties can access the dataset on the Zenodo database,
where it has been made publicly available (DOI: 10.5281/zenodo.10719965).
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4. Discussion

In contrast to single-date satellite observations of vegetation, continuous spatiotem-
poral remote sensing information provides a more thorough understanding of crop con-
ditions [4,11,12,27]. By correlating rice yield with remotely sensed, multi-temporal phase
NDVI values in this study, we effectively capture the dynamic changes in rice throughout
its growth cycle using long time series remote sensing observations. Furthermore, this
study demonstrates the feasibility and accuracy of machine-learning algorithms in predict-
ing rice yield. Essentially, the integration of multi-temporal phase remote sensing data
with machine-learning techniques enables precise rice yield estimates while maintaining
excellent spatial applicability.

4.1. Comparation of Different Machine-Learning Algorithms

Previous studies have consistently emphasized that the relationship between crop
yield and complex remote sensing information is not a straightforward linear one [17].
Consequently, linear regression algorithms, such as partial least squares regression (PLSR)
or multiple linear regression (MLR), often struggle to manage the intricate multi-element
integration challenges involved. This aligns with our study’s findings, which indicate
a low accuracy for PLSR. In contrast, random forest regression (RFR) has proven to be
adept at addressing complex nonlinear issues, providing a nuanced understanding of the
underlying relationships [28]. Although back propagation neural networks (BPNN) have
also demonstrated some capability in managing similar scenarios [13], they exhibited the
lowest accuracy in estimating rice yield in our investigation. This might be attributed to
the limited sample size available for model training. Previous research has established that
neural network algorithms generally rely heavily on the volume of samples for effective
training, and the few hundred samples utilized in this study might not have met the
requirements of such algorithms [29]. Additionally, BPNN can be susceptible to outliers,
which are inevitably present in rice yield data recorded in statistical yearbooks. On the
other hand, RFR, a widely recognized ensemble machine-learning algorithm known for
its excellent performance, leverages the bagging algorithm. It randomly selects samples
and attributes from the dataset to build numerous classifiers, each voting to determine the
final classification. This approach minimizes the impact of limited or abnormal samples,
focusing more on the choice of key parameters, like the number of randomly selected
attributes and the number of classifiers built [14]. Similarly, support vector regression (SVR)
relies on a subset of samples, known as support vectors, for decision-making, reducing
both computational complexity and the influence of outlier samples. However, SVR’s
effectiveness is greatly dependent on the careful selection of parameters, such as the penalty
coefficient and kernel function parameters, as different choices can lead to significantly
different outcomes [10]. Overall, given the uncertainties inherent in recorded rice yield
data and the accuracy of remotely sensed information, RFR, with its multiple parallel
regression trees, is likely to yield more consistent and reliable results when compared to
other machine-learning algorithms.

4.2. The Influence from the Model Inputs

In this study, NDVI data from 109 dates spanning the rice transplanting stage to matu-
rity stage were chosen as inputs for a random forest regression (RFR) model to predict rice
yield. Although the extensive remote sensing data offer comprehensive monitoring of rice
throughout its growth cycle, the sheer volume of information introduces redundancy and
adds layers of complexity to the model. To strike a balance, we employed an importance-
ranking method that narrowed down the NDVI inputs to seven key dates (specifically, the
6th, 17th, 33rd, 44th, 71st, 90th, and 106th days after the rice transplanting stage). These care-
fully selected data points are evenly distributed across various growth stages, effectively
capturing the rice’s growth patterns while minimizing data redundancy and simplifying
the model. Nevertheless, limitations and challenges still exist with this approach.
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(1) Despite being one of the most popular vegetation indices in use today, NDVI still
faces certain limitations due to spectral saturation. This arises from its dependence on
the reflectance difference between the near-infrared (NIR) and red bands. In regions with
dense vegetation, the red band reflectance significantly diminishes, while the NIR band
reflectance approaches a saturation point, leading to a plateau in NDVI values [30]. In
this study, we observed rice NDVI values exceeding 0.8, potentially indicating spectral
saturation. Prior research has suggested that enhanced vegetation indices, such as EVI, can
mitigate spectral saturation effects [31,32]. Hence, future studies should consider exploring
a wider range of vegetation indices.

(2) Uncertainties in model inputs can propagate into the accuracy of yield estimation.
In this study, although the MOD09 product provides surface spectral reflectance data with
spatiotemporal continuity (daily and 1 km resolution), the inevitable influence of cloud
cover results in some missing information. Additionally, the Savitzky–Golay filtering
method employed here carries a degree of inherent error, which can subsequently impact
rice yield estimation [33,34]. Likewise, the phenology product used in this study also has a
margin of error [23], potentially leading to incorrect identification of the NDVI period.

4.3. The Spatial Applicability of Proposed Model

The models employed in various studies demonstrate exceptional performance when
processing specific spatial datasets. However, their effectiveness often diminishes when
applied to broader regional data due to the absence of actual training data from the target
regions. To address this challenge, our study incorporates the Moran Index, which aids in
managing spatial heterogeneity and adapting to regional variations. Spatial heterogeneity
encompasses disparities in moisture levels and agricultural practices, including irrigation
and fertilizer use across regions. Therefore, when introducing variables into the model, it is
crucial to consider these differences and the interconnections of spatial heterogeneity [35].
By utilizing NDVI data from multiple timeframes as model inputs, we can gain a more
nuanced understanding of regional disparities. It becomes evident that as the number of
input variables increases, so does their association with spatial heterogeneity, enhancing
the model’s sensitivity to spatial information changes. Consequently, integrating multiple
physiological indicators in rice yield estimation can enhance the proposed model’s accuracy
and spatial versatility.

5. Conclusions

In this study, we employed four widely used machine-learning algorithms, partial
least squares regression (PLSR), support vector regression (SVR), random forest regression
(RFR), and back propagation neural network (BPNN), with multi-temporal rice NDVI data
for rice yield estimation. After conducting accuracy evaluations and spatial analyses, our
findings can be summarized as follows.

(1) The RFR model achieved the highest accuracy in rice yield estimation with an
R2 value of 0.65, RMSE of 388.79 kg/ha, and rRMSE of 4.48%. Both PLSR and SVR
demonstrated comparable, albeit inferior, accuracy compared to RFR.

(2) By selecting the top seven predictors with the highest importance rankings (NDVI
values on the 6th, 17th, 33rd, 44th, 71st, 90th, and 106th days after the rice transplanting
stage) as inputs for the RFR model, we achieved comparable accuracy while reducing
information redundancy.

(3) Our proposed model exhibits good spatial applicability (MI = −0.03) for rice yield
estimation in Jiangsu, China.

(4) Using the proposed model, we generated a high spatial resolution rice yield dataset
(1 km) spanning from 2001 to 2020. This dataset is freely available on the Zenodo database
(DOI: 10.5281/zenodo.10719965).

In general, this study has demonstrated the efficacy of combining multi-temporal
remote sensing data with machine-learning techniques for accurate rice yield estimation.
The predictions generated by this approach exhibit strong spatial adaptability, enabling
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them to effectively manage spatial variations arising from diverse cropping practices or
environmental fluctuations across different regions. The findings underscore the reliability
of satellite remote sensing data in yield prediction, thereby aiding agricultural authorities
and production enterprises in the timely formulation and refinement of cropping strategies
and management policies for the ongoing season. This, in turn, can offer valuable guidance
for enhancing crop yields in various regions. Future research endeavors can further
enhance the outcomes of this study by narrowing the temporal resolution of remote sensing
imagery, focusing on pest infestations and natural disasters, and incorporating additional
predictors to enhance the predictive accuracy and simplicity. Moreover, there is a need
for further exploration into yield estimation for diverse crop types grown in distinct
geographical locations.
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