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Abstract: Reasonably formulating the strawberry harvesting sequence can improve the quality of
harvested strawberries and reduce strawberry decay. Growth information based on drone image
processing can assist the strawberry harvesting, however, it is still a challenge to develop a reliable
method for object identification in drone images. This study proposed a deep learning method,
including an improved YOLOv8 model and a new image-processing framework, which could
accurately and comprehensively identify mature strawberries, immature strawberries, and strawberry
flowers in drone images. The improved YOLOv8 model used the shuffle attention block and the VoV–
GSCSP block to enhance identification accuracy and detection speed. The environmental stability-
based region segmentation was used to extract the strawberry plant area (including fruits, stems,
and leaves). Edge extraction and peak detection were used to estimate the number of strawberry
plants. Based on the number of strawberry plants and the distribution of mature strawberries, we
draw a growth chart of strawberries (reflecting the urgency of picking in different regions). The
experiment showed that the improved YOLOv8 model demonstrated an average accuracy of 82.50%
in identifying immature strawberries, 87.40% for mature ones, and 82.90% for strawberry flowers in
drone images. The model exhibited an average detection speed of 6.2 ms and a model size of 20.1 MB.
The proposed new image-processing technique estimated the number of strawberry plants in a total
of 100 images. The bias of the error for images captured at a height of 2 m is 1.1200, and the rmse
is 1.3565; The bias of the error for the images captured at a height of 3 m is 2.8400, and the rmse is
3.0199. The assessment of picking priorities for various regions of the strawberry field in this study
yielded an average accuracy of 80.53%, based on those provided by 10 experts. By capturing images
throughout the entire growth cycle, we can calculate the harvest index for different regions. This
means farmers can not only obtain overall ripeness information of strawberries in different regions
but also adjust agricultural strategies based on the harvest index to improve both the quantity and
quality of fruit set on strawberry plants, as well as plan the harvesting sequence for high-quality
strawberry yields.

Keywords: strawberry harvesting; YOLOv8 model; drone image analysis; growth information

1. Introduction

Strawberries are edible fruits in high demand worldwide, with high economic and
nutritional value [1]. Most varieties of strawberries have a short duration of maturity,
transitioning from white maturity to complete maturity after about 7 days [2]. The suit-
able harvesting time for mature strawberries is only 1–3 days, which leads to different
ripening times for strawberries in the same area of large-scale farmland and requires batch
harvesting [3]. Failure to harvest in a timely manner will lead to excessive maturity of
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strawberries, decreased overall quality, and easy decay [4]. Strawberry growers need to
frequently observe the growth of strawberries in farmland to plan harvesting decisions [5].
Therefore, it is necessary to study a method to quickly obtain the overall growth information
of strawberry fields during the harvesting stage, provide growth status information, assist
in planning the harvesting plan, ensure that strawberries are harvested in a timely manner
at the appropriate stage during the peak harvest period, and improve product quality.

In recent years, strawberries have been mainly cultivated in large strawberry fields,
using modern technology to achieve a large-scale, efficient, and scientific planting mode.
During the planting stage, transplanters are often used in the transplanting process of
strawberry seedlings [6]. During the growth stage, various sensors are used to monitor
soil, air, and other data to assist in the growth of strawberries. During the harvesting
stage, a robot applies automatic obstacle avoidance algorithms [7]. In harvesting tasks [8,9],
drones can be used for tasks such as yield prediction and crop mapping [10]. Compared
to the ground vehicle, the images obtained by drones have advantages, such as high
resolution, panoramic perspective, and efficient coverage, which helps to achieve wide-area
and high-precision spatial data acquisition.

The images captured by drones have the problem of many targets to be detected
and small target sizes. The main solution is to increase the number of detection pyramid
layers; however, this will weaken the representation of details in low-level features and
increase the model size [11]. Deep learning can learn the growth patterns of crops, and
efficiently and accurately identify the types and positions of crops, and is widely used in
the field of digital image recognition [12]. In practical applications, it is often necessary
to improve the structure of the deep learning model according to crop characteristics.
Backbone networks, attention mechanisms, and loss functions are common improvement
parts of the deep learning model. The DSE (detail–semantics enhancement) module, which
uses dilated convolution, effectively addresses the maturity detection issue for small target
strawberries [13]. VGG-16 was replaced by an improved multi-cascade network structure in
the Faster R-CNN module, achieving precise recognition and counting of strawberries [14].
Wise iou is a loss function that can accelerate convergence speed. By applying it to the
YOLOv7 model, occluded strawberries of small targets are effectively recognized [15].

After object detection in RGB images is captured, it is usually necessary to deter-
mine the distribution, density, and overall growth stage information of crops according
to the target detection results. Applying Bayesian inference methods to the processing of
strawberry detection results enables the prediction of strawberry yield in the strawberry
field [16]. Jointing the aerial orthoimages recognized by FasterR-CNN allows for the effec-
tive visualization of the overall yield in the strawberry field [17]. By identifying strawberry
flowers and berries in drone images, Zhou achieved near-term growth predictions for
the strawberry field [18]. Collecting environmental data during strawberry growth using
various sensors and processing the data with machine-learning algorithms enables the
indirect prediction of strawberry yield [19]. The premonition net is employed to learn
strawberry recognition results from past, present, and future moments. Combined with the
transform structure, it achieves the prediction of strawberry growth conditions [20].

Based on the above analysis, this study used a drone to capture RGB images of various
regions in the entire strawberry field and focused on the obtaining method of strawberry
growth information. The main contents of this study are as follows:

• An improved YOLOv8 model was proposed to recognize mature strawberries, imma-
ture strawberries, and strawberry flowers in the images.

• An environmental stability-based region segmentation algorithm was proposed to
accurately segment strawberry plant regions in different environments.

• The algorithms of edge extraction and peak detection were developed to extract
strawberry plant areas and estimate the number of strawberry plants.

• The overall growth map of the strawberry field was created by concatenating multiple
regional strawberry growth maps based on the above detection information.
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Multiple experiments were designed to validate the effectiveness of the proposed
method. The specific research details are as follows.

2. Materials and Methods
2.1. Data Acquisition

There is a strawberry experimental field located in the Plant Science Research and
Education Unit (PSREU) at the University of Florida in Citra, FL, USA (29.404265◦ N,
82.141893◦ W) for dataset collection. The strawberry experiment field was 67 m long and
six meters wide with five rows of strawberry plants, each being 67 m long and 0.5 m wide.
The five rows were the ‘Florida Radiance’ cultivar. The drone used for image acquisition
is DJI PHANTOM 4PRO, and its specifications are shown in Table 1. The flight path and
parameters are set through the ground control station to perform image capture.

Table 1. Drone specifications table.

Specifications

Camera sensor 20 M
Photo JPEG; DNG (RAW); JPEG + DNG

Weight (Battery and Propellers Included) 1388 g
Maximum Flight Time 30 min
Operating Temperature 0~40 ◦C

The drone collected data every 14 days and captured images 6 times in total. The
shooting took place between 10:30 am and 12:30 pm, and the weather conditions were
sunny and cloudy. Images under various weather conditions are used for model training
to enhance its ability to recognize strawberry field images under different environmental
conditions. The drone’s flight trajectory was parallel to the ridge and perpendicular to the
top of the ridge, capturing images with a resolution of 4000 × 3000 pixels. When the drone
captures images, the frontal overlap rate is 70% and the lateral overlap rate is 60%. All
the flights were performed automatically by the DJI GroundStationPro (DJI Technology
Co., Ltd., Shenzhen, China) iPad application, which is designed to conduct automated
flight missions and manage the flight data of DJI drones. During each image capture, there
are two flights conducted, capturing images from heights of 2 m and 3 m, respectively.
The image capture at 2 m height takes 35 min per session, while the image capture at 3 m
height takes 23 min per session. The initial images were divided into four types, and the
example image is shown in Figure 1. The composition of the overall dataset is shown
in Table 2. LabelImg 1.8.6 software was used to preprocess the original image, and the
mature strawberries, immature strawberries, and strawberry flower targets were labeled,
respectively. The annotated data was divided into a training set, a validation set, and a
testing set in proportion. The final dataset composition is shown in Table 3.

Table 2. Image acquisition information table.

Order Date Weather Height Num

1 2 March 2018 Cloudy 2 m 181
3 m 145

2 16 March 2018 Sunny 2 m 195
3 m 137

3 30 March 2018 Sunny 2 m 177
3 m 121

4 13 April 2018 Cloudy 2 m 172
3 m 107

5 27 April 2018 Cloudy 2 m 192
3 m 155

6 11 May 2018 Sunny 2 m 169
3 m 102
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Table 3. Dataset information table.

Item Training Set Validation Set Testing Set Total

Number of images 1483 247 123 1853

Agriculture 2024, 14, x FOR PEER REVIEW 4 of 23 
 

 

 

 
(a) (b) 

 
(c) (d) 

Figure 1. Drone dataset images captured under different conditions. (a) Sunny at a height of 2 m; 
(b) Sunny at a height of 3 mm; (c) Cloudy at a height of 2 m; (d) Cloudy at a height of 3 m. 

Table 2. Image acquisition information table. 

Order Date Weather Height Num 

1 2 March 2018 Cloudy 
2 m 181 
3 m 145 

2 16 March 2018 Sunny 2 m 195 
3 m 137 

3 30 March 2018 Sunny 
2 m 177 
3 m 121 

4 13 April 2018 Cloudy 
2 m 172 
3 m 107 

5 27 April 2018 Cloudy 2 m 192 
3 m 155 

6 11 May 2018 Sunny 2 m 169 
3 m 102 

Table 3. Dataset information table. 

Item Training Set Validation Set Testing Set Total 
Number of images 1483 247 123 1853 

2.2. The Improved YOLOv8 Model 
The deep learning model proposed in this article is based on the network architecture 

of the YOLOv8 model and achieves rapid detection of targets in drone images by applying 
a slim–neck lightweight structure and shuffle attention module. 

Figure 1. Drone dataset images captured under different conditions. (a) Sunny at a height of 2 m;
(b) Sunny at a height of 3 mm; (c) Cloudy at a height of 2 m; (d) Cloudy at a height of 3 m.

2.2. The Improved YOLOv8 Model

The deep learning model proposed in this article is based on the network architecture
of the YOLOv8 model and achieves rapid detection of targets in drone images by applying
a slim–neck lightweight structure and shuffle attention module.

2.2.1. Shuffle Attention Module

Changes in flight altitude result in variations in the size of strawberry targets in
captured images. The shuffle attention module utilizes channel attention and spatial
attention calculations to extract feature maps of different scales. It was added to the
backbone part of the original YOLOv8 model, and the feature mapping was divided into
multiple groups to input into the shuffle attention module. Channel attention and spatial
attention were calculated, respectively. All sub-features were aggregated to enhance feature
extraction ability [21]. The specific structure of the shuffle attention module is shown in
Figure 2.
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Figure 2. Structure diagram of shuffle attention module. “c” represents the number of channels in
the feature map, “h” represents the height of the feature map, and “w” represents the width of the
feature map.

In step 1, feature maps of strawberry field images, X ∈ RC×H×W, were input into the
shuffle attention module, which were divided into g groups of feature maps along the
depth direction, where X was [X1, X2, . . ., Xk].

In step 2, for each group of feature maps Xk, they were divided into Xk1 and Xk2 along
two channel directions.

In step 3, Xk1 was shrunk by the spatial dimension H × W. Channel statistical in-
formation s was generated. s was further scaled and moved to ultimately generate
channel attention X′

k1. The specific calculation process of channel attention is shown
in Equations (1) and (2).

s =
1

H × W∑H
i=1 ∑W

j=1 Xk1(i, j) (1)

X′
k1 = σ(W1s+b1)× Xk1 (2)

where s represented channel information, H and W were feature map size, σϵ [0, 1],
W1, b1 ∈ R

c
g×1×1 represented the parameter of channel information s for scaling and

moving, and X′
k1 represented channel attention.

In step 4, Xk2 was processed by GroupNorm and spatial statistical information y was
generated. After linear transformation processing, the spatial attention X′

k2 was generated,
and the specific calculation process of spatial attention is shown in Equations (3) and (4).

y = GroupNorm
(

x′c,i,j

)
=

xc,i,j − µg√
σ2

g + α
(3)

X′
k2 = σ(W2 × GroupNorm(Xk2) + b2)× Xk2 (4)

where Xc,i,j represented the feature values of the c-th channel, i-th row, and j-th column in
the feature map, µg was the mean of the g-th group, σ2

g represented the variance of the

g-th group, α was stability constant, W2, b2 ∈ R
c

2g×1×1 was the parameter of transforming
spatial information y, and X′

k2 was spatial attention.
In step 5, the channel Attention X′

k1 and the spatial attention X′
k2 were concatenated

to generate the aggregated comprehensive attention X′
k. The sub-features obtained from

different groups were shuffled and merged to obtain the final output of the module. The
calculation process of the fused features is shown in Equations (5) and (6).

X′
k =

[
X′

k1, X′
k2
]

(5)
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Shuffle
(
x1, x2, . . . ,xg

)
= x1, x2, . . . ,xN (6)

where X′
k represented comprehensive attention, g represented the number of original

groups, and N was the number of groups after regrouping.

2.2.2. Slim–Neck Network

The GSConv module was introduced into the improve YOLOv8 model to reduce the
complexity of calculation process of the traditional convolutional block CBL [22]. The
specific structure of this module is shown in Figure 3.
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The feature images of strawberry fields were subjected to regular convolution and
down-sampling through the Conv module. The above results were deeply convolved
through DWConv, and the output results of the two convolutions were concatenated and
exchanged information through channel shuffle operation. The calculation process of
ordinary convolution and deep convolution are shown in Equations (7) and (8).

Yconv(i, j, k) = ∑K
m=0 ∑F

p=0 ∑F
q=0 Xin1(S × i + p, S × j + q, m)× Wc + bc(k) (7)

YDWconv(i, j, k) = ∑Fdw
p=0 ∑Fdw

q=0 Xin2(i + p, j + q, k)× Wdwc + bdwc(k) (8)

where Yconv(i, j, k) and YDWconv(i, j, k) represented the values of the i-th row, j-th column,
k-channel. F and Fdw represented the kernel sizes of regular convolution and deep convo-
lution, respectively. p and q represented the position of the convolution map on the feature
map, m was the number of channels in the input feature map, S was the convolution step
size, Wc, Wdwc, bc, and bdwc represented the weights and biases of regular convolution
and deep convolution.

GSConv was used to build a lightweight VoV–GSCSP module, which replaced CBL
blocks with lightweight convolutional GSConv based on the C2f module, and simplified
the flow of channel information. Its detailed structure is shown in Figure 4. In the VOV–
GSCSP module, C1 channels of the input feature map were divided into two groups for
processing. C1/2 channels were processed by conv block convolution, and the other C1/2
channels were processed by lightweight convolution of two additional GSConv modules.
The processing results of the two parts were concatenated as the output of the module.
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A small object detection layer added to the neck network was used to improve the
resolution of the detection target, and the VoV–GSCSP module was used to reduce the
size of the neck network. The neck network of the improved YOLOv8 model is shown in
Figure 5. For example, a feature map with a resolution of 640 × 640 was input into the neck
network. At the additional P3 detection layer, a feature map with a size of 160 × 160 was
generated after two down-sampling operations with a step size of 2. More detailed feature
information in this feature map could be used for small target detection.
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2.3. Environmental Stability-Based Region Segmentation

For the strawberry field images that have been detected by the improved YOLOv8
model, it is necessary to further combine the plant area and number to establish a subor-
dinate relationship between the recognition target and the plant, which could be used to
obtain the growth information of strawberries. In modern strawberry cultivation, plastic
film is used to maintain soil temperature stability and reduce water loss [23]. Plastic film
has a high absorption rate of ambient light and reflects less light, maintaining a relatively
stable appearance in different environments [24]. This study indirectly obtained the straw-
berry plant area by segmenting the plastic film area with environmental stability. The
segmentation process is shown in Figure 6.
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In step 1, based on the color characteristics of black film, the threshold ranges of
H, S, and V color channels were determined, ranging from 200 to 240, 30 to 70, and
10 to 60, respectively. Based on the above color range, the black plastic film area was
accurately segmented.

In step 2, binarization processing was applied to images to achieve encoding of
two different regions. Based on two different encoding methods, the color of the region
was reversed.

In step 3, a corrosion core with a size of 3 × 3 was created, and the pixels in the image
were traversed for corrosion operation. Noise and smaller areas were removed to complete
the smoothness of the image. The calculation process of the corrosion operation is shown
in Equation (9).

I′(x, y) = min(i,j)∈SI(x + i, y + j) (9)

where S was

1 1 1
1 1 1
1 1 1

 that was the corrosion nucleus, I′(x, y) represents the pixels after

corrosion treatment, and i and j represented the element index of the corrosion nucleus.

2.4. Edge Extraction and Peak Detection Counting Method
2.4.1. Edge Extraction

For the segmented plant area, the improved Diag–Canny edge detection algorithm
was used to extract the boundary lines of the plant area, as shown in Figure 7.

In step 1, for each pixel in the image, directional matrices H45◦ and H135◦ were
added for expanding and refining gradient direction based on directional matrices Hx
and Hy of the classical Canny algorithm. The specific calculation process is shown in
Equations (10) and (11).

M[i, j] =
√

Hx[i, j]2 + Hy[i, j]2 + H45◦ [i, j]2 + H135◦ [i, j]2 (10)

D[i, j] = arctan
Hy

Hx
(11)

where i and j represented pixel coordinates, Hx[i, j], Hy[i, j], H45◦ [i, j], and H135◦ [i, j] rep-
resented different directional matrices, M [i, j] was gradient amplitude, and D [i, j] was
gradient direction.
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In step 2, all points on the gradient matrix were traversed, and their gradient directions
were approximated as eight directions (horizontal and vertical directions, and expand in
the 45 degree and 135 degree directions). Gradient intensity of pixels Ai+1 and Ai−1 in the
positive and negative directions of gradients were compared. If the gradient intensity of Ai
was maximum, it was retained, and if otherwise it was suppressed. The specific calculation
process is shown in Equation (12).

M′[i, j] =
{

M[i, j], if M[i, j] > M[i − 1, j] and M[i, j] > M[i + 1, j]
0, otherwise

(12)

where M′[i, j] represented the result of pixel processing, and M[i − 1,j] and M[i + 1,j]
represented the gradient intensity of pixels in the positive and negative directions of
their gradients.

In step 3, an edge detection method based on dual thresholds was used to refine the
edge curve. The maximum and minimum gradient thresholds, Max and Min, were set. If
the gradient intensity of a pixel was greater than Max, the pixel was confirmed as an edge
point. If the gradient intensity of a pixel was between Max and Min, and was connected to
the edge point, it was determined as the edge point. Otherwise, they would be judged as
non-edge points. After the above processing, the final edge of the plant area was obtained.

2.4.2. Peak Detection

The changes in the edge lines on both sides of the continuous plant area were obtained
by using the projection method. The peak and valley detection algorithm was used to
estimate the number of strawberry plants. The specific processing flow is shown in Figure 8.

In step 1, the diagonal lines of the edge points on both sides of the area were connected,
and the horizontal basic line through their intersection points was drawn.

In step 2, the edge curves were obtained from the intersection points projecting from
vertically downwards and vertically upwards. If the projection line did not intersect with
the edge curve, the intersection point with the basic line was taken as the result, and the
changes in the edge lines on both sides of the plant area were obtained.
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In step 3, the peak detection algorithm and valley detection algorithm were used
respectively to detect the upper edge curve A and the lower edge curve B. The number of
regional plants was the sum of the number of peaks and valleys.
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2.5. Growth Information Map

The improved YOLOv8 network was used to recognize the quantity and position
information of strawberries at different stages. The image is processed by ground seg-
mentation using HSV thresholding, internal enclosed region extraction by inversion, and
eliminating noise to obtain the strawberry plant area. The peak detection was used to
calculate plant quantity information. The overall growth map of the strawberry field was
drawn. The conversion relationship between actual distance and pixel distance could be
calculated using GSD (ground sample distance). The specific calculation process is shown
in Equation (13).

GSD = λ
H
c

(13)

where λ represented the pixel size of the camera sensor, H represented the image shooting
height, and c represented the camera focal length.

As shown in Figure 9, strawberry flowers usually took 21–30 days to grow into
complete fruit, while immature strawberries usually took 7–14 days to fully mature [25]. If
mature strawberries were not picked after maturity, they would begin to rot after 1–3 days.
Weights were set based on the number of mature strawberries, immature strawberries, and
strawberry flowers over time. The numbers of different plant objects were summed up,
and divided by the number of strawberry plants. The result was defined as a strawberry
growth parameter α. The size of this parameter could reflect the maturity of the region and
the priority of picking. Based on the size of this parameter, different colors were used to
draw regional growth maps, including strawberry growth parameters α. The calculation
process is shown in Equation (14).

α =
numa × 1

α1
+numb × 1

α2
+numc × 1

α3

plantnum
(14)

where numa, numb, and numc represented the number of mature strawberries, immature
strawberries, and strawberry flowers, respectively.
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The method for obtaining the growth information map of strawberry fields is shown in
Figure 10. The drone ran along the preset path and obtained images of different parts of the
strawberry field area. The regional image was input into the improved YOLOv8 network,
and strawberry targets at different growth stages were recognized. The environmental
stability-based segmentation was used to extract the strawberry plant area (including fruits,
stems, and leaves). Edge extraction and peak detection was used to estimate the number
of strawberry plants. Based on the number of strawberry plants and the distribution of
mature strawberries, we drew a growth chart of strawberries (reflecting the urgency of
picking in different regions). The growth maps of strawberry fields in different regions
were concatenated according to the shooting path order, and the overall growth map of the
strawberry field was obtained.
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2.6. Experiment

To validate the effectiveness of the proposed model and image-processing algorithm
in this study, four sets of experiments were conducted sequentially.

In the first set of experiments, the improved YOLOv8 model proposed in this study,
along with several common deep learning network models, such as models of YOLOv3,
YOLOv4, YOLOv5n, YOLOv7, YOLOX, YOLOv8n, SSD-vgg16, and Faster R-CNN, was
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trained using the same dataset. A comparative performance analysis of the models was
conducted. The hardware environment of the experiment was mainly a computer equipped
with an Intel i5-13600kf processor, 32 GB RAM, and GeForce GTX 4080 GPU. The com-
puter used CUDA 11.2 parallel computing architecture and NVIDIA cuDNN 8.0.5 GPU
acceleration library. The software simulation environment was the Pytorch deep learning
framework (Python version 3.10). Anaconda was used to configure and manage the virtual
environment, and Pycharm was used to compile and run programs. Model performance
metrics mainly included P (precision), R (recall), F1 (harmonic average), AP (average
precision), mAP@0.5 (mean average precision), as shown in Equations (15)–(19).

precision =
Tp

Tp + Fp
(15)

recall =
Tp

Tp + FN
(16)

F1 =
2 × precision × recall

precision + recall
(17)

AP =
∑ precision

N
(18)

mAP@0.5 =
∑K

i=1 APi

NC
(19)

where Tp represents the number of strawberries correctly identified, Fp represents the num-
ber of strawberries incorrectly identified, FN represents the number of missed strawberries,
N represents the total number of images, and NC represents the number of categories of the
strawberry maturities. AP represents that the integral of accuracy rate to recall rate is equal
to the area under the P–R curve, and mAP@0.5 is the average of the average precision of
all categories.

The second set of experiments was used to segment plant areas using the proposed
environment stability-based region segmentation method, based on different color spaces
of RGB, HSV, and Lab, in order to find the best color space type suitable for threshold seg-
mentation. The overlap between the proposed method and the actual manually calibrated
area was compared and analyzed to determine the optimal color space suitable for this
algorithm, and the segmentation effect of the proposed algorithm was tested.

In the third set of experiments, edge extraction and peak detection algorithms were
used to process the segmented strawberry plant area, estimate the number of plants in the
area, and compare it with the actual number of plants. A total of fifty drone images taken
from a height of 2 m were located in the first group, and fifty drone images taken from a
height of 3 m were located in the second group. Errors were recorded and analyzed.

In the fourth set of experiments, the regional growth map was drawn. According
to the actual geographic information and shooting sequence captured by the drone, all
regional growth maps were concatenated, and the overall strawberry growth map of the
farmland was drawn. The picking priority information of the growth map was observed
and analyzed. A total of ten strawberry cultivation experts assigned picking priorities to
different areas of the entire strawberry field based on their experience (a total of 5 levels).
A comparative analysis was conducted between these priorities and the growth charts
generated in this study.

3. Results
3.1. Performance and Comparison of the Proposed Model

The performance parameters, precision, recall, and F1 score of the improved YOLOv8
model and other models under the input conditions of img_size 640 and img_size 1280 are
shown in Table 4. The recognition results of the proposed model are shown in Figure 11.
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Table 4. Comparison of the results of different models.

Index Model
Parameters (img_size 640) Parameters (img_size 1280)

Precision Recall F1 Score Precision Recall F1 Score

1 YOLOv3 71.97 52.06 60.42 81.00 59.00 68.27
2 YOLOv4 51.64 52.94 52.28 62.71 54.13 58.10
3 YOLOv5n 71.80 72.00 71.90 77.70 86.00 81.64
4 YOLOv7 74.10 79.00 76.47 76.50 97.00 85.53
5 YOLOX 75.51 41.14 53.26 83.97 68.15 75.24
6 YOLOv8n 82.60 49.00 61.51 86.60 89.00 87.78
7 SSD-vgg16 59.65 22.25 32.41 75.00 51.87 61.33
8 Faster-RCNN 72.60 83.10 77.49 77.70 93.90 85.04
9 Proposed Model 79.00 85.00 81.89 93.40 94.00 93.69
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Figure 11. Detection results of the proposed model.

For all the models used in the experiment, when img_size was 1280, there was a signif-
icant improvement in precision, recall, and F1score, compared to what was obtained when
img_size was 640. The average precision, recall, and F1score had increased. Compared
with the parameters between different models, the precision of the improved YOLOv8
model was 93.4, which was higher than those of other models. Its recall was 94, higher than
those of most models but, however, 3 lower than the 97 of the YOLOv7 model. The F1score
value of the proposed model was 93.69, which was 25.42, 35.59, 12.05, 8.16, 18.45, 5.91,
32.36, and 8.65 higher than those of other models, respectively. For the detection results
shown in Figure 11, the improved YOLOv8 model could accurately detect and distinguish
strawberry targets at different growth stages in the image.

The map@0.5 value change of the improved YOLOv8 model compared to other models
during the training process is shown in Figure 12.
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Figure 12. The map@0.5 value change curves of different models.

The red dots represent the positions with the highest map@0.5 values on each curve,
and the red arrows connect the points with their map@0.5 values. The map@0.5 value of
the proposed model gradually increased during the training and stabilized after reach-
ing 200 epochs. Compared to the SSD–vgg curve, the improved YOLOv8 curve and the
YOLOv5n curve exhibited a more stable upward trend. The optimal map@0.5 value of the
proposed model was 84.2, which was 18.6, 14.4, 6.8, 2.9, 3.7, 5.1, 12.3, and 25.1 higher than
those of the models of YOLOv3, YOLOv4, YOLOv5n, YOLOX, YOLOv8n, Faster R-CNN,
and SSD-vgg16, respectively.

The scatter plot between the detection speed and accuracy of different models is shown
in Figure 13. The detection speed of the improved YOLOv8 model was 6.2 ms, slightly
higher than the YOLOv5n model’s 5.7 ms, but, however, faster than other models. The
improved YOLOv8 model had the highest map@0.5 value. The detection speed could
indirectly reflect the size of the model. The proposed model used the VOV–GSCSP module
to optimize the C2f module in the neck part of the traditional YOLOv8 model. The module
simplified the complexity of convolution operations and reduced model volume, while
maintaining a high degree of accuracy.

3.2. Results Based on Threshold Segmentation

The results of segmenting 10 images taken from different environments and different
color spaces, as well as the effective segmentation area data, are shown in Table 5. The
segmentation results of four images are shown in Figure 14. According to Table 5, the
segmentation accuracy of HSV-based threshold segmentation on different images was
relatively stable, with an average segmentation accuracy of 86.12%, which was 7.91%
higher than the result from RGB-based threshold segmentation, and 10.01% higher than
the result from LAB-based threshold segmentation, respectively. In Figure 14, it can be
seen that the threshold segmentation based on HSV accurately segmented the plastic film
area, which was close to the manually calibrated area range. The threshold segmentation
based on RGB did not have clear boundaries in the internal area of the plastic film, making
it difficult to accurately segment the internal contours. While the threshold segmentation
based on LAB could accurately segment the internal contour of the plastic film there were,
however, many noise points in the image.
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Table 5. Segmentation results based on different color spaces.

Index Pixels TP (HSV) Accuracy TP (RGB) Accuracy TP (LAB) Accuracy

1 3012153 2800914 92.98% 2832167 94.02% 2659164 88.28%
2 3355487 3012671 89.78% 2801252 83.48% 2548802 75.96%
3 3087489 2645590 85.69% 2125831 68.85% 2728891 88.39%
4 3293901 2571284 78.06% 2598723 78.89% 2236581 67.90%
5 3401765 2993142 87.98% 2182361 64.15% 2347390 69.01%
6 2967825 2613487 88.06% 2491673 83.96% 2239916 75.47%
7 3097104 2547923 82.27% 2087631 67.41% 2679143 86.50%
8 3260913 2778392 85.20% 2918763 89.51% 2089894 64.09%
9 3178657 2785319 87.62% 2709341 85.24% 2406246 75.70%
10 3310468 2761925 83.43% 2214305 66.89% 2309133 69.75%

Avr 86.12% 78.21% 76.11%
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3.3. Counting Results

In being combined with the results of plant region segmentation, the number of plants
in the region was estimated using edge extraction and peak detection methods. The errors
between the estimated number and actual manual counting results are shown in Figure 15.
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The bias of the error for the first set of images captured at a height of 2 m is 1.1200, and
the rmse is 1.3565; The bias of the error for the second set of images captured at a height
of 3 m is 2.8400, and the rmse is 3.0199; In the 100 images tested in the experiment, the
estimated number of plants was generally lower than the actual number of plants.

3.4. Results of Growth Information Map

The drone traversed the entire orchard and captured images of 56 areas, as shown in
Figure 16. The method proposed in this study was used to obtain the 56 regional growth
information maps. The growth information maps were concatenated according to the
original image position to obtain the growth information map of the overall strawberry
field, as shown in Figure 17. The conformity between the region picking priorities derived
from the overall growth chart in this study and those provided by 10 experts is shown in
Table 6. The growth status information of strawberries in different regions is shown in
Figure 18 and Table 7.
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Table 6. The alignment between the picking priorities in this study and those given by experts.

Exper Order Right Wrong Accuracy

1 42 14 75.00%
2 49 7 87.50%
3 47 9 83.92%
4 51 4 91.07%
5 44 12 78.57%
6 39 17 69.64%
7 44 12 78.57%
8 50 6 89.28%
9 47 9 83.92%
10 38 18 67.86%

Avr 45.10 10.80 80.53%



Agriculture 2024, 14, 560 18 of 22

Table 7. Information on the growth status in different areas of the strawberry field.

Color
Representation

Average Size of
Strawberry Plants

per plot/m2

The Aggregate Count
of Immature and

Mature Fruits

Ratio of the Total
Fruit Count to the

Plant Size

Light green 2.52 50 19.84
Light green 2.61 52 19.92

Red 2.49 117 46.98
Red 2.61 129 49.42
Red 2.51 113 45.01

Yellow 2.78 75 26.98
Green 2.31 18 7.79
Red 2.74 115 41.97
Red 2.55 122 47.84

Green 2.18 21 9.63
Orange 2.44 97 39.75
Orange 2.53 88 34.78
Green 2.33 9 3.86

Orange 2.48 82 33.06
Light green 2.41 47 19.50

Yellow 2.37 66 27.85
Red 2.29 141 61.57

Green 2.51 23 9.16
Yellow 2.56 72 28.13

Light green 2.33 47 20.17
Yellow 2.47 58 23.48

Light green 2.64 41 15.53
Light green 2.28 33 14.47

Orange 2.17 69 31.80
Yellow 2.35 55 23.40

Red 2.14 97 45.33
Orange 2.26 77 34.07
Yellow 2.42 51 21.07

Red 2.71 142 52.40
Yellow 2.45 68 27.76
Orange 2.37 89 37.55

Light green 2.35 45 19.15
Light green 2.31 48 20.77

Green 2.39 20 8.37
Green 2.46 17 6.91
Green 2.74 30 10.95
Green 2.17 8 3.69
Yellow 2.65 60 22.64
Orange 2.48 82 33.06
Yellow 2.31 59 25.54

Light green 2.47 37 14.98
Orange 2.39 87 36.40
Yellow 2.27 54 23.79

Red 2.14 98 45.79
Orange 2.67 81 30.34
Green 2.46 16 6.50

Light green 2.58 37 14.34
Green 2.21 6 2.71
Yellow 2.47 57 23.08
Yellow 2.39 62 25.94
Green 2.54 13 5.19

Orange 2.49 74 29.72
Red 2.38 138 57.98

Green 2.64 23 8.71
Orange 2.63 76 28.90
Yellow 2.44 63 25.82
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In Figure 17, the red area accounts for 17.8% of the total area. This type of area has
more mature strawberries, and many strawberries will be mature in the future. Harvesting
work should be carried out as soon as possible to reduce the decay of strawberry fruits
in these areas. The green area accounts for 39.3% of the total area, and the number of
mature strawberries in this type of area was relatively small compared to the number of
strawberries that would mature soon, resulting in a lower priority for harvesting. The
orange–yellow area accounts for 42.9% of the total area, and this type of area had a moderate
number of mature strawberries, and there would also be a certain number of strawberries
maturing in the future. Attention should be paid to these areas and a later harvest plan
should be formulated. From the perspective of regional distribution, the maturity of
strawberries in the southern part of the farmland was faster than that in the northern part,
and the maturity of strawberries in the eastern and western parts was faster than that in the
central part. The assessment of picking priorities for various regions of the strawberry field
in this study yielded an average accuracy of 80.53%, based on those provided by 10 experts.
This accuracy ensures precise guidance for harvesting.

According to Table 7, the values of “Ratio of the total fruit count to the plant size” can
reflect the maturity status in different areas. In the regions represented by green color, the
minimum ratio is 2.71, and the maximum is 10.95. In the regions represented by light green
color, the minimum ratio is 14.34, and the maximum is 20.77. In the regions represented
by yellow color, the minimum ratio is 21.07, and the maximum is 28.13. In the regions
represented by orange color, the minimum ratio is 28.90, and the maximum is 39.75. In the
regions represented by red color, the minimum ratio is 41.97, and the maximum is 61.57.
For areas with a larger number of strawberries ready for harvest or smaller strawberry
plant areas, their harvest index is higher. Conversely, for areas with fewer strawberries
ready for harvest or larger strawberry plant areas, their harvest index is lower. The different
colors set in this study correspond to the range of changes in the harvest index. According
to Figure 18, the average number of strawberry fruits representing colors green, light green,
yellow, orange, and red, are 17.00, 43.70, 61.54, 82.10, and 121.2, respectively, showing
an increasing trend in fruit quantity. The standard deviations within groups of different
representative colors are 2.04, 2.01, 1.97, 2.64, and 5.18, respectively, indicating smaller
variations within groups of the same representative color. The one-way ANOVA analysis
conducted on the fruit quantity data for different colors yielded an F-ratio of 5.3067, which is
less than 265.783 (α = 0.001), indicating a significant association between the representative
color of the fruit and the quantity of fruits.

4. Discussion

The drone image has the characteristics of high resolution, wide coverage, and multiple
and small targets to be identified. The improved YOLOv8 model added two additional
small object detection layers and set the img_size of the input image to 1280. During the
training process, the size of the target feature map was enlarged, which was beneficial
for the model to learn target features. Adding a detection layer of small targets could
improve the detection effect on small targets, and similar conclusions could be found in the
article [26]. The precision and recall of the proposed model have significantly improved,
which reflects the proposed model had high detection accuracy.

The performance curve of the proposed model showed little fluctuation during the
training process, which indicated that the model could effectively learn strawberry features
at different stages and the training was efficient. This accounted for the advantages of the
shuffle attention module application, which effectively learned the relationship between
different channel information at the same position of the strawberry target, as well as the
spatial information between different positions. The module enabled the target features to
be effectively obtained by the proposed model, while also distinguishing the differences in
features between different positions, improving the detection accuracy of the model and
enhancing its stability and robustness. The shuffle attention module could improve the
learning performance of the model, and similar conclusions can be found in the article [27].
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The VOV–GSCSP module could reduce network complexity and maintain certain
accuracy in small object detection, and a similar conclusion can be found in the article [28].
The additional small object detection layer brought about an increase in model volume,
which could be optimized through the VOV–GSCSP module, giving the proposed model
advantages such as small model volume, high recognition accuracy, and fast detection
speed. It could be effectively applied to the recognition of strawberry targets at different
growth stages in drone images.

The target of segmentation was the black plastic film area, which had stable color in
different environments and was easy to segment. Therefore, the method of obtaining the
plant area through the plastic film area was accurate and efficient. The RGB color space
mixed lighting components into three color channels. For area segmentation in drone im-
ages with lighting changes, the boundaries of the segmented areas were unclear and could
not be further applied to plant area segmentation. While the Lab color space considered
lighting as a separate component, it however had the characteristic of uniform perception.
The color changes at equal intervals are the same, making it difficult to effectively distin-
guish between noise and target areas, resulting in more noise in the segmentation results.
Based on the segmentation of HSV color space, while considering lighting separately, the
noise was eliminated by integrating changes in hue and saturation, accurately segmenting
black film areas in different environments. HSV color space-based segmentation could be
adapted to lighting and reduce noise. A similar conclusion can be found in the article [29].

Based on the proposed method of combining edge extraction and peak detection,
the number of strawberry plants in drone images was estimated. The calculated values
were generally lower than the actual values, and the reason may be that during the peak
detection process, the curve amplitude of some continuous plants changed similarly, and
multiple peaks were detected as one peak, introducing errors. However, this method could
generally accurately count the number of plants in a region and, the smaller the area, the
better the detection effect.

By observing the overall growth information map of the strawberry field, harvesting
plans could be formulated based on the picking priority in different regions. During the
irregular batch ripening period of strawberries, labor distribution could be reasonably
planned to ensure high-quality harvesting of strawberries and reduce the economic losses
caused by strawberry decay. Compared to manually evaluating picking priorities, the
overall growth chart can also view the distribution of different picking priorities and guide
the path planning of the harvesting robot [30].

Based on the observations from Table 7 and Figure 18, the method proposed in this
study not only calculates regional ripeness but also assesses the size and productivity of
strawberry plants. During plant growth, as the allocation of dry matter increases towards
leaves and runners, an increase in plant volume decreases the harvest index. When plant
volume reaches a certain threshold, strawberry plant yield decreases [31]. The method
proposed in this study suggests that smaller plants are indeed more productive. Farmers
can adjust nitrogen fertilizer dosage to control plant size, thus enabling plants to have a
higher harvest index and increase overall yield.

5. Conclusions

This study proposed a lightweight deep learning model based on YOLOv8n improve-
ment, which accurately identified strawberries at different growth stages in drone images.
A region segmentation algorithm based on environmental stability was proposed to ef-
fectively segment the strawberry plant region. A plant counting method based on edge
extraction and peak and valley detection was proposed to estimate regional plant numbers.
Based on the above methods, a growth information map was created to visualize the growth
situation of different areas of strawberry fields and assist farmers in formulating harvesting
plans. The main conclusions are as follows.
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1. An improved YOLOv8 model was constructed by replacing the neck network of the
YOLOv8n model with the VOV–GSCSP block, applying the shuffle attention block,
and adding two small object detection layers.

2. The Improved YOLOv8 model demonstrated an average accuracy of 82.5% in identify-
ing immature strawberries, 87.4% for mature ones, and 82.9% for strawberry flowers
in drone images. The model’s performance metrics included a mean average precision
(mAP) of 84.2%, precision (P) of 93.4%, recall of 94%, and an F1 score of 93.69%.
Additionally, the model exhibited an average detection speed of 6.2 ms and had a
compact model size of 20.1 MB.

3. The region segmentation algorithm based on environmental stability showed perfor-
mance in which the average proportion of the segmentation area to the actual area
was 86.12% for the plastic film area surrounding the plant.

4. The proposed method for estimating the number of plants by combining edge extrac-
tion and peak detection had a counting error within 1 in drone images at a height of
2 m, and within 3 in drone images at a height of 3 m.

5. The created growth information map of the strawberry field could provide intuitive
information on the recent maturity of strawberries in different regions and assist
farmers in determining the harvesting priorities in different areas during peak picking
periods; it would also help them when developing harvesting plans, and would drive
improvements in the quality of harvested strawberries.

These conclusions confirmed that the proposed model with the image-processing
technology had effective performance for detecting strawberry objects in drone images
and creating the growth information map of strawberries. Future research will capture
continuous images of strawberry plants throughout their growth stages, utilize the method
proposed in this study to quantify harvest indices, and combine them with the nutritional
status of the plants for analysis, providing valuable insights for farmers.
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