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Abstract: Peanut (Arachis hypogaea L.) plants respond to drought stress through changes in morpho-
physiological and agronomic characteristics that breeders can use to improve the drought tolerance
of this crop. Although agronomic traits, such as plant height, lateral growth, and yield, are easily
measured, they may have low heritability due to environmental dependencies, including the soil type
and rainfall distribution. Morpho-physiological characteristics, which may have high heritability,
allow for optimal genetic gain. However, they are challenging to measure accurately at the field
scale, hindering the confident selection of drought-tolerant genotypes. To this end, aerial imagery
collected from unmanned aerial vehicles (UAVs) may provide confident phenotyping of drought
tolerance. We selected a subset of 28 accessions from the U.S. peanut mini-core germplasm collection
for in-depth evaluation under well-watered (rainfed) and water-restricted conditions in 2018 and
2019. We measured morpho-physiological and agronomic characteristics manually and estimated
them from aerially collected vegetation indices. The peanut genotype and water regime significantly
(p < 0.05) affected all the plant characteristics (RCC, SLA, yield, etc.). Manual and aerial measurements
correlated with r values ranging from 0.02 to 0.94 (p < 0.05), but aerially estimated traits had a higher
broad sense heritability (H2) than manual measurements. In particular, CO2 assimilation, stomatal
conductance, and transpiration rates were efficiently estimated (R2 ranging from 0.76 to 0.86) from
the vegetation indices, indicating that UAVs can be used to phenotype drought tolerance for genetic
gains in peanut plants.

Keywords: mini-core; vegetation indices; color space indices; heritability

1. Introduction

Drought severely constrains peanut (Arachis hypogaea L.) production worldwide [1].
Reduced soil moisture during peanut flowering and pegging causes a severe reduction
in the pod yield [2–9]. Drought stress reduces seed germination and vigor [8], impedes
calcium (Ca) uptake [10,11], reduces nodulation and nitrate reductase activity [12,13],
increases Aspergillus flavus mold contamination [14–16], and decreases oleic-to-linoleic
fatty-acid ratios in seeds, which is detrimental to peanuts’ shelf life and nutritional qual-
ities [17]. Supplemental irrigation can ameliorate drought stress, but in the Virginia and
Carolina (VC) production region, irrigation is available for less than 15% of the peanut
acreage [18]. Under these conditions, drought-resilient peanut cultivars are needed, and
previous studies have shown that breeding programs can improve this trait, using physio-
logical characteristics [19–25]. For example, Rao et al. [26] showed that relative chlorophyll
contents (RCCs) measured with a soil and plant analysis development (SPAD) chlorophyll
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meter could be used to reliably identify genotypes with low specific leaf areas (SLAs) and
high specific leaf nitrogen contents and that these traits were associated with improved
transpiration efficiency in peanut plants [26]. In other legume crops, such as chickpeas,
soybeans, lentils, and cowpeas, drought resulted in chlorophyll degradation and low
stomatal conductance, leading to significant effects on the photosystem II (PS II) quantum
yield and carbon assimilation and transpiration rates, thereby reducing crop yields [27,28].
Low stomatal conductance and subsequent reduced transpiration resulted in higher plant
canopy temperatures [29].

Despite being useful in breeding, traditional methods for evaluating morpho-physiological
characteristics associated with drought tolerance are slow and can only be used on a
limited number of genotypes. In contrast, highly efficient remote-sensing techniques allow
for hundreds of genotypes to be evaluated in a short period of time and reduce human
error [30–32]. For example, in our program, the plant heights, leaf wilting, leaf area indices
(LAIs), and lateral vine growths from 18 to 104 peanut genotypes were accurately estimated
(84–99% accuracy) from aerial remote-sensing data [33–35].

The U.S. peanut mini-core collection with 112 accessions, including all the botanical
and market peanut types, was selected from the core collection [36] by Holbrook and
Dong (2005) [37]. The mini-core collection is an important germplasm source for improv-
ing drought tolerance, and, as a part of the National Institute of Food and Agriculture
(NIFA), project # 2017-67013-26193, this collection was used to develop advanced molecular
and physiological markers related to drought stress and rainfed production. Morpho-
physiological evaluations were performed in New Mexico [38], Texas, Oklahoma, and
Virginia [39], and molecular markers were developed (Burow, unpublished). To validate
these markers and allow for in-depth phenotypic evaluation, a subset of 21 accessions
exhibiting divergent phenotypes for traits associated with drought tolerance across these
four states (data unpublished) and seven check genotypes were selected. In Virginia,
the main objective was to assess these 28 genotypes for morpho-physiological traits (leaf
wilting, canopy temperature, RCC, SLA, PS II quantum yield, and CO2 assimilation rate
(A); transpiration rate (E); stomatal conductance rate (gs) and agronomic characteristics
(pod yield, shelling percentage, and 100-seed weight) under late-season drought, imposed
by rainout shelters, and well-watered conditions. The second objective was to identify
accurate remote-sensing methods to estimate the morpho-physiological characteristics with
high H2 for accelerated phenotyping and increased yields under drought stress.

2. Materials and Methods
2.1. Plant Materials and Experimental Design

The experiments were performed at Virginia Tech’s Tidewater Agricultural Research
and Extension Center (TAREC) in Suffolk, VA (36.66498, −76.736569; 36.665139, −76.736682;
36.665304, −76.735875; 36.665464, −76.735982) on a Eunola soil type (fine-loamy, siliceous,
thermic Aquic Hapludults). The twenty-eight peanut genotypes described previously were
used in this study (Supplemental Table S1). These genotypes belong to the two subspecies of
Arachis hypogaea, ssp. hypogaea and fastigiata, which have distinct morphological differences
(Hypogea has a shorter main stem and longer lateral branches than fastigiata) [40]. They were
planted on 17 May 2018 and 30 April 2019, respectively, in double-row plots, 2.13 m long
and 1.83 m wide at a seeding rate of 14 seeds m−2. The design was a randomized complete
block, with three replicates within each water regime, drought and well-watered. Each
block was 21.3 m long by 7.3 m wide and separated by five peanut-border rows (4.75 m
in total between the blocks). The land was tilled, and seedbeds were uniformly raised
to 15 cm in height before planting. Cultivation practices recommended by the Virginia
Peanut Production Guide were implemented [41]. The plots were rainfed until 8 weeks after
planting (WAPs), after which rainout shelters were pulled over the drought regime plots.
One rainout shelter was placed over each block or replicate on 16 July 2018 and 15 July 2019
to induce low soil moisture conditions. The rainout shelters were in place for 6 weeks before
being removed on 30 August 2018 and 27 August 2019. The well-watered-regime plots
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were rainfed throughout the season and because the rainfall from July through September
in both years exceeded the multiannual average precipitation, supplemental irrigation
was not needed. The rainfall, air temperature, and relative humidity (RH) were recorded
daily from a weather station adjacent to the plots from 1 May until 30 September. Daily
growing-degree days (GDD13s) were calculated from the minimum and maximum daily
temperatures, using a base temperature of 13 ◦C [42]. Only positive values were used;
negative values were taken as 0, and temperatures above 35 ◦C were recorded as 35 ◦C.

2.2. Manual Data Collection

The canopy temperature depression (CTD) of each row was measured using an AGRI-
THERM II™ (Model 100L) infrared thermometer. The “diff” option was selected, and the
CTD value was calculated by subtracting the canopy temperature from the ambient air
temperature. The CTD was measured over a random spot in each row, and values from
two rows were averaged to obtain the plot’s CTD. Because the CTD is sensitive to wind and
intermittent cloud covers, sunny days with minimal wind were selected for measurement.
The CTD was measured from 6 WAPs until physiological maturity for a total of seven
assessments per year.

Leaf wilting was visually assessed using the following 0–5 rating scale: 0, a healthy
plant with no visible wilting or drooping leaves; 1, some terminal and newer leaves were
folding but generally healthy overall; 2, upper leaves were almost all folded with visible
signs of wilting, and lower and older leaves were starting to fold; 3, all the leaves were
wilting and drooping on the plant, and some bare ground was becoming visible; 4, all the
leaves were wilted and some were starting to change color due to chlorophyll degradation,
bare ground was prominently visible, and some leaves were dead and dry; 5, all the
leaves were severely wilted and from light green to yellow, bare ground was fully visible,
more than 50% of the leaves were dead and dry, and the plant was almost physiologically
dead [43]. Leaf wilting was measured from 6 WAPs until physiological maturity for a total
of seven assessments per year.

The relative chlorophyll content (RCC) was measured using an SPAD meter sensor
(SPAD-502, Minolta, Tokyo, Japan). Readings were taken from the third newest fully mature
leaf on the main stems [26] of five randomly selected plants per plot. Care was taken to
ensure that the meter sensor fully covered the lamina while avoiding interference from the
leaf veins and midrib.

The specific leaf area (SLA) was calculated by dividing the leaf area by the leaf dry
weight [44]. The five youngest, fully mature leaves were randomly selected from each plot,
and the leaf area was measured using an LI-3100C area meter (LI-COR Biosciences, Lincoln,
NE, USA). The same leaves were then dried in an incubator until the weight remained
constant. The RCC and SLA from all 5 leaves of a plot were averaged. RCC and SLA
measurements were taken at 10 and 14 WAPs in 2018 only.

The PS II quantum yield was measured using an OS30p+ plant stress meter (ADC
BioScientific Ltd., Hoddesdon, UK). The device was used to measure the chlorophyll
fluorescence from two dark- and light-adapted leaves from every plot. The photosystem II
quantum yield refers to the efficiency with which photosystem II converts absorbed light
energy to chemical energy during photosynthesis, whereas chlorophyll fluorescence is the
emission of light by chlorophyll molecules when they are excited by light energy, providing
insights into the photosystem’s activity [45]. For light-adapted readings, measurements
were taken on fully illuminated leaves during the day from 10 a.m. to 3 p.m. For dark-
adapted readings, an opaque clip was placed over the leaves and left for 30 min, so the
reaction centers of PS II were fully reduced. The measurements included the maximal
fluorescence with all the PS II reaction centers closed (Fm) and the minimal fluorescence
with all the PS II reaction centers open (Fo). The difference between Fm and Fo is called
the variable fluorescence (Fv). The Fv/Fm ratio is known as the PS II quantum yield and
is an indicator for plant stress [46–49]. The PS II quantum yield was measured at 12 and
16 WAPs in 2019 only.
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Gas exchange characteristics A, gs, and E were measured with an LI6400 XT in 2018
and an LI6800 portable photosynthesis system in 2019 (LI-COR Biosciences, Lincoln, NE,
USA). Readings were taken from two randomly chosen newest fully developed leaves on
the main stem from each plot. The environment of the chamber was set at 2000 µmol of light,
50% relative humidity, 400 ppm of CO2, a 500 µmol s−1 flow rate, and a 10,000 rpm mixing
fan speed. The chamber’s temperature was maintained to match the outside temperature.
Leaves were clipped in the chamber for 60–90 s until the readings stabilized. Gas exchange
measurements were taken at 14 and 16 WAPs in both years.

At physiological maturity, peanut pods were dug using a Sweere C200 peanut digger
(Sweere Machinery, Oudenbosch, The Netherlands) and windrow-dried for approximately
a week, and individual plots were combined using an Amadas 2110 two-row peanut
combine. The pod yield was calculated once 7% seed moisture was obtained and after
shelling; the shelling percentage and 100-seed weight from each plot were determined. The
shelling percentage was calculated as the ratio of the seed to the pod weights multiplied
by 100.

2.3. Aerial Data Collection

Each year, aerial images were taken before rainout shelters were installed (6, 7, and
8 WAPs) and after shelter removal (16 and 18 WAPs) to estimate the leaf reflectance, derived
vegetation indices (VIs), and color space indices. An AscTec® Falcon 8 octocopter UAV
platform (Ascending Technologies, Krailling, Germany) was used with a red–green–blue
(RGB) (Sony® α6000 digital camera, 24.3 megapixels (6000 × 4000)) (Sony Corporation,
Tokyo, Japan) and a near-infrared (NIR) camera (Tetracam® ADC micro, 3.2 megapixels,
(2048 × 1536)) (Tetracam Inc., Chatsworth, CA, USA). The flight campaign was in waypoint
navigation, autopilot, and at 20 m altitude, with an image overlap of 75% forward and 90%
sideways. Flight campaigns were created in AscTec® Navigator 3.4.5 software (Ascending
Technologies, San Jose, Germany). A flight speed of 3 m/s was automatically adjusted
by the navigator, based on the altitude and overlap. The flight campaign created by the
navigator also created buffers all around the fields to have the maximum overlap. Therefore,
a total of 0.22 Ha was covered by each flight campaign, taking 11 min to complete. At a
20 m altitude, the ground-sampling distance (GSD) was 0.6 cm for RGB and 0.55 cm for
NIR sensors having a digitization footprint of 0.62 GB/Ha/band. The UAV’s built-in GPS
was used for navigation, acquiring nadir images, and recording individual images. All
the flight campaigns were undertaken between 11 a.m. and 2 p.m. to be close to solar
noon, and cloudy days were strictly avoided to prevent variation in the aerial imagery.
Orthomosaic images were processed using Pix4Dmapper version 4.2.26 software (Prilly,
Switzerland) to create RGB and NIR field maps. The ‘reflectance map’ option in the ‘index
calculator’ step of Pix4D processing was used to create individual red, green, blue, and
NIR reflectance maps.

The orthomosaic field maps were exported to the ArcMap tool (version 10.6) of ArcGIS
(ESRI, Redlands, CA, USA). Polygons were drawn on the orthomosaic to outline each row
(3.05 m long × 0.9 m wide) and were numbered. Polygons were shifted to overlap the
respective plot rows and collated into a single shapefile to create a fishnet. The fishnets
were common for all the images from every flight campaign with georeferencing [31,32].
Georeferencing used the GPS coordinates of preinstalled ground control points (GCPs)
in the field, covering the corners and central areas of the experimental plots. The zonal
statistics option was used to extract the digital numbers (DNs) from each row. This process
averaged the raster information of every pixel within each polygon to give the DNs of red,
green, and blue.

Calibration was performed using a reflectance panel with eight different shades from
white to black [42]. The DNs of the eight shades were recorded for red, green, blue, and
NIR rasters from each orthomosaic. On the day of every flight, the reflectance from each
of the eight shades of the panel were measured using an ASD HH2 hand-held VNIR
spectroradiometer (Malvern Panalytical, Malvern, UK). The DNs and reflectance from the
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panel were fitted in exponential regression models. The models trained to derive reflectance
values from DNs were as follows:

red = 0.1263 × 1.0091DNr ; (1)

green = 0.1263 × 1.0087DNg ; (2)

blue = 0.1144 × 1.0087DNb ; (3)

NIR = 0.0563 × 1.0147DNn ; (4)

where red, green, and blue are the reflectances from the respective rasters; and DNr, DNg,
and DNb are the digital numbers from red, green, and blue rasters, respectively. The
reflectance values of both rows of each plot were averaged to obtain the average reflectance
value of the plot.

The fishnet shapefile was also used to crop individual rows from every RGB ortho-
mosaic, using ArcMap automatically. Images of individual peanut rows were used to
extract 11 RGB color space indices using the BreedPix tool from the CIMMYT maize scan-
ner 1.16 plugin (http://github.com/george-haddad/CIMMYT (accessed on 19 May 2018);
Kefauver, S. C., University of Barcelona, Barcelona, Spain) produced as a part of the Image
J/Fiji open-source software (http://fiji.sc/Fiji (accessed on 19 May 2018)) [50,51]. The
color space indices extracted were intensity, hue, saturation, lightness, a*, b*, u*, v*, green
area (GA), greener area (GGA), and crop senescence index (CSI) [52–57]. Indices a* and
u* represent color shifts from green to red, and b* and v* from blue to yellow [34]. From
the red, green, blue, and near-infrared reflectances, the following vegetation indices (VIs)
were computed: normalized difference vegetation index (NDVI) [58], normalized plant
pigment ratio (NPPR) [35], normalized green–red difference index (NGRDI) [59], plant
pigment ratio (PPR) [60], and normalized chlorophyll pigment index (NCPI) [61]. These
VIs range from −1 to +1, and they are highly sensitive to changes in leaf pigments and crop
physiological traits [35].

2.4. Statistical Procedure

Data analyses were performed in Statistical Analysis System (SAS) version 9.4 (SAS
Institute Inc., Cary, NC, USA). PROC GLM was used for analysis of variance (ANOVA).
The measurements collected multiple times were analyzed as repeated-measures ANOVA
using the “nouni” command and repeated option in PROC GLM. Fisher’s protected least
significant difference (LSD) at α = 0.05 was used for mean separation based on the number
of levels in a particular factor. When the designs were unbalanced, the least-square means
(LSmeans) mean separation procedure, adjusted for Student’s t test at α = 0.05, was utilized.
PROC CORR was employed for Pearson’s correlation analysis to evaluate the relationship
between proximally and aerially collected data. The broad-sense heritability (H2) was
calculated as the ratio of the genotypic to phenotypic variances [62] and categorized as low
(<30%), medium (31–60%), and high (>61%) [63]. PROC REG was used to perform multiple
linear regressions and derive the models for A, gs, and E from the VIs. Stepwise selection
was performed using PROC GLMSELECT to select the best predictors for the models. The
predicted residual error sum of squares (PRESS) statistic was used to determine the model’s
efficiency from the coefficient of determination (the higher the R2, the better the model),
root-mean-square error (RMSE), Akaike test criterion (AIC), Bayesian information criterion
(BIC), and average square error (ASE) (lower RMSE, AIC, BIC, and ASE values are better).
The PRESS option in the model statement was used to calculate all the model efficiency
parameters. Graphs were built using JMP® Pro 15.0.0 (SAS Institute Inc., Cary, NC, USA).

3. Results and Discussion
3.1. Environmental Considerations

The temperature information along with the cumulative GDD13 and rainfall from 1 May
to 30 September are reported in Figure 1. During the 2018 and 2019 growing seasons, the air

http://github.com/george-haddad/CIMMYT
http://fiji.sc/Fiji


Agriculture 2024, 14, 565 6 of 18

temperature was higher than the multiannual (30-year average) because of nighttime temper-
atures 10–15 ◦C above the 35-year average, rather than higher maximum daily temperatures
(Figure 1). Consequently, the cumulative GDD13 values exceeded the multiannual average
in both years and were slightly higher under the rainout shelters. The cumulative rainfall
was the highest in 2019, surpassing that of 2018 from early June to mid-August as well as the
35-year average from early June through the end of September. Inside the rainout shelters,
the cumulative rainfall was 311 mm and 276 mm less than that outside the shelters in 2018
and 2019, respectively. The relative humidity (RH) differed significantly between the years.
From the planting until mid-July, the RH in 2018 (80%) was nearly twice that in 2019 (ca. 40%).
Also, the RH inside and outside the rainout shelters was similar from May to Sep in both
years (Figure 1). In summary, 2018 was less favorable for optimal peanut production than
2019, with higher temperatures and RHs, and less rainfall during much of the peanut flowers’
development. Similarly, inside the rainout shelters, plants had 35 mm less soil water available
in 2018 in comparison with 2019. The variable weather encountered during this two-year
study is typical for coastal Virginia [64]. Under these conditions, repeated-measures ANOVA
showed no significant WAP × genotype interactions within each year and water regime
except for RCC and SLA in both water regimes in 2018 and CTD under drought conditions in
2019, which was expected. Despite our efforts to measure only on sunny days with minimal
wind, the CTD is highly dependent upon the ambient temperature and cloud cover at the
time of the measurement [65]. The RCC and SLA are expected to change over the growing
season and in response to the environmental effects. Because the emphasis in this study was
on the overall genotypic response, the traits collected at multiple WAPs were averaged for
factorial ANOVA.
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Figure 1. Weather data for the Tidewater region of Virginia, comprising (a) diurnal minima (solid
lines) and maximum temperatures (dotted lines) (◦C); (b) cumulative growing degree days (at 13 ◦C);
(c) cumulative rainfall (mm); (d) relative humidity for 2018, 2019, and multiannual (1984–2019)
average. The dotted lines in (b–d) are cumulative GDDs, rainfalls, and relative humidities inside the
rainout shelters in contrast to the outside (solid lines).

Factorial ANOVA showed that the year, water regime, genotype, and their interactions
had significant effects on manually measured morphological, physiological, and agronomic
characteristics (Table 1). The effect of the year was significant (p = from 0.045 to <0.0001)
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for all the characteristics measured in both years except for the 100-seed weight. The water
regime had significant (p < 0.0001) effects on all the characteristics except for the SLA and
dark-adapted PS II. The dark-adapted PS II was affected by the water regime, however,
at only a 10% probability. When years and water regimes were combined, the genotype
had significant effects (p = from 0.025 to <0.0001) on all the characteristics except for the
light-adapted PS II quantum yield, CTD, A, E, and gs. The interaction of G × E (year, water
regime, or both) was not significant for the light- and dark-adapted PS II quantum yields,
CTD, A, E, gs, crop yield, shelling percentage, or 100-seed weight (Table 1). Among all the
traits, only leaf wilting had a significant year × water regime × genotype interaction. The
differences within the water regimes can be attributed to the physiological changes in the
peanut plants because of drought stress. Higher disease occurrence in 2018 may explain the
differences within these years. However, our primary objective was the differences among
the genotypes. Therefore, we conducted mean separation for genotypes after stratifying
them by water regime and year.

Table 1. Analysis of variance (ANOVA) of the morphological, physiological, and agronomic traits
measured for 28 U.S. peanut mini-core and check genotypes grown in drought and well-watered
regimes in 2018 and 2019. The year is missing for the RCC, SLA, and quantum yield because
measurements for those were in one year only. Treatments within factors that have p < 0.05 are
significantly different.

Source
RCC SLA Quantum Yield (Light) Quantum Yield (Dark)

DF F Ratio p-Value DF F Ratio p-Value DF F Ratio p-Value DF F Ratio p-Value

Water Regime (WR) 1 37.9 <0.0001 1 2.7 0.104 1 22.4 <0.0001 1 2.7 0.099
Block 2 5.9 0.003 2 12.5 <0.0001 2 0.5 0.621 2 1.3 0.264
Genotype (G) 27 7.8 <0.0001 27 2.1 0.003 27 1.3 0.149 27 1.7 0.025
WR × G 27 2.1 0.003 27 1.7 0.018 27 1.0 0.414 27 0.7 0.871
Error 194 185 278 278

CTD Wilting Photosynthesis Transpiration

DF F ratio p-Value DF F ratio p-Value DF F ratio p-Value DF F ratio p-Value

Year 1 16.4 <0.0001 1 60.0 <0.0001 1 80.1 <0.0001 1 353.7 <0.0001
Water Regime (WR) 1 264.5 <0.0001 1 632.7 <0.0001 1 176.3 <0.0001 1 525.5 <0.0001
Block 2 0.9 0.426 2 23.8 <0.0001 2 0.4 0.687 2 2.7 0.069
Genotype (G) 27 0.6 0.950 27 2.5 <0.0001 27 0.8 0.800 27 0.9 0.681
Year × G 27 0.7 0.833 27 1.0 0.497 27 0.5 0.986 27 0.3 0.999
WR × G 27 0.7 0.860 27 1.1 0.279 27 0.2 1.000 27 0.2 1.000
Year × WR × G 27 0.6 0.949 27 1.5 0.038 27 0.2 1.000 27 0.3 1.000
Error 979 978 754 754

Stomatal Conductance Pod Yield Shelling (%) 100-Seed Wt.

DF F ratio p-Value DF F ratio p-Value DF F ratio p-Value DF F ratio p-Value

Year 1 44.2 <0.0001 1 239.0 <0.0001 1 4.1 0.045 1 1.1 0.298
Water Regime (WR) 1 186.5 <0.0001 1 418.6 <0.0001 1 67.6 <0.0001 1 22.7 <0.0001
Block 2 1.1 0.349 2 0.8 0.455 2 4.6 0.011 2 0.2 0.796
Genotype (G) 27 0.7 0.839 27 3.8 <0.0001 27 6.2 <0.0001 27 10.5 <0.0001
Year × G 27 0.4 0.996 27 1.4 0.090 27 1.6 0.046 27 11.2 <0.0001
WR × G 27 0.4 0.997 27 0.8 0.749 27 1.9 0.006 27 1.3 0.191
Year × WR × G 27 0.5 0.991 27 1.0 0.515 27 1.2 0.253 27 1.1 0.335
Error 726 223 216 216

DF-degree of freedom; CTD—canopy temperature depression; RCC—relative chlorophyll content; SLA—specific
leaf area.

3.2. Morpho-Physiological and Agronomic Characteristics in Well-Watered Regime

The plant canopy is usually cooler than the air, and its temperature depends on the degree
of stomata opening and the evaporative cooling of the plant, i.e., water availability [66,67].
The CTD, which is the difference between the canopy and air temperatures, is a known
indicator of plants’ water status and response to drought and heat in various crops, including
peanuts [64,68]. Under the well-watered conditions, the average CTD for the genotypes was
−2.4 ◦C in 2018 and −3.1 ◦C in 2019, with all the genotypes showing cooler canopies compared
to the air (Table 2). Consequently, little wilting (score < 1) was observed in most genotypes in
the well-watered regime in both years. Moderate wilting (score < 3) was observed in New
Mexico Valencia C PI 162655 and PI 339960 in 2018 and in PI 493938 in 2019.
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Table 2. Growth and yield characteristics of 28 U.S. peanut mini-core and check genotypes grown under well-watered conditions in 2018 and 2019. The values
followed by the same letters are not significantly different using LS means adjusted for Student’s t test at α = 0.05.

Genotype
CTD
(◦C)

Wilting
(0–5) RCC SLA

(cm2 g−1)
PS II Quantum

Yield (2019)
A

(µmol m−2 s−1)
gsw

(mol m−2 s−1)
E

(mmol m−2 s−1)
Pod Yield
(kg ha−1)

Shelling
(%) 100-Seed Weight (g)

2018 2019 2018 2019 2018 2018 Light Dark 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

Wynne −3.2 a −3.4 a 0 D 0.7 a 41.3 a 28.8 g 0.68 a 0.73 a 21.4 a, b 29.9 b–g 0.59 a 0.93 a 8.3 a, b 15.4 a 6276 a, b 6122 a 66.8 a 66.7 e–h 53.0 b–f 113.8 a
Walton −1.8 a −3.3 a 0 D 0.6 a 42.7 a 30.0 g 0.67 a 0.76 a 22.9 a 30.7 b–g 0.48 a–e 0.99 a 8.4 a, b 15.8 a 6915 a 6549 a 70.0 a 70.8 b–h 56.8 a–f 101.9 a, b
TVOL14 −0.1 a −3.5 a 0.2 D 0.5 a 30.8 g 42.3 a–f 0.68 a 0.70 a 14.7 g–j 31.7 a–d 0.32 d–h 0.82 a 5.9 g–k 15.5 a 2425 d–g 5890 a 61.4 a 71.2 b–g 54.2 b–f 49.2 g–k
TS90 −2.5 a −3.6 a 0 D 0.6 a 38.7 a–f 37.6 a–g 0.70 a 0.72 a 16.5 e–h 32.3 a–c 0.32 c–h 0.94 a 6.0 g–k 15.4 a 2702 d–g 4805 a 64.7 a 69.5 c–h 43.3 e, f 40.9 k–m
TROL11 −3.6 a −3.2 a 0.3 cd 0.4 a 41.6 a 33.9 d–g 0.69 a 0.69 a 20.1 a–e 31.9 a–d 0.37 b–h 0.87 a 7.4 a–f 15.6 a 3260 c–f 4727 a 72.9 a 76.5 a, b 69.8 a–c 53.9 g–i
NMVALC −1.4 a −2.5 a 2.3 a 0.5 a 34.7 e–g 49.3 a 0.66 a 0.65 a 24.6 l 32.8 a, b 0.13 i 1.06 a 3.4 l 16.5 a 1628 g 6975 a 61.1 a 67.9 d–h 72.7 a, b 44.9 i–m
PI 323268 −2.2 a −3.7 a 0.3 d 0.3 a 41.0 a–c 34.4 d–g 0.68 a 0.70 a 21.3 a–c 33.2 a, b 0.49 a–d 1.01 a 8.0 a–c 16.7 a 3766 c–e 5464 a 61.0 a 66.9 e–h 66.0 a–d 71.5 d, e
PI 476636 −2.4 a −3.9 a 0 d 0.5 a 42.4 a 44.8 a–e 0.69 a 0.73 a 16.6 e–h 31.7 a–d 0.31 e–h 0.89 a 6.1 f–j 16.3 a 3476 c–f 5386 a 66.7 a 71.2 b–g 51.7 b–f 55.2 g, h
PI 478819 −2.2 a −3.3 a 0 d 0.3 a 38.1 a–f 37.7 a–g 0.70 a 0.70 a 17.5 c–h 32.0 a–d 0.37 b–h 0.86 a 6.8 c–h 15.9 a 2823 d–g 6006 a . 80.6 a 49.8 c–f 67.3 e, f
PI 403813 −2.2 a −2.6 a 0.8 b, c 0.6 a 38.5 a–f 46.6 a–c 0.67 a 0.68 a 16.3 e–h 27.7 f, g 0.41 a–h 0.75 a 6.8 c–i 13.4 a 2327 e–g 5076 a 59.9 a 70.0 b–h 63.5 a–d 40.0 l–n
PI 157542 −1.8 a −2.7 a 0 d 0.6 a 37.9 a–f 34.4 d–g 0.68 a 0.68 a 20.6 a–d 32.2 a–d 0.57 a 0.99 a 8.7 a 16.1 a 2425 d–g 4960 a 67.8 a 71.9 b–f 81.0 a 42.9 j–m
PI 259836 −2.6 a −2.6 a 0 d 0.6 a 33.3 f, g 43.2 a–e 0.69 a 0.70 a 18.5 b–g 31.6 a–d 0.40 a–h 0.94 a 7.7 a–d 15.8 a 2354 e–g 6122 a 64.8 a 72.2 b–e 42.8 f 44.8 i–m
PI 296558 −3.1 a −3.8 a 0 d 0.6 a 40.9 a–d 31.1 f, g 0.68 a 0.74 a 16.1 f–i 30.8 b–f 0.35 c–h 1.03 a 6.5 d–i 15.2 a 3162 d–g 4650 a 68.9 a 70.1 b–h 61.4 a–e 81.9 cd
PI 319768 −2.7 a −2.9 a 0.2 d 0.6 a 40.1 a–c 35.4 c–g 0.69 a 0.69 a 19.7 a–f 32.4 a–c 0.38 b–h 0.98 a 7.4 a–f 15.7 a 2977 d–g 4650 a 60.4 a 68.6 d–h 47.0 d–f 39.5 l–n
PI 268996 −2.0 a −3.7 a 0 d 0.3 a 41.5 a 32.9 e–g 0.68 a 0.71 a 21.9 a, b 34.4 A 0.50 a–c 1.01 a 8.6 a, b 16.7 a 2932 d–g 5541 a 65.4 a 75.7 a–c 53.7 b–f 51.5 g–j
PI 162655 −2.7 a −2.6 a 1.1 b 0.6 a 35.2 b–g 43.9 a–e 0.70 a 0.63 a 14.8 g–j 30.3 b–g 0.42 a–h 0.98 a 6.2 e–j 14.3 a 2867 d–g 4417 a 77.9 a 71.1 b–g 58.9 a–f 45.6 i–l
PI 298854 −2.4 a −3.4 a 0 d 0.5 a 41.3 a 37.1 b–g 0.69 a 0.71 a 17.4 d–h 32.1 a–d 0.41 a–h 1.08 a 7.6 a–e 15.3 a 2456 d–g 6549 a 66.5 a 67.6 d–h 51.1 b–f 84.9 b–d
PI 343398 −2.4 a −3.5 a 0 d 0.5 a 38.5 a–f 43.5 a–e 0.67 a 0.70 a 15.5 g–i 32.1 a–d 0.29 f–h 1.21 a 6.2 f–j 16.9 a 2538 d–g 6122 a 61.8 a 64.2 h 55.6 b–f 92.6 b, c
PI 290594 −2.6 a −3.5 a 0 d 0.4 a 38.3 a–f 35.8 c–g 0.68 a 0.72 a 17.6 c–h 33.1 a, b 0.46 a–f 0.93 a 7.2 b–g 16.0 a 3324 c–f 6045 a 63.5 a 70.7 b–h 59.6 a–f 55.3 g, h
PI 274193 −2.3 a −3.5 a 0 d 0.8 a 41.2 a, b 37.1 b–g 0.68 a 0.71 a 16.5 e–h 31.4 a–e 0.45 a–g 0.84 a 7.5 a–f 16.4 a 2111 f, g 5735 a 63.9 a 68.9 d–h 48.4 d–f 58.7 f, g
PI 339960 −2.6 a −1.6 a 2.7 a 0.7 a 34.9 d–g 45.3 a–d 0.67 a 0.70 a 10.1 kl 29.0 d–g 0.36 c–h 0.91 a 4.6 kl 14.1 a 2146 f, g 5619 a 60.9 a 65.2 f–h 54.2 b–f 48.7 g–k
PI 502120 −2.6 a −2.6 a 0.3 cd 0.9 a 38.0 a–f 28.6 g 0.68 a 0.74 a 15.5 g–i 27.5 G 0.35 c–h 0.82 a 6.6 d–i 13.8 a 2890 d–g 6394 a 58.6 a 64.6 g, h 51.9 b–f 52.7 g–i
PI 497517 −1.6 a −3.4 a 0.5 cd 0.8 a 34.9 c–g 39.3 a–g 0.70 a 0.73 a 11.6 j, k 29.2 c–g 0.28 h 0.86 a 5.4 i–k 14.6 a 3552 c–f 6820 a 65.2 a 72.0 b–e 59.9 a–f 48.4 h–k
PI 494018 −3.2 a −2.5 a 0 d 0.6 a 34.4 e–g 42.2 a–f 0.68 a 0.66 a 14.7 g–j 28.8 d–g 0.35 c–h 0.86 a 6.3 e–j 13.7 a 2148 f, g 5502 a 58.7 a 74.2 a–d 46.4 d–f 33.3 n
PI 493938 −2.4 a −2.8 a 0.5 cd 1.1 a 37.8 a–f 43.5 a–e 0.68 a 0.73 a 14.1 h–j 28.2 e–g 0.37 c–h 0.80 a 5.8 h–k 13.2 a 2588 d–g 6510 a 66.2 a 69.1 c–h 56.2 b–f 37.4 m, n
PI 493880 −1.8 a −2.9 a 0 d 0.5 a 40.5 a–e 48.0 a, b 0.68 a 0.68 a 13.7 h–k 32.5 a–c 0.28 h 1.19 a 5.8 h–k 16.6 a 3935 cd 6161 a 66.7 a 69.2 c–h 53.8 b–f 42.5 k–m
PI 493729 −2.6 a −2.6 a 0 d 0.9 a 34.5 e–g 37.7 a–g 0.68 a 0.72 a 12.4 i–k 30.7 b–g 0.29 g, h 0.82 a 5.0 j, k 15.3 a 2832 d–g 5173 a 67.5 a 69.8 b–h 61.5 a–e 41.7 k–m
C7616 −3.1 a −2.8 a 0 d 0.4 a 41.4 a 27.8 g 0.68 a 0.76 a 21.1 a–d 31.7 a–d 0.55 a, b 1.40 a 8.5 a, b 16.2 a 4753 b, c 6200 a 66.5 a 70.1 b–h 55.0 b–f 71.1 d, e

Mean −2.4 −3.1 0.3 0.6 38.4 38.3 0.68 0.71 17.3 31.1 0.4 1.0 6.7 15.4 3128 5720 65.0 70.2 56.4 57.6
p-Value 0.854 0.38 0.001 0.853 0.002 0.003 0.928 0.073 <0.0001 0.0016 <0.0001 0.688 <0.0001 0.489 <0.0001 0.483 0.199 0.006 <0.0001 <0.0001

TVOL14—TamVal OL14; TS90—TamSpan 90; TROL11—TamRun OL11; NMVALC—New Mexico Valencia C; CTD—canopy temperature depression; RCC—relative chlorophyll content;
SLA—specific leaf area; A—CO2 assimilation rate; gs—stomatal conductance rate; E—transpiration rate.
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Previous studies have documented that peanut plants with high SLAs, i.e., larger,
thinner leaves, can lose water through the epidermis and wilt faster than peanut plant
with low SLAs and thicker leaves [69]. Such plants may also exhibit severe chlorophyll
degradation at low leaf–water potentials [70]. Consequently, it is commonly accepted that
greener cultivars with low SLAs are desirable for drought conditions [19]. Among the
28 genotypes that were tested, Wynne, Walton, C76-16, PI 296558, and PI 268996 showed a
combination of a higher RCC (>40) and a lower SLA (<33 cm2 g−1) compared to the other
genotypes when grown under well-watered conditions.

As electrons travel the thylakoid membrane, PS II reaction centers need to be open to
initiate photochemistry. This is achieved via plastoquinone QA, bound to PS II, which can
quickly be re-oxidized to keep the reaction centers open and photochemistry going [71].
However, under stress, light can become very strong so that QA

− re-oxidation stops and
the PS II centers remain closed. In this case, excess energy is dissipated via chlorophyll
fluorescence, which can range from 2 to 10% of the absorbed light, depending on the status
of the PS II and the carbon assimilation rate [72]. The relationship between photosynthesis
and the intensity of the chlorophyll fluorescence has been well documented for decades [73].
Chlorophyll fluorescence has since been used to detect herbicidal injuries and responses
to abiotic stresses [74–77]. In 2019, in the well-watered regime, there were no significant
differences among the genotypes for the PS II quantum yield, and both the dark- and
light-adapted fluorescences averaged around 0.7, which are expected values for healthy
plants in the field. However, significant differences among the genotypes were noted for A
in both years and for gs and E in 2018, suggesting that in Virginia’s coastal environment,
peanut photosynthesis may be more responsive to gas exchange processes rather than
electron transport (Table 2). The genotypic averages in 2018 were 17 µmol m−2 s−1 for A,
0.4 mol m−2 s−1 for gs, and 6.7 mmol m−2 s−1 for E. These were approximately half the
values recorded in 2019, a year with better conditions for a high peanut yield. Cultivars
Walton (6915 kg ha−1 in 2018 and 6549 kg ha−1 in 2019) and Wynne (6276 kg ha−1 in 2018
and 6122 kg ha−1 in 2019) and the drought-tolerant check C76-16 (4753 kg ha−1 in 2018 and
6200 kg ha−1 in 2019) consistently produced high pod yields in both years. In addition, they
also had higher-than-average A, gs, and E values in both years. New Mexico Valencia C
produced not only the highest pod yield in 2019 (6975 kg ha−1) but also the lowest yield in
2018 (1628 kg ha−1). The genotypes TamRun OL11, Walton, and PI 162655 had outstanding
shelling percentages, above 70% in both years. Significant differences among the genotypes
for the 100-seed weight existed within each year, but the year had a significant effect on
individual genotypes even in the well-watered regime.

3.3. Morpho-Physiological and Agronomic Characteristics in the Drought Regime

Under drought conditions, there were no significant differences in the CTD among
the genotypes, and, on average, plants were hotter in the drought regime than in the
well-watered regime. As a result, wilting was more pronounced, and significant genotypic
differences for wilting scores were observed in 2019. The mean CTDs among all the
genotypes were −1.0 ◦C in 2018 and 1.3 ◦C in 2019, and the average wilting score was >2.0
in both years (Table 3). Some genotypes showed wilting scores above 3, indicating severe
wilting, with leaves changing color because of chlorophyll degradation; visible bare ground;
and some leaves becoming dried and crisped. Drought-tolerant check C76-16 and TamVal
OL 14 along with PIs 476636, 478819, 157542, 298854, and 493880 had the coolest canopies
and were the least wilted in both years. C76-16, TamVal OL 14, and PIs 476636, 478819,
and 493880 were also among the highest yielding genotypes. There were no significant
differences among the genotypes for the SLA, but differences in the RCC were observed in
both years, with a noticeable negative relationship between wilting and the RCC. Previous
studies on drought-affected peanuts have demonstrated that reduced stomatal conductance
due to drought stress negatively influences photosynthesis, altering leaf pigments, like
chlorophyll [78]. This results in decreased RCCs and could explain the decrease in the RCC
as wilting increases. There were no significant differences among the genotypes for the PS
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II quantum yield among the genotypes under drought conditions. Although the genotypic
averages were significantly lower under drought conditions (0.64 for light-adapted and
0.69 for dark-adapted quantum yields) than in the well-watered regime, the PS II quantum
yield values were above 0.60, as considered by Ritchie (2006) [49], the threshold where PS
II is less operational under stress. However, there were a few exceptions. For example,
cultivar New Mexico Valencia C and PIs 339960 and 493729 had light-adapted quantum
yield values of ≤0.57. Under the same conditions, the drought-tolerant check C76-16 and
PI 317968 exceeded 0.70 for the light- and dark-adapted quantum yields in both years.
Significant differences among the genotypes for A, gs, and E values were observed in
both years, with genotypic averages of 15.1 µmol m−2 s−1 for A, 0.2 mol m−2 s−1 for gs,
and 3.8 to 6.1 mmol m−2 s−1 for E, values which are noticeably lower than those for the
well-watered regime (Table 3). The pod yield, shelling percentage, and 100-seed weight
were also significantly lower under drought conditions than in the well-watered regime,
and significant differences among the genotypes were observed for all these traits.

3.4. Relationships among Characteristics

Leaf wilting significantly reduced A (R2 = 0.77), the PS II quantum yield (R2 = 0.28),
and the pod yield (R2 = 0.66), while the SLA increased (R2 = 0.39) (Figure 2). The pod yield
was significantly associated with A (R2 = 0.65) and the PS II quantum yield (R2 = 0.24),
i.e., less wilting, a higher A value and quantum yield, and a higher pod yield.
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Table 3. Growth and yield characteristics of 28 U.S. peanut mini-core and check genotypes grown under drought conditions (rainout shelters) in 2018 and 2019. The
values indicated by the same letters are not significantly different using LS means adjusted for Student’s t test at α = 0.05.

CTD
(◦C)

Wilting
(0–5) RCC

SLA
(cm2

g−1)
PS II Quantum

Yield (2019)
A

(µmol m−2 s−1)
gs

(mol m−2 s−1)
E

(mmol m−2 s−1)
Pod Yield
(kg ha−1)

Shelling
(%) 100-Seed Weight (g)

Genotype 2018 2019 2018 2019 2018 2018 Light Dark 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

Wynne 0.4 a 1.0 a 3.0 a 2.2 a–f 42.2 a–d 30.2 a 0.66 a 0.70 a 17.4 a–g 15.6 a–e 0.25 a–c 0.38 a 5 a–c 6.4 a 2050 b–e 3410 a–c 66.1 a–d 60.4 g–i 50.7 b–e 96.0 a
Walton −0.4 a 1.3 a 2.4 a 1.5 F 42.0 a–e 35.1 a 0.68 a 0.72 a 17.8 a–f 13.4 c–e 0.25 a–c 0.24 a 4.9 a–d 6.9 a 3462 a 2868 a–g 61.5 c–h 73.8 a 43.9 d, e 79.7 b, c
TVOL14 −2.2 a 1.7 a 1.6 a 2.1 b–f 35.4 e–l 39.2 a 0.65 a 0.70 a 15.1 d–j 13.1 d, e 0.14 e–h 0.06 a 3.4 e–j 5.7 a 1777 c–h 3197 a–d 57.6 f–i 62.1 f, g 43.4 d, e 48.1 h–j
TS90 −1.5 a 1.2 a 3.2 a 1.9 d–f 39.5 a–h 44.1 a 0.65 a 0.71 a 13.9 g–l 15.3 a–e 0.14 e–h 0.05 a 3.3 f–j 6.7 a 1695 c–h 3100 a–e 67.1 a–d 67.7 a–f 54.6 a–e 42.3 j–n
TROL11 0.6 a 1.9 a 3.6 a 2.9 A 42.1 a–e 36.7 a 0.64 a 0.68 a 14.7 e–l 13.5 c–e 0.14 e–h 0.11 a 3.4 f–j 5.3 a 1964 b–g 2286 b–g 72.9 a 64.8 b–g 49.7 b–e 52.1 g, h
NMVALC −1.1 a 1.4 a 3.0 a 2.6 a–c 31.4 j–l 37.3 a 0.53 a 0.60 a 12.7 h–l 15.2 a–e 0.11 f–h 0.15 a 2.7 g–j 5.3 a 1065 d–i 2364 a–g 61.6 c–h 66.3 b–g 56.9 a–e 43.3 i–l
PI 323268 0.6 a 1.2 a 3.2 a 2.3 a–f 40.3 a–g 35.3 a 0.71 a 0.69 a 17.8 a–f 15.5 a–e 0.22 a–e 0.21 a 4.5 a–f 6.3 a 1573 c–i 2887 a–g 55.8 g–i 54.8 h–j 49.9 b–e 62.6 e, f
PI 476636 −1.0 a 1.6 a 1.8 a 2.2 a–f 44.4 a 32.2 a 0.62 a 0.68 a 19.2 a, b 14.9 a–e 0.27 a, b 0.11 a 5.2 a 5.6 a 2259 b, c 3565 a 71.1 a, b 65.8 b–g 46.2 b–e 51.6 g, h
PI 478819 −1.6 a 1.2 a 1.6 a 1.7 Ef 38.3 a–i 28.6 a 0.64 a 0.69 a 19.1 a–c 18.4 a 0.24 a–d 0.34 a 4.8 a–e 7.5 a 1976 b–f 2887 a–g 64.4 b–f 71.0 a, b 48.7 b–e 57.3 f, g
PI 403813 −2.0 a 1.5 a 1.7 a 2.8 a, b 30.8 kl 34.7 a 0.59 a 0.64 a 11.5 kl 12.4 e 0.09 h 0.17 a 2.4 i, j 5.6 a 1002 e–i 1938 e–g 63.2 c–g 65.6 b–g 49.6 b–e 36.9 n–p
PI 157542 0.1 a 1.7 a 1.2 a 1.9 c–f 37.9 a–j 40.5 a 0.68 a 0.72 a 20.1 a 16.6 a–c 0.28 a 0.13 a 5.2 a 7.2 a 1497 c–i 2635 a–g 67.7 a–d 70.2 a–c 58.4 a–e 42.7 i–m
PI 259836 0.2 a 0.9 a 2.2 a 2.0 c–f 29.1 l 38.1 a 0.67 a 0.73 a 17.0 a–g 15.7 a–e 0.21 a–e 0.03 a 4.3 a–f 7.5 a 1625 c–h 2054 d–g 67.2 a–d 66.1 b–g 53.6 b–e 44.5 i–l
PI 296558 −1.9 a 1.4 a 2.5 a 1.8 d–f 39.8 a–g 35.9 a 0.67 a 0.72 a 18.3 a–e 14.7 b–e 0.25 a–d 0.27 a 5.0 a, b 5.6 a 1309 c–i 2170 c–g 62.3 c–h 62.8 e–g 59.3 a–d 65.0 d–f
PI 319768 −0.7 a 1.0 a 3.1 a 2.4 a–e 42.5 a–c 37.1 a 0.73 a 0.71 a 16.1 b–h 14.4 b–e 0.18 a–e 0.18 a 4.0 a–g 5.9 a 900 g–i 1879 e–g 65.9 a–e 65.8 b–g 53.0 b–e 35.8 p, q
PI 268996 −0.2 a 1.1 a 2.3 a 1.9 d–f 41.6 a–f 35.0 a 0.69 a 0.70 a 15.7 b–j 14.2 b–e 0.17 c–g 0.38 a 3.7 b–i 5.4 a 527 i 2131 d–g 56.7 g–i 60.6 g–i 44.8 c–e 48.7 hi
PI 162655 −0.4 a 1.2 a 2.8 a 2.3 a–f 33.8 g–l 40.8 a 0.67 a 0.70 a 15.2 d–j 12.6 e 0.15 e–h 0.26 a 3.4 e–j 5.6 a 937 f–i 2383 a–g 69.0 a–c 70.0 a–d 62.9 a–c 42.2 j–n
PI 298854 −1.5 a 1.6 a 1.7 a 2.2 a–f 40.0 a–g 36.7 a 0.66 a 0.71 a 14.9 e–k 16.6 a–c 0.14 e–h 0.46 a 3.2 f–j 6.6 a 1545 c–i 1996 d–g 53.3 I 54.0 i, j 43.9 c–e 73.9 cd
PI 343398 −0.8 a 1.3 a 2.4 a 1.6 F 36.4 c–k 33.5 a 0.64 a 0.65 a 15.5 c–j 15.5 a–e 0.18 b–f 0.43 a 3.8 b–h 6.7 a 867 hi 2073 d–g 57.3 f–i 60.3 g–i 50.2 b–e 85.2 a, b
PI 290594 0.8 a 1.5 a 3.9 a 2.0 c–f 35.6 d–l 35.0 a 0.6 a 0.67 a 13.9 g–l 17.3 a, b 0.16 d–g 0.09 a 3.6 c–j 6.2 a 1168 d–i 1686 g 63.2 c–g 65.0 b–g 53.6 b–e 51.7 g, h
PI 274193 −0.5 a 1.3 a 3.4 a 2.4 a–e 39.2 a–h 37.1 a 0.63 a 0.70 a 12.2 j–l 13.7 c–e 0.10 g, h 0.27 a 2.8 g–j 5.3 a 734 hi 1783 f, g 58.3 e–i 59.9 g–j 46.8 b–e 54.4 g, h
PI 339960 −1.3 a 1.2 a 2.8 a 2.4 a–e 36.1 c–k 37.7 a 0.57 a 0.67 a 11.2 l 16.3 a–d 0.08 h 0.16 a 2.3 j 7.1 a 832 hi 2151 d–g 56.6 g–i 61.5 f–h 67.7 a, b 44.4 i–l
PI 502120 −1.1 a 0.6 a 2.3 a 2.5 a–d 36.6 b–k 39.2 a 0.65 a 0.74 a 14.5 f–l 14.4 b–e 0.16 d–g 0.40 a 3.6 d–j 5.8 a 1565 c–i 3023 a–f 55.4 Hi 53.4 j 82.1 a 47.8 h–k
PI 497517 −1.4 a 1.6 a 2.8 a 2.8 A 32.4 i–l 38.8 a 0.65 a 0.69 a 15.8 b–i 12.7 e 0.20 a–e 0.37 a 4.2 a–f 5.0 a 1769 c–h 2868 a–g 61.1 d–h 66.7 b–g 44.2 d, e 40.7 l–p
PI 494018 −2.7 a 1.2 a 2.5 a 2.4 a–e 31.3 j–l 46.5 a 0.67 a 0.70 a 12.4 i–l 16.3 a–d 0.09 h 0.24 a 2.6 h–j 6.3 a 1554 c–i 2325 a–g 61.6 c–h 69.4 a–e 48.0 c–e 31.9 q
PI 493938 −2.6 a 0.7 a 2.7 a 2.4 a–e 32.7 h–l 37.1 a 0.64 a 0.71 a 14.7 f–l 16.3 a–d 0.13 e–h 0.32 a 3.2 f–j 6.1 a 1615 c–h 2809 a–g 62.0 c–h 66.6 b–g 49.4 b–e 36.5 o–q
PI 493880 −2.1 a 1.6 a 1.9 a 2.0 b–f 35.2 f–l 30.8 a 0.60 a 0.70 a 14.0 g–l 17.3 a, b 0.17 c–g 0.10 a 3.5 d–j 7.0 a 2135 b–d 3449 a, b 64.4 b–f 63.5 c–g 42.2 d, e 41.8 k–o
PI 493729 −1.8 a 1.1 a 2.6 a 2.4 a–e 30.4 kl 38.0 a 0.55 a 0.67 a 11.5 kl 13.9 b–e 0.10 g, h 0.41 a 2.6 h–j 5.1 a 1182 d–i 1918 e–g 60.5 d–i 63.1 d–g 41.9 e 37.5 m–p
C7616 −1.1 a 1.2 a 2.3 a 1.8 d–f 43.3 a, b 34.0 a 0.70 a 0.73 a 18.7 a–d 15.0 a–e 0.28 a 0.22 a 5.2 a 5.9 a 2903 a, b 3507 a, b 64.9 b–f 61.2 f–h 48.8 b–e 66.7 d, e

Mean −1.0 1.3 2.5 2.2 37.2 36.6 0.64 0.69 15.4 15.0 0.2 0.2 3.8 6.1 1553 2548 62.5 64.0 51.6 52.2
p-Value 0.473 1 0.146 0.009 <0.0001 0.625 0.235 0.477 <0.0001 0.0462 <0.0001 0.068 <0.0001 0.166 0.0003 0.05 <0.0001 <0.0001 <0.0001 <0.0001

TVOL14—TamVal OL14; TS90—TamSpan 90; TROL11—TamRun OL11; NMVALC—New Mexico Valencia C; CTD—canopy temperature depression; RCC—relative chlorophyll content;
SLA—specific leaf area; A—CO2 assimilation rate; gs—stomatal conductance rate; E—transpiration rate.
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Peanut morphological, physiological, and agronomic traits were significantly cor-
related, positively or negatively, with the aerially derived vegetation indices in both
years (Table 4). For example, leaf wilting, and the CTD were highly correlated with
the red and blue leaf reflectances, hue, a*, u*, GA, GGA, and CSI (|r| = 0.80–0.95). Sim-
ilarly, gas exchange and electron transport characteristics were significantly correlated
with red and green reflectances, NDVI, NPPR, NGRDI, PPR, a*, u*, GA, GGA, and CSI
(|r| = 0.60–0.91) (Table 4). Previous studies have shown that leaves affected by drought
stress exhibit a characteristic wilting behavior, ultimately leading to desiccation without
evident chlorosis [34]. In contrast, during instances of disease or nutrient deficiency, leaves
tend to display a yellowing discoloration concurrent with wilting, often followed by necro-
sis before desiccation occurs [79]. This discrepancy in symptomatology underscores the
importance for distinguishing between various stressors and their respective impacts on the
leaf physiology and appearance. This appearance is crucial when distinguishing drought
stress with other stresses using color space indices. The peanut pod yield was the best
correlated with NPPR, NGRDI, NCPI, a*, u*, GGA, and CSI (|r| = 0.65–0.87). The weakest
correlations between ground-based measurements and aerial-image-derived vegetation
indices were observed for the RCC, SLA, shelling percentage, and 100-seed weight (Table 4).

Table 4. Correlations of morphological, physiological, and agronomic traits measured for 28 U.S.
peanut mini-core and check genotypes grown in drought and well-watered regimes in 2018 and
2019, with ground indices (NDVIs), aerially derived leaf reflectances (red and green), and RGB color
indices (hue, a*, b*, etc.). The italicized R-values are not significant at a 95% probability.

CTD Wilting RCC SLA

PSII
Quantum

Yield A gs E Pod Yield Shelling
(%)

100-Seed
Wt.

Light Dark
2018 2019 2018 2019 2018 2018 2019 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019 2018 2019

Red 0.80 0.72 0.90 0.70 −0.47 −0.55 −0.66 −0.74 −0.60 −0.69 −0.80 −0.68 −0.78 −0.67 −0.64 −0.62 −0.38 −0.20 −0.25 −0.62
Green 0.53 0.34 0.39 0.32 −0.39 −0.29 −0.42 −0.53 −0.42 −0.29 −0.53 −0.28 −0.50 −0.28 −0.46 −0.25 −0.32 0.13 −0.15 −0.63
Blue 0.83 0.77 0.85 0.80 −0.33 −0.47 −0.71 −0.77 −0.59 −0.74 −0.85 −0.75 −0.83 −0.73 −0.67 −0.71 −0.31 −0.25 −0.29 −0.46
NDVI −0.89 −0.78 −0.94 −0.78 0.21 0.48 0.72 0.75 0.61 0.72 0.88 0.73 0.87 0.72 0.68 0.68 0.27 0.29 0.27 0.55
NPPR −0.86 −0.91 −0.81 −0.93 0.22 −0.19 0.71 0.75 0.62 0.94 0.89 0.94 0.87 0.94 0.69 0.87 0.30 0.53 0.30 0.40
NGRDI −0.83 −0.94 −0.83 −0.90 0.32 −0.30 0.69 0.75 0.66 0.92 0.90 0.91 0.89 0.91 0.69 0.82 0.37 0.51 0.29 0.52
PPR −0.85 −0.75 −0.77 −0.85 0.16 −0.11 0.65 0.65 0.56 0.83 0.85 0.85 0.82 0.84 0.65 0.81 0.25 0.49 0.29 0.01
NCPI −0.82 0.04 −0.67 −0.17 0.05 0.00 0.11 0.06 0.46 0.11 0.74 0.15 0.71 0.13 0.57 0.20 0.16 0.10 0.27 −0.35
Hue −0.86 −0.90 −0.80 −0.86 −0.03 0.41 0.69 0.74 −0.58 −0.62 −0.78 −0.61 −0.76 −0.60 0.68 0.79 0.40 0.47 −0.27 −0.61
Intensity 0.77 0.66 0.72 0.65 −0.50 −0.44 −0.63 −0.72 0.66 0.88 0.86 0.87 0.85 0.87 −0.64 −0.56 −0.37 −0.12 0.26 0.52
Saturation −0.78 −0.65 −0.89 −0.73 0.07 0.49 0.52 0.50 0.53 0.65 0.82 0.68 0.80 0.67 0.63 0.68 0.22 0.40 0.29 −0.13
Lightness 0.53 0.46 0.42 0.44 −0.51 −0.32 −0.49 −0.59 −0.44 −0.41 −0.54 −0.40 −0.52 −0.40 −0.48 −0.36 −0.35 0.05 −0.19 −0.63
a* 0.88 0.94 0.92 0.94 0.16 −0.45 −0.69 −0.69 −0.63 −0.94 −0.90 −0.94 −0.88 −0.93 −0.67 −0.87 −0.31 −0.61 −0.30 −0.30
b* −0.74 −0.42 −0.87 −0.49 −0.18 0.43 0.26 0.19 0.47 0.44 0.76 0.48 0.74 0.47 0.56 0.49 0.16 0.46 0.26 −0.59
u* 0.89 0.95 0.90 0.93 0.02 −0.44 −0.71 −0.73 −0.65 −0.93 −0.90 −0.93 −0.89 −0.93 −0.68 −0.86 −0.35 −0.56 −0.30 −0.46
v* −0.68 −0.33 −0.82 −0.39 −0.29 0.38 0.16 0.07 0.43 0.36 0.70 0.39 0.69 0.38 0.50 0.40 0.12 0.47 0.24 −0.63
GA −0.79 −0.80 −0.78 −0.81 0.07 0.44 0.69 0.72 0.63 0.74 0.84 0.74 0.82 0.73 0.67 0.73 0.39 0.36 0.24 0.43
GGA −0.82 −0.93 −0.78 −0.89 0.41 0.42 0.71 0.75 0.65 0.92 0.85 0.91 0.84 0.91 0.64 0.83 0.36 0.49 0.30 0.53
CSI 0.81 0.93 0.76 0.89 −0.43 −0.41 −0.71 −0.75 −0.64 −0.92 −0.83 −0.91 −0.82 −0.91 −0.62 −0.83 −0.36 −0.49 −0.29 −0.53

Values in italics are not significant at p < 0.05. CTD—canopy temperature depression; RCC—relative chlorophyll
content; SLA—specific leaf area; A—CO2 assimilation rate; gs—stomatal conductance rate; E—transpiration
rate; Leaf VPD—vapor pressure deficit at the leaf’s surface; NDVI—normalized difference vegetation index;
GA—green area; GGA—greener area; CSI—crop senescence index.

3.5. Heritability and Model Development

Similar with findings by our group and others, H2 was, in general, higher for the
image-derived vegetation indices than for the yield and the manually measured, ground-
based morpho-physiological traits [80,81]. This is probably because direct measurements
are usually taken from small areas with few leaves from a few plants per plot, whereas
aerial images include all the plants and all the visible leaves within each plot. For some of
the vegetation indices, H2 was high regardless of the water regime, implying that selection
may be performed in years with adequate precipitation as well as in dry years. This is
important for peanut breeders on the east coast, where precipitation is unpredictable, and
irrigation may be unavailable. For example, H2 for the crop yield was 0.54 under drought
and 0.25 under well-watered conditions (Table 5). The ground-based morpho-physiological
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traits measured manually, such as the CTD, wilting, SLA, and gas exchange characteristics,
were also as high in H2 in only one water regime. The few exceptions to this trend, i.e.,
the RCC and PS II quantum yield, were collected only in one year. In contrast, several
vegetation indices collected aerially showed significantly higher H2 values than ground-
based, manually measured traits, with high values in both water regimes. Red and green
reflectances, NGRDI, hue, GGA, and CSI had H2 values from over 0.50 to 0.87, regardless of
the water regime. Thus, the estimation of morpho-physiological traits from drone images
rather than direct, ground-based measurements may be more useful when working with
large breeding populations. With aerial images, many measurements with high H2 values
can be collected relatively quickly and at multiple times during the season. At the farm level,
leveraging this understanding through the utilization of drones and remote sensing enables
growers to achieve faster and more accurate estimations of the crop health. These methods
provide spatiotemporally accurate information, facilitating rapid and precise decision-
making regarding resource allocation and management strategies. Thus, embracing drones
and remote sensing represents a foundational step toward implementing precision farming
practices. However, our study utilized small experimental plots, and extrapolating our
findings to a farm-level context would necessitate further investigation. Satellite imagery
presents a promising avenue for farm-level analysis because of its capacity to capture
imagery over vast acreages. Our results are particularly pertinent for plant breeding studies
that demand high-resolution imagery, given our small plot sizes (e.g., 2.13 m × 1.83 m) and
the spatial resolution of 0.6 cm utilized in our study.

Table 5. Heritability of morphological, physiological, and agronomic traits measured for 28 U.S.
peanut mini-core and check genotypes grown in drought-stressed and well-watered regimes in 2018
and 2019, with leaf spectral reflectances (red, green, and blue); spectral indices (NDVI, NPPR, NGRDI,
PPR, and NCPI); and RGB color indices (hue, a*, b*, etc.). Heritability values range from 0 to 1; the
closer the values are to 1, the higher the heritability. The colors shift from bright green to bright red
as the heritability decreases.

Drought Stressed Well-Watered
CTD 0.09 0.67
Wilting 0.20 0.91
RCC 0.67 0.82
SLA 0.20 0.73
PSII Quantum yield (light) 0.72 0.63
PSII Quantum yield (dark) 0.67 0.49
Transpiration 0.17 0.03
Photosynthesis 0.62 0.06
Conductance 0.63 0.09
Yield 0.54 0.25
Shelling 0.90 0.87
100-seed weight 0.82 0.93
Red 0.84 0.80
Green 0.82 0.67
Blue 0.70 0.52
NDVI 0.40 0.43
NPPR 0.51 0.48
NGRDI 0.80 0.59
PPR 0.27 0.66
NCPI 0.17 0.66
Intensity 0.83 0.69
Hue 0.77 0.50
Saturation 0.21 0.66
Lightness 0.78 0.72
a* 0.35 0.24
b* 0.36 0.90
u* 0.66 0.35
v* 0.49 0.81
GA 0.56 0.11
GGA 0.87 0.52
CSI 0.85 0.56
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To estimate the gas exchange characteristics, we used forward stepwise regression.
Three models, based on the vegetation indices NPPR, hue, a*, u*, GA, GGA, and CSI, were
identified as the most efficient to estimate A (R2 = 0.76), E (R2 = 0.86), and gs (R2 = 0.86)
(Figure 3). These models, based on the sum of these predictors, are shown below.

A = 5.93 − 34.43 × NPPR− 0.62 × Hue − 1.05 × a∗ + 87.65 × GGA + 0.47 × CSI (5)

This model had R2 = 0.76, RMSE = 4.01, AIC – 637.95, BIC = 655.9, and ASE = 15.2.

E = 1.76 × u∗ + 12.3 × GA + 109.29 × GGA + 0.73 × CSI − 46.31 × NPPR − 0.37 × Hue − 2.42 × a∗ − 51.89 (6)

This model had R2 = 0.86, RMSE = 2.46, AIC = 531.03, BIC = 553.73, and ASE = 5.62.

gs = 0.2 − 0.92 × NPPR − 0.01 × Hue − 0.09 × a∗+0.07 × u∗ + 0.39 × GA + 1.1 GGA (7)

This model had R2 = 0.86, RMSE = 0.089, AIC = −211.74, BIC = −191.39, and ASE = 0.008.
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Figure 3. Comparison of manually measured CO2 assimilations, stomatal conductances, and transpi-
ration rates and rates derived from the vegetation indices collected aerially. The models that best fit
the combined data from 2018 and 2019 under drought and well-watered conditions are presented at
the top of each figure, with the coefficient of determination (R2) showing the efficiency of the model.



Agriculture 2024, 14, 565 15 of 18

4. Conclusions

This study evaluated 21 accessions from the US mini-core peanut collection in addition
to seven check genotypes under drought and well-watered conditions. Yield attributes
and morpho-physiological traits, such as the CTD, RCC, SLA, wilting, A, gs, E, and PS II
quantum yield, were analyzed in response to two water regimes, from direct measurements
and aerially derived vegetation indices. We identified several peanut genotypes that
performed well in drought and well-watered regimes. These genotypes can be used
in breeding to improve drought tolerance through targeted morpho-physiological traits,
e.g., the maintenance of the cool canopy under drought conditions, the desired combination
of a high RCC and a low SLA, and a high PS II quantum yield and A value under drought
conditions. Finally, we identified vegetation indices with high heritability to best estimate
the morpho-physiological and agronomic traits that may allow for efficient and more
cost-effective selection to improve the drought tolerance of peanut plants.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/agriculture14040565/s1, List of 28 genotypes from the U.S. mini-core
collection used for this study along with their market and botanical types, and basis for selection
including yield, relative chlorophyll content (RCC), number of flowers per plant (Flo), susceptibility
to stomatal closure (Clos), susceptibility to wilting (Wilt), canopy temperature (Temp), canopy
temperature depression (CTD), normalized difference vegetative index (NDVI). These observations
were collected prior to this study in Texas, Oklahoma, and Virginia. For example: the yield column
shows which of the genotypes are high, low, or mid-yielding.
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