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Abstract: In order to cope with global climate warming, measurement of the low-carbon utilization
efficiency (LCUE) of cultivated land, considering carbon sink and carbon emission effects, is proposed.
To address this, based on the data of 30 provinces in China, this study conducts a LCUE evaluation
system by the MinDS-U-M productivity index model in order to analyze the spatiotemporal patterns
and driving factors of LCUE with the geographic detector model and GTWR model. The results show
the following: (1) Over the past 20 years, the average LCUE value exhibits a slow increasing trend
from 2001 to 2021, which ranges from 0.9864 to 1.0272. Provinces with mid-level LCUE ranging from
1.0000 to 1.0990 account for the highest proportion in each period. (2) The annual growth rate of LCUE
in the central region is the highest, where the promotion of green technology and farmland protection
policies have played important roles. (3) According to the Geodetector analysis, urbanization rate
(UR), irrigation index (IR), grain output value (GOV), precipitation (PR), arable land area (ALA), and
environmental pollution control (EPC) are important drivers of the spatial difference of LCUE. (4) The
GTWR model shows that the positive effects of ALA and SRT have always been concentrated in the
main grain-producing areas over time. UR and PR have strong explanatory power for the space/time
differentiation of LCUE, especially in eastern coastal regions. IR has an increasing effect on LCUE in
the Western region, and the positive effect of EPC on the LCUE is concentrated in the central region.
In order to coordinate regional LCUE contradictions, it is suggested to be wary of land resource
damage caused by economic development, warn about the impacts of climate change, and strengthen
the supervision of land remediation projects in order to achieve sustainable land management.

Keywords: cultivated land; low-carbon utilization efficiency; driving factors; MinDS-U model;
geographic detector model; GTWR model

1. Introduction

Increasing greenhouse gas emissions have led to global warming [1]. It has become an
international consensus to respond to climate change by achieving carbon peaks by 2030
and carbon neutrality by 2060. Terrestrial ecosystems can respond to global warming by
releasing the potential for terrestrial carbon sequestration. Cultivated land is an impor-
tant component in a terrestrial ecosystem and belongs to an important source of carbon
sequestration that has significant advantages in achieving carbon neutrality (IPCC, 2008).
However, high-intensity cultivated land use and farmland conversion activities produce
large amounts of carbon emissions and limit the carbon sequestration potential [2]. As a
major carbon emitter, about 17% of carbon emissions come from agriculture in China [3].
Addressing the issue of how to effectively reduce emissions and increase carbon sinks
while utilizing cultivated land resources is crucial for achieving dual carbon goals.

Statistically, from 2005 to 2019, the total cultivated land area in 31 provinces dropped
from 130,122.4 thousand hectares to 110,477.7 thousand hectares, and the total carbon emis-
sions from agricultural materials increased from 216.2363 million tons to 248.1551 million
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tons [4]. This is contrary to our original prediction. The increasing agricultural carbon
emissions per unit area are closely related to the overuse and abuse of cultivated land [5].
The excessive application of pesticides and fertilizers and the non-agricultural conversion
of agricultural land still exist. Although China has issued a series of farmland protection
practices, such as the National High Standard Farmland Construction Plan and the Zero Growth
of Chemical Fertilizer Special Action, the outcomes of these policies are not very significant.
These facts drive scholars to rethink the issue of the low-carbon utilization of arable land
under the dual carbon goal.

Existing research on measuring the low-carbon utilization of cultivated land mainly
focuses on efficiency measurement with Data Envelopment Analysis (DEA) and the slack-
based measure with an undesirable model (SBM-U) [6,7]. Compared with the DEA model,
the SBM-U model can take into account the negative impacts of economic activity [8], and it
is widely used [9]. Although the SBM-U model is applied widely, the selection of the point
farthest from the production frontier in the Decision Making Unit (DMU) as the projection
point has led to the maximization of the slack variable and an underestimation of the DMU
efficiency. The Minimum Distance to Strong Efficient Frontier (MinDS-U) model chooses
the point nearest to the strong efficient frontier, and it compensates for the estimation error
of the SBM-U model [10]. Based on this, the MinDS-U-M productivity index will be used to
assess the dynamic and static changes of LCUE in this study.

The driving factors of the low-carbon utilization of cultivated land are still unclear.
Most studies have explored the impact of socioeconomic factors on land use. Some studies
claimed that the regional economy positively influences land use [11,12]. However, some
opposite conclusions also exist. Li et al. discovered a feeble decoupling correlation between
urban land use and economic progress [13]. Technical progress is regarded as the most
important driver affecting agricultural land use [14]. Villoria concluded that technical
progress is conducive to reducing deforestation [15]. Road network density and public
services are perceived as important factors affecting land use [16]. The improvement of
transportation facilities may accelerate the conversion of arable land to construction land.
The flow of urban and rural factors promotes the urbanization process, which significantly
influences the agricultural land use in China [17]. Rapid urbanization leads to a loss of
cultivated land through the flow of urban/rural factors [18,19]. The interaction between
climate change and human activity factors has a significant impact on the productivity po-
tential of cultivated land. For example, sunshine and precipitation contribute significantly
to cultivated land sustainable use by affecting crop growth [20]. Changes in the amounts
of woodlands, grasslands, and water areas in ecological reserves will affect land carbon
emissions [21]. Policies such as government supervision and fiscal support for agriculture
will also have significant impacts on farmland utilization [22]. However, existing studies
ignore the impacts of the natural environment and cultivated land resource endowment on
land use.

Most studies use the fixed effects model and the Tobit model to examine the influencing
factors of land use [23,24]. However, these methods all operate under the assumption of
fixed regression coefficients between the driving factors and land use. Cultivated land
use is a comprehensive indicator calculated from multiple inputs and outputs, and these
factors are easily affected by external factors such as social and economic activities [25].
The relationship between land use and external factors is not necessarily linear. The
geographical detector model can detect the spatial differentiation of land use and its
drivers without any linear assumptions [26]. Driving forces of carbon dioxide emissions
in China’s cities [27] and the spatial differentiation of rural touristification are analyzed
with the Geodetector model [28]. Compared with the traditional linear regression model
and the spatial geographically weighted regression model, the gravity-geographically and
temporally weighted regression (GTWR) model has achieved better results in handling
spatiotemporal non-stationary relationships, which can reveal the changing patterns of
key factors in the spatiotemporal dimension. The driving mechanism of urbanization
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development and the spatiotemporal characteristics of PM2.5 can be predicted by the
GTWR model [29,30].

Based on the above analysis, the scientificity and validity of the LCUE measurement
need to be further explored. Addressing these limitations, this paper extends the existing
literature by focusing on the following four areas: (1) This paper measures the LCUE
considering the carbon emissions and carbon sinks generated by farmland utilization,
which reflects both the economic and ecological interests of cultivated land use. The
measurement of carbon emissions not only considers six agricultural materials, but also
considers the release of the greenhouse gas methane, and ignoring these tends to cause
an estimation bias. (2) We estimate the LCUE using a MinDS-U-M productivity model,
which is used to analyze the spatial differentiation of LCUE from the dynamic perspective
and compensates for the weakness of the SBM-U model. (3) In our study, the Geodetector
model is used to analyze the spatial differentiation of LCUE from the perspective of natural,
socio-economic, land endowment, and institutional factors. (4) We used the GTWR model
to explore the influencing direction and strength impact of the key factors on LCUE in order
to explore the driving mechanism of the spatiotemporal variation in LCUE. In summary,
this paper offers new empirical evidence on the low-carbon utilization of cultivated land
in China.

2. Methodology and Data
2.1. Methods
2.1.1. SBM-U Model

According to the study of Tone [8], this paper selects xhk’, ylk’, and bdk’ to represent
the input factors, desirable output, and undesirable output of the kth DMU. s−h , s+l , s−d
represent the slack variables of them. ρk,SBM-U represents the technical efficiency of the kth
DMU. The SBM-U model with undesirable outputs is

ρk,SBM-U = min
1− 1

H

H
∑

h=1

S−h
xhk′

1+ 1
L+1 (

L
∑

l=1

S+l
ylk′

+
I

∑
d=1

S−d
bdk′

)

st.
K
∑

k=1
λkxhk + s−h = xhk′ , h = 1, 2, . . . , H

K
∑

k=1
λkylk − s+l = xlk′ , l = 1, 2, . . . , L

K
∑

k=1
λkbdk + s−d = bdk′ , d = 1, 2, . . . , D

s−h ≥ 0, s+l ≥ 0, s−d ≥ 0, λk ≥ 0

(1)

In Equation (1), for the slack variables s−h , s+l , s−d , objective function ρk,SBM-U is strictly
monotonically decreasing, and the range of values is (0, 1). When s−h , s+l , s−d are all zero,
and ρk,SBM-U = 1, then the DMUk is fully effective. If ρk,SBM-U < 1, then the DMUk is in an
ineffective state.

2.1.2. MinDS-U Model

The SBM-U model based on undesirable outputs solves the issue of radial models not
including relaxation variables in measuring inefficiency. However, the evaluation result of
the SBM-U model is the point on the frontier that is farthest from the effective frontier. To
solve the problem, this study will use a model that selects the closest point on the strong
effective frontier, namely the Minimum Distance to Strong Efficient Frontier (MinDS) [31].
A subsequent study extended the MinDS model and incorporated the undesirable outputs
into a model which was named the MinDS-U model. This article solves the MinDS-U model
based on the “two-step method”. The first step is to solve the SBM-U model. Secondly, all
the effective DMU calculated by the SBM-U model are used as an initial reference set. By
adding a set of mixed integer linear constraints, the reference benchmark of the evaluated
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unit is limited to the same hyperplane, and the MinDS-U model is solved. The MinDS-U
model can achieve a completely effective state for ineffective DMU with a small average
improvement. This model is constructed as follows:

P′(X) =



∑
k∈ECRS

λkxhk ≤ xh, h = 1, 2, .. . . . , H;

(y, b) : ∑
k∈ECRS

λkylk ≥ yl , l = 1, 2, .. . . . , L;

∑
k∈ECRS

λkbdk ≤ bd, d = 1, 2, .. . . . , D;

λk ≥ 0, k ∈ ECRS


(2)

In Equation (2), ECRS =
{

k
∣∣ρk,SBM-U = 1

}
is the initial reference set. Other variables

are the same as in Equation (1).
Assuming that vh, µl , and βd represent the weight of input, desirable output, and

undesirable output, M is a large enough positive number. ρMinDS-U
k′ is the technical efficiency

of the kth DMU. St
C(xt

k′ , yt
k′ , bt

k′) represent the input indicator and output indicator of the
kth DMU. Finally, the MinDS-U model can be expressed.

St
C(xt

k′ , yt
k′ , bt

k′) = ρMinDS-U
k′ = max

1
H

H
∑

h=1
(1−

S−h
xhk′

)

1
L

L
∑

l=1
(1+

S+l
ylk′

)+ 1
D

D
∑

d=1
(1+

S−d
bdk′

)

s.t. ∑
k∈ECRS

λkxhk + s−h = xhk′ , h = 1, 2, . . . , H ( f1 − 1)

∑
k∈ECRS

λkylk − s+l = ylk′ , l = 1, 2, . . . , L ( f1 − 2)

∑
k∈ECRS

λkbdk − s−d = bdk′ , d = 1, 2, . . . , D ( f1 − 3)

s−h ≥ 0, h = 1, 2, . . . , H ( f1 − 4)
s+l ≥ 0, l = 1, 2, . . . , L ( f1 − 5)
s−d ≥ 0, d = 1, 2, . . . , D ( f1 − 6)
λk ≥ 0, k ∈ ECRS ( f1 − 7)

−
H
∑

h=1
vhxhk +

D
∑

l=1
µlylk −

Q
∑

d=1
βdbdk + qk = 0, k ∈ ECRS ( f2 − 1)

v−h ≥ 1, h = 1, 2, . . . , H ( f2 − 2)
µl ≥ 1, l = 1, 2, . . . , L ( f2 − 3)
βd ≥ 0, d = 1, 2, . . . , D ( f2 − 4)
0 ≤ qk ≤ MZk , k ∈ ECRS ( f3 − 1)
λk ≤ M(1 − zk), k ∈ ECRS ( f3 − 2)
zk ∈ {0, 1}, k ∈ ECRS ( f3 − 3)

(3)

The MinDS-U model consists of an objective function and three constraints of f 1, f 2,
and f 3. The MinDS-U model refers to the datum of the same hyperplane. zk ∈ {0, 1}, if
zk = 0, and qk = 0, λk ≤ M, and the DMU is the reference set. If zk = 1, and qk = 0, qk ≤ M,
λk = 0, then the DMU is not the reference set.

2.1.3. MinDS-U-M Productivity Index

Based on the study of Chung et al. [32], MinDS-U-M index model construction is
expressed as follows:

MinDS-U-Mt+1
t =

[
St

C(xt+1
k′ , yt+1

k′ , bt+1
k′ )

St
C(xt

k′ , yt
k′ , bt

k′)
×

St+1
C (xt+1

k′ , yt+1
k′ , bt+1

k′ )

St+1
C (xt

k′ , yt
k′ , bt

k′)

] 1
2

(4)

where St
C(xt

k′ , yt
k′ , bt

k′) and St+1
C (xt+1

k′ , yt+1
k′ , bt+1

k′ ) represent the technical efficiency values
for two periods, respectively. St

C(xt+1
k′ , yt+1

k′ , bt+1
k′ ) and St+1

C (xt
k′ , yt

k′ , bt
k′) are the technical
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efficiency values during the two mixed periods. The MinDS-U-M can be divided into
two parts:

MinDS-U-TECt+1
t =

St+1
c (xt+1

k′ , yt+1
k′ , bt+1

k′ )

St
c(xt

k′ , yt
k′ , bt

k′)
(5)

MinDS-U-TPt+1
t =

[
St

C(xt+1
k′ , yt+1

k′ , bt+1
k′ )

St+1
C (xt+1

k′ , yt+1
k′ , bt+1

k′ )
×

St
C(xt

k′ , yt
k′ , bt

k′)

St+1
C (xt

k′ , yt
k′ , bt

k′)

]
(6)

In Equations (4)–(6), MinDS-U-M refers to the total factor productivity index and
MinDS-U-TEC refers to the technical efficiency change. MinDS-U-TP refers to the technical
progress index. The relationship between the three indicators was

MinDS-U-Mt+1
t = MinDS-U-TECt+1

t × MinDS-U-TPt+1
t (7)

Equation (7) reveals the relationship between MinDS-U-M, MinDS-U-TEC, and MinDS-
U-TP.

2.1.4. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis mainly uses Moran’s index (I) to reflect the spatial
clustering degree of attribute variables in the study area, which can identify the spatial
dependency of adjacent regions [33]. It considers the geospatial relationship between differ-
ent regions. In our study, the global Moran’ I is used to analyze the spatial autocorrelation
of LCUE in China

I =

n
n
∑

i=1

m
∑

j=1
Wij( fi − f )( f j − f )

(
n
∑

i=1

m
∑

j=1
Wij)

n
∑

i=1
( fi − f )

2
(8)

where fi and f j are the observed values in regions i and j, respectively. f is the average of
the observed values in each region. Wij represents the spatial weight matrix. The value of I
is between −1 and 1; if it is closer to 1, the positive spatial correlation is larger.

2.1.5. Geographical Detector Models

The geographical detector model is used to analyze the spatial differentiation patterns
and explore the internal and external driving factors [34]. Compared to spatial econometric
models, it can test qualitative and numerical data, and it can also reveal linear or nonlinear
relationships between the interactive effects of two factors. It is expressed as

q = 1 − 1
nδ2

L

∑
i=1

niδ
2
i (9)

where q refers to the degree of spatial differentiation of the dependent variable. It is
between 0 and 1. The size of the q value determines the impact of influencing factors on the
spatial differentiation of LCUE. By comparing the q values, we can identify the key factors
that affect the spatial differences in LCUE. n represents the total number of samples. δ2

represents the total discrete variance. L represents a classification or partition. ni and δ2
i

refer to the sample size and discrete variance of region i, respectively.

2.1.6. GTWR Models

The GTWR model introduces the time dimension on the basis of considering spatial het-
erogeneity, which can effectively deal with the problem of spatiotemporal non-stationarity
and a limited sample number of cross-sectional data [30]. The GTWR model can analyze
the trends of influencing factors at different time points. The basic calculation method is
as follows:
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yi = λ0(ni, qi, ti) +
p

∑
k=1

λk(ni, qi, ti)xik + εi (10)

In Formula (10), (ni, qi) is the latitude and longitude coordinate of the i-th sample
point. (ni, qi, ti) is the space/time coordinate of the i-th sample point. λ0(ni, qi, ti) is the
regression constant of the i-th sample point. (ni, qi, ti)λk is the k-th regression parameter of
the i-th sample point. Xik represents the value of the independent variable xk at point i. εi
is the residual term corresponding to the sample point.

2.2. Variable Selection
2.2.1. Input and Output Variables

The cultivated land utilization level is determined by the input and output factors. The
LCUE can be measured by the input/output ratio of capital, labor, and technology. Based
on previous studies [35], we selected five input indicators, including fertilizer, pesticide,
irrigation area, agricultural labor input, and agricultural mechanization level per unit
of cultivated land area (Table 1). Pesticide and fertilizer inputs are essential elements
in agricultural production and both are important carbon emission sources. Excessive
investment in pesticides and fertilizers may result in long-term damage to the land and
reduce soil fertility. We selected effective irrigated area as the input indicator. The main
reason is that agricultural irrigation consumes a large amount of electricity and indirectly
produces carbon emissions [36]. Labor input is measured by the agricultural population
per unit of cultivated land area. According to the study of Liu et al. [37], to derive the
labor input for the planting industry, we multiply the number of individuals employed in
the primary sector by the proportion of the total agricultural output value to the overall
output value of agriculture, forestry, animal husbandry, and fisheries, which represents
the stability of rural employment and affects long-term investment in cultivated land [38].
The agricultural mechanization level represents advanced technology promotion, and it is
expressed by the total power of agricultural machinery per unit of cultivated land area. A
descriptive statistical analysis of input and output indicators of LCUE is shown in Table 1.

Table 1. The statistical description of input and output indicators.

Criterion Layer Indicators Description Unit Mean Standard
Deviation Minimum Maximum

Inputs

Fertilizer consumption per
unit of cultivated land area t/hm2 0.447 0.223 0.087 1.216

Pesticide consumption per
unit of cultivated land area t/thousand hm2 0.0150 0.0125 0.0011 0.0644

Proportion of irrigated area hm2/hm2 0.5206 0.2487 0.1313 1.2355

Amount of primary
industry labor force per unit

cultivated land area
10 person/hm2 0.1242 0.0572 0.0181 0.3364

Agricultural machinery
power per unit cultivated

land area
10 kw/hm2 0.7158 0.3935 0.1261 1.8449

Desirable outputs

Gross agricultural output
value per unit cultivated

land area

thousand
CNY/hm2 36.76 32.70 35.20 206.11

Agricultural carbon sink per
unit cultivated land area t/hm2 4.283 2.060 0.839 9.623

Undesirable output
Agricultural carbon

emission per unit cultivated
land area

t/hm2 3.089 3.267 0.158 13.876

Three output indicators of agricultural gross output, carbon emissions, and carbon
sinks per unit cultivated land area are selected in this paper. The desirable output includes
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agricultural gross output and carbon sink per unit. According to the study of Li et al. [39],
the formula for agricultural carbon sequestration is as follows:

carbon =
k
∑
i

md

md = m f Dw = m f ×
(1−r)Nw

Hi

(11)

In Equation (11), carbon represents the carbon absorption of crops. i represents the ith
crop type. md is the carbon absorption of crops throughout their entire growth period. k
represents the number of crop categories. mf is the carbon required for the synthesis of unit
organic matter in crops. Dw is the biological yield of the crop. Nw is the economic yield of
crops. Hi is the economic coefficient of the i th crop. r is the moisture content of the crop
economic product. These are shown in Table 2.

Table 2. Economic coefficients and carbon absorption rates of major crops in China.

Crop Varieties mf Hi r (%) Crop Varieties mf Hi r (%)

Rice 0.4144 0.45 12 Rapeseed Flower 0.4500 0.25 10
Wheat 0.4853 0.40 12 Peanut 0.4500 0.43 10
Corn 0.4709 0.40 13 Sugarcane 0.4500 0.50 50
Beans 0.4500 0.35 13 Sugar Beet 0.4072 0.70 75
Tubers 0.4226 0.65 10 Tobacco 0.4500 0.55 85
Cotton 0.4500 0.10 8 Vegetable 0.4500 0.60 90

Carbon emissions from farmland use are regarded as an undesirable output. Based
on the studies of Tian and Zhang [40] and Guo and Zhang [41], carbon emissions in our
study included two parts: CO2 and N2O emissions, and CH4 emissions from cultivated
land use. CO2 and N2O emissions are generated from the inputs of carbon source factors
such as fertilizer, pesticide, agricultural diesel fuel, agricultural plastic films, and plowing.
The measurement of carbon emissions is as follows:

E = ∑ Ei = ∑ Wi × δi (12)

E represents the total carbon emissions during arable land utilization. Ei is the carbon
emissions generated from the ith carbon source. Wi is each carbon source factor. δi refers to
the emission coefficient of the ith carbon source. Table 3 presents the specific coefficients.

Table 3. Main carbon source coefficients of cultivated land use.

Carbon Sources Coefficients Units

Fertilizers 0.8956 kg/kg
Pesticides 4.9341 kg/kg

Agricultural Diesel Fuel 0.5927 kg/kg
Agricultural Plastic Films 5.180 kg/kg

Plowing 312.6 kg/km2

Irrigation 266.48 kg/hm2

CH4 emissions refers to the methane released from rice fields. The methane emissions
from rice cultivation are regarded as an important carbon source. Owing to variations
in water and thermal conditions across different regions of China, the timing of rice
transplantation and growth cycles varies, leading to the categorization of rice into distinct
types such as early rice, medium rice, and late rice. Different types of rice fields release
different level of methane. Referring to the study of Li and Wang [42], in Equation (13), it
represents the total methane emissions from rice. Ai refers to the sowing area of different
types of rice. γi represents the methane coefficient.
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CH4 =
n

∑
i=1

Ai × γi (13)

2.2.2. Driving Factors

The LCUE in China is the result of multiple factors acting together, including socio-
economic factors, natural factors, cultivated land resource endowment, and institutional
factors [21]. Considering the accessibility and effectiveness of data, we selected eleven
driving factors to construct a driven indicator system of LCUE, and the descriptive analysis
of driving factors is displayed in Table 4. In terms of the socioeconomic factors, the
promotion of straw returning (SRT), agricultural technicians (AT), urbanization rate (UR),
irrigation index (IR), and per capital grain output value (GOV) are selected. SRT and AT
both reflect the level of technological progress in farmland utilization [43]. UR reveals
the impact of institutional factor changes and factor flows on cultivated land use, which
is related to rural land systems [44]. IR provides insights into the efficiency of water
usage in agricultural practices. GOV is an important indicator reflecting food security and
agricultural economic benefits, revealing the agricultural output level [45,46].

Table 4. Variable definition and measurement.

Category Variable Definition Measurement Mean Standard
Deviation Minimum Maximum

Socio economic
factors

Promotion of straw
returning technology

(X1-SRT)

The promotion scale of
mechanized straw

returning to the field
(thousand hm2)

1063.54 1579.67 0.00 7239.17

Agricultural
technicians (X6-AT)

Number of agricultural
technicians (person) 22,730.96 14,751.04 2186.00 184,461.25

Urbanization rate
(X7-UR)

Urban population/Total
population (%) 0.5238 0.1556 0.1389 0.8960

Irrigation index
(X8-IR)

Effective irrigation
area/Cultivated land area

(%)
0.5260 0.2459 0.1345 1.1914

Per capita grain
output value
(X10-GOV)

Total output value of
agriculture, forestry,

animal husbandry and
fishing/Number of

employees in the primary
industry (Yuan/Person)

29,888.36 19,205.52 5591.96 95,751.10

Natural factors

Affected area (X4-AF) Affected area/total
planting area of crops (%) 0.2181 0.1549 0.0000 0.9359

Precipitation (X5-PR) Annual average
precipitation (m) 0.0029 0.0015 0.0006 0.0064

Cultivated land
resource endowment

Per capita arable land
area (X9-ALA)

Cultivated land
area/Total rural

population (hm2/Person)
25.0142 23.5857 3.3039 160.4048

Multiple cropping
index (X11-MC)

Crop planting
area/Cultivated land area

(%)
1.2656 0.3916 0.5659 2.3567

Institutional factors

Land consolidation
project (X2-LCP)

Amount of land
consolidation project 324.82 620.30 0.00 3877.00

Investment in
environmental

pollution control
(X3-EPC)

Investment in
environmental pollution
control/Gross domestic

product (%)

0.0136 0.0078 0.0003 0.0462

From the perspective of natural factors, affected area (AF) and precipitation (PR) are
selected. AF can help us to assess the extent of damage to crops and estimate potential yield
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loss by natural disaster. The larger the affected scale, the greater the difficulty of farmland
restoration. PR is the main factor leading to agricultural drought or water logging, which
can easily affect soil microbial biomass and damage the farmland quality [47].

In terms of cultivated land resource endowment, per capita land area (ALA) reflects
the agricultural land occupation and reveals the pressure of the population on cultivated
land resources [48]. The multiple cropping index (MC) can better reflect the intensity of
farmland utilization [49].

From the perspective of the institutional factors, land consolidation project (LCP)
and investment in environmental pollution control (EPC) are selected. LCP is a variable
that measures the implementation of the farmland protection system, which has been
a regulatory mechanism for the sustainable utilization of farmland [50]. EPC provides
convenient infrastructure, water conservancy facilities, and other low-carbon services,
including the treatment of wastewater, waste, and exhaust gases [51].

2.3. Study Area and Data Sources

We used 30 provinces in China (except Tibet) to conduct empirical research from 2002
to 2021. We divided China into its four regions: Eastern, Central, Western, and Northeastern
regions. The relative variables in the MinDS-U model in China can be directly obtained from
the China Rural Statistical Yearbook (2002–2022) (CRSY), the China Statistical Yearbook
(2002–2022) (CSY), and the China Agricultural Statistical Report (2002–2022) (CASR). All
influencing factors are from the China Machinery Industry Yearbook from 2002 to 2022,
China Environmental Statistics Yearbook from 2002 to 2022, China Science and Technology
Statistical Yearbook from 2002 to 2022, China Fiscal Yearbook from 2002 to 2022, China
Land and Resources Statistical Yearbook, China Rural Management Statistical Annual
Report, and Chinese Academy of Sciences Data Center for Resources and Environmental
Sciences. We chose the interpolation method to complete the missing data.

3. Results
3.1. Spatiotemporal Patterns of LCUE
3.1.1. Temporal Characteristics of LCUE

We calculated the LCUE in each province from 2001 to 2021, as shown in Table 5.
Overall, the LCUE values of six provinces improved rapidly, including Shanxi, Ningxia,
Jiangxi, Hebei, and Xinjiang. Shanxi Province vigorously promotes the construction of
high-standard farmland and conducts regular monitoring of farmland quality. The organic
matter content of farmland soil has thus significantly increased. Ningxia added a total of
223,300 acres of cultivated land in the past five years. At the end of 2022, the average quality
grade of cultivated land in Ningxia reached 6.79. The area of desertification continued to
decrease. The LCUE values in eight provinces showed negative growth from 2001 to 2021.
These provinces were Tianjin, Hunan, Liaoning, Qinghai, Heilongjiang, Shanghai, Guizhou,
and Beijing. Economically developed areas in Beijing and Shanghai can easily convert
farmland into construction land. The Northeast China provinces of Heilongjiang and
Liaoning pay more attention to grain production and neglect the protection of cultivated
land. Due to its specific geographical location and complex topography, high-quality
farmland is scarce in Guizhou Province, and it is difficult to manage, control, and protect
newly added farmland.

Figure 1 shows the changing trend of LCUE at different levels between 2001 and 2021.
The provinces with LCUE larger than 1.100 have changed significantly, from zero in 2001 to
three provinces in 2011, including Qinghai, Hebei, and Ningxia Provinces, and reduced
to one province in 2021, namely Gansu. Provinces with high levels of LCUE are mainly
concentrated in the northwest region, mainly due to the lack of water resources in the
northwest and a stronger awareness of farmland protection. The number of provinces with
LCUE lower than 1.000 has been declining year by year, and LCUE with a low level has
continued to decrease since 2016, from eight provinces to one province, namely Guizhou.
Guizhou is mainly mountainous and hilly. As non-agricultural land increases, the area of
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cultivated land continues to shrink. Overall, provinces with mid-level LCUE ranging from
1.000 to 1.099 account for the highest proportion in each period.

Table 5. Changes in LCUE in each province from 2001 to 2021.

Region Province 2001 2006 2011 2016 2021

Northeast
Heilongjiang 1.0455 1.0423 1.0365 0.9735 1.0000

Jili 0.9846 1.0000 1.0287 1.0000 1.0347
Liaoning 1.0481 1.0049 1.0847 1.0476 1.0202

East

Beijing 1.0001 1.0175 1.0677 0.9495 0.8989
Tianjin 1.0442 0.9242 1.0416 1.0552 1.0210
Hebei 0.9347 1.0064 1.1054 1.0945 1.0537

Shanghai 1.0481 1.0418 1.0570 0.9721 1.0000
Jiangsu 1.0198 0.9983 0.9901 1.0303 1.0310

Zhejiang 0.9960 0.9815 0.9616 1.0659 1.0000
Fujian 1.0066 0.9833 1.0291 1.0107 1.0417

Shandong 0.9590 0.9937 1.0338 1.0781 1.0360
Guangdong 0.9739 0.9918 1.0178 1.0340 1.0440

Hainan 1.0336 1.0129 1.0271 1.0483 1.0611

Central

Shanxi 0.8674 1.0187 1.0541 1.1307 1.0601
Anhui 0.9746 1.0351 1.0203 0.9780 1.0147
Jiangxi 0.8932 0.9698 0.9692 1.0146 1.0306
Henan 0.9704 1.0260 1.0381 1.0494 1.0385
Hubei 0.9761 0.9626 1.0330 1.0134 1.0301
Hunan 1.0568 0.9802 1.0569 1.0062 1.0326

West

Inner
Mongolia 0.9596 1.0025 1.0621 0.9962 1.0000

Guangxi 0.9742 0.9933 1.0082 1.0054 1.0007
Chongqing 0.9418 0.9210 0.9959 0.9888 1.0369

Sichuan 0.9374 0.9668 1.0029 1.0160 1.0159
Guizhou 1.0268 1.0740 0.9393 0.9737 0.9724
Yunnan 1.0033 0.9995 1.0254 0.9559 1.0120
Shaanxi 0.8674 1.0187 1.0541 1.1307 1.0601
Ganxu 1.0350 0.9664 1.0247 1.0663 1.1101

Qinghai 1.0484 0.9952 1.1250 1.0551 1.0205
Ningxia 0.9077 1.0545 1.1036 1.07301 1.0759
Xinjiang 0.9752 0.9942 1.0575 1.0176 1.0783

Table 6 shows the average value of LCUE of Eastern, Central, Western, and Northeast-
ern China. There are significant differences in different areas. The average values of LCUE
in the Northeast, East, Central, and West are 1.0089, 1.0175, 1.0134, and 1.0138. In compari-
son, the LCUE value in the eastern region is 0.3% higher than the national average, and the
LCUE value in the Northeastern region is 0.5% lower than the national average. We can see
that the Northeast region has the lowest LCUE, which means many non-environmentally
friendly farming technologies are promoted in Northeast China, causing the growth rate of
the ideal output to be lower than that of the undesirable output [52]. In comparison, the
EC and TC values in the Northeast are 0.37% and 0.63% lower than the national average,
indicating the economic gap between the Northeast region and other regions, which limits
the ability to introduce advanced technologies. The promotion and application of green
and low-carbon technologies and equipment in the Northeast need to be improved. The TC
values in the central and eastern regions are 0.07% and 0.13% higher than the national aver-
age, indicating that economically developed regions promote the use of green technology
and clean energy and have stronger environmental governance constraints.
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Table 6. The average value of LCUE of Eastern, Central, Western, and Northeastern China.

Northeast East Central West National

LCUE 1.0089 1.0175 1.0134 1.0139 1.0145
EC 1.0005 1.0041 1.0078 1.0029 1.0042
TC 1.0091 1.0168 1.0162 1.0156 1.0155

Change rate of
LCUE −0.0055 0.0030 −0.0011 −0.0006 —

Change rate of EC −0.0037 −0.0001 0.0036 −0.0013 —
Change rate of TC −0.0063 0.0013 0.0007 0.0001 —

Table 7 represents the annual growth rate of LCUE in different regions from dynamic
perspectives, which describe the progress of provinces towards the production frontier.
Green and low-carbon development cannot rely on high investment to achieve high growth.
It must achieve high growth while saving carbon source input, which mainly depends
on the LCUE. We found that the annual growth rate of LCUE in the eastern, central, and
Western regions is more than 0. However, the annual growth rate of LCUE in the Northeast
is lower than 0. The results imply that the provinces in the Northeast focus on the economic
profits of farmland utilization and ignore the ecological benefits.

Table 7. The annual growth rate of LCUE from 2001 to 2021.

LCUE EC TC

Northeast −0.0004 0.0000 −0.0004
East 0.0008 0.0020 −0.0016

Central 0.0037 0.0008 0.0027
West 0.0028 −0.0009 0.0037

In terms of the decomposition of LCUE, the growth rates of technical efficiency change
in the Eastern, Central, Western, and Northeastern regions are 0.20%, 0.08%, −0.08%
and 0, and the growth rates of technical progress in the Eastern, Central, Western, and
Northeastern regions are −0.16%, 0.27%, 0.37%, and −0.04%, respectively. Besides the
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central region, the annual average growth rate of technical efficiency changes and technical
progress in other regions shows a significant opposite trend, which confirms the famous
Solow paradox. Some scholars have reached the same conclusions [14]. Overall, the Eastern
region is mainly driven by technical efficiency change, the Western region is mainly driven
by technical progress, the central region is driven by both technical efficiency changes
and technical progress, and the technology-driven effect in the Northeastern region is
not obvious.

3.1.2. Spatial Autocorrelation Analysis of LCUE

Considering the adjacent characteristics of 30 provinces, we utilize a “0–1” adjacency
matrix to indicate the relationship between two provinces, signifying that they are neighbors
and that their borders are interconnected. We have presented scatter plots of Moran’s I for
30 provinces in 2001, 2006, 2011, 2016, and 2021, as shown in Figure 2, which reveals the
global spatial autocorrelation of LCUE at different points. During this period, the Moran’s
I of LCUE transitioned from negative to positive, indicating that the degree of aggregation
of LCUE between adjacent provinces changed from weak to strong. The Moran’s I values
in 2001 and 2006 were both negative, and the p value failed the significance test, indicating
that a regional coordinated carbon reduction mechanism has not yet been formed. The
positive spatial correlation between adjacent provinces gradually increased after 2011, and
the p value was less than 0.01. Significant positive correlation means that an increase in the
LCUE in a certain province will lead to an increase in the LCUE in adjacent provinces. The
low-carbon utilization of cultivated land is definitely not accomplished by one province
independently, and it requires neighboring provinces to work together to enhance the
spatial agglomeration effect. Table 8 shows the representative numbers and abbreviations
of each province.

Table 8. Province abbreviation.

1—Beijing (BJ) 7—Jilin (JL) 13—Fujian (FJ) 19—Guangdong (GD) 25—Yunnan (YN)
2—Tianjin (TJ) 8—Heilongjiang (HLJ) 14—Jiangxi (JX) 20—Guangxi (GX) 26—Shaanxi (SC)
3—Hebei (HB) 9—Shanghai (SH) 15—Shandong (SD) 21—Hainan (HN) 27—Gansu (GS)
4—Shanxi (SX) 10—Jiangsu (JS) 16—Henan (HN) 22—Chongqing (CQ) 28—Qinghai (QH)

5—Inner Mongolia (INN) 11—Zhejiang (ZJ) 17—Hubei (HB) 23—Sichuan (SC) 29—Ningxia (NX)
6—Liaoning (LN) 12—Anhui (AH) 18—Hunan (HN) 24—Guizhou (GZ) 30—Xinjiang (XJ)

3.1.3. Spatiotemporal Patterns of LCUE

Figure 3 shows the spatial patterns of LCUE at the province level from 2001 to 2021. It
can be seen that regions with LCUE higher than 1.034 increased gradually, while regions
with LCUE lower than 0.966 decreased. Before 2011, the spatiotemporal evolution trend of
LCUE fluctuated greatly. After 2011, the coverage areas of high-level LCUE were relatively
fixed, mainly concentrated in the Central region and some western provinces, such as the
Gansu and Shaanxi Provinces, which exhibit distinct agglomeration distribution features.
Among them, central regions such as Hebei and Henan have stronger radiation driving
effects. Overall, from 2001 to 2021, the LCUE gap in most regions gradually narrowed,
showing a trend of coordinated growth.



Agriculture 2024, 14, 526 13 of 26Agriculture 2024, 14, x FOR PEER REVIEW 14 of 28 
 

 

 

Figure 2. Moran’s I of LCUE in China in (a) 2001, (b) 2006, (c) 2011, (d) 2016, and (e) 2021. 

Table 8. Province abbreviation. 

1—Beijing (BJ) 7—Jilin (JL) 13—Fujian (FJ) 19—Guangdong (GD) 25—Yunnan (YN) 

2—Tianjin (TJ) 8—Heilongjiang (HLJ) 14—Jiangxi (JX) 20—Guangxi (GX) 26—Shaanxi (SC) 

3—Hebei (HB) 9—Shanghai (SH) 15—Shandong (SD) 21—Hainan (HN) 27—Gansu (GS) 

4—Shanxi (SX) 10—Jiangsu (JS) 16—Henan (HN) 22—Chongqing (CQ) 28—Qinghai (QH) 

5—Inner Mongolia (INN) 11—Zhejiang (ZJ) 17—Hubei (HB) 23—Sichuan (SC) 29—Ningxia (NX) 

6—Liaoning (LN) 12—Anhui (AH) 18—Hunan (HN) 24—Guizhou (GZ) 30—Xinjiang (XJ) 

  

Moran scatterplot (Moran's I = -0.014)
MI

W
z

z
-3 -2 -1 0 1 2

-1

0

1

4

14

29
3
23

22
26

15

5

161920

12
30

17

7
11

1

25

13 10

24

21

27 2

8
6
928

18

Moran scatterplot (Moran's I = -0.070)
MI

W
z

z
-3 -2 -1 0 1 2 3

-1

0

1

22

2

1727

2314

18

11

13

19
20
15

30
28

10

25

7
5

6

3 21
26

1

4
16

12

9

8 29

24

Moran scatterplot (Moran's I = 0.096)
MI

W
z

z
-3 -2 -1 0 1 2 3

-1

0

1

24

11

14

10

22

23

20

26

19
12

27

25

21

7

13
17

15

8

16

2

4

18

9

30
5

1
6

293

28

Moran scatterplot (Moran's I = 0.114)
MI

W
z

z
-2 -1 0 1 2

-1

0

1

2

24

7

12

29
22

8

23

6

10

30

9

26

5

3

2

20

15

19

25

27

17

16
4

28

13

21

14

1
18

11

Moran scatterplot (Moran's I = 0.138)
MI

W
z

z
-4 -3 -2 -1 0 1 2 3

-2

-1

0

1

2

7

1

6

22

1218
242623

27

16
3
15

10 14
11

8

5

20

429
28

17

30

2

13 19

9

25

21

2001(a) 2006(b) 

2011(c) 2016(d) 

2021(e) 

Figure 2. Moran’s I of LCUE in China in (a) 2001, (b) 2006, (c) 2011, (d) 2016, and (e) 2021.
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3.2. The Driving Factors of Spatiotemporal Variation in LCUE in China
3.2.1. Factor Detection Results

The results in Figure 4 are the q values in 2001, 2006, 2011, 2016, and 2021. The
significance of driving factors is shown in Table 9 by the geographical detector model, which
represents the driving strength affecting the space/time evolution of LCUE. As we know,
the impacts of SRT and AT are gradually weakening. The q value of SRT and AT decreases
from 0.289 to 0.0496, and the q value changes from significant to insignificant from 2001 to
2021. The results reveal that the promotion of straw returning technology faces problems
such as high technical threshold, long payback period, and insufficient supervision, which
have a negative impact on LCUE. It is urgent to increase the demonstration and promotion
of conservation tillage technology. UR, IR, and GOV become the dominant factors driving
the LCUE from 2001 to 2021. The q values of UR, IR, and GOV gradually increase, meaning
the p value is always significant. The results mean that the urbanization level promotes
the flow of urban and rural factors and improves the factor allocation efficiency. Complete
irrigation facilities are critical in improving soil fertility and productivity. The increase
in unit grain output value strengthens the demand for the protection of cultivated land
fertility. Compared to other socio-economic factors, UR and GOV are the dominant factors
in 2021.

For the natural factors, the q value of AF shows a downward trend from 2001 to 2021.
The q value of PR increases from 0.0414 to 0.1085, as the year increases from 2001 to 2021, and
passes 10% significance. The impact of PR on the spatiotemporal differentiation of LCUE
gradually increases over time, indicating that precipitation can maintain appropriate soil
moisture, improve soil aeration and water retention, and stimulate the carbon sequestration
effect of farmland.

In terms of arable land resource endowment, the influencing strength of ALA and
MC increases from 0.0729 to 0.1540, and from 0.064 to 0.1774 in 2001–2021, which passes
5% significance. ALA became the dominant factor driving LCUE in 2021, indicating that
large-scale land management facilitates the embedding of agricultural social services to
achieve modern production. In terms of institutional factors, the driving force of LCP
showed an inverted U-shaped change. The q value of LCP was the largest in 2016 and
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then showed a downward trend. The possible reason is that the State Council issued
the “National Land Planning Outline” in 2016 to make specific arrangements for soil
pollution prevention and control. Afterwards, the role of LCP weakened, and its policy
effect may be replaced by other policies, such as “Action Plan for Reduction of Chemical
Fertilizers and Pesticides”. The influencing strength of EPC decreases from 0.249 to 0.1271
in 2001–2021, which demonstrates a downward trend. Environmental pollution control
requires multi-department collaboration, including the agricultural sector, land policy
sector, environmental protection sector, etc. Investment in environmental pollution control
focuses more on industrial pollution control or urban environmental control, and it is easy
to ignore the protection of the rural environment.
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Table 9. LCUE factor detection results.

Driving
Factors

2001 2006 2011 2016 2021

q p q p q p q p q p

X1 (SRT) 0.2890 0.000 0.1072 0.0000 0.0064 0.8886 0.1252 0.0025 0.0496 0.2848
X2 (LCP) 0.0570 0.0717 0.2721 0.0000 0.3526 0.0000 0.0550 0.1402 0.0105 0.8836
X3 (EPC) 0.2490 0.0000 0.0378 0.3535 0.1429 0.0000 0.0466 0.1861 0.1271 0.0000
X4 (AF) 0.0381 0.1602 0.0551 0.2266 0.0891 0.0038 0.0065 0.8833 0.0105 0.8659
X5 (PR) 0.0414 0.0951 0.0682 0.1074 0.4537 0.0000 0.3644 0.0000 0.1085 0.0023
X6 (AT) 0.1485 0.0000 0.0363 0.4287 0.1654 0.0000 0.0941 0.0064 0.0785 0.0376
X7 (UR) 0.1918 0.0000 0.0872 0.0129 0.1715 0.0000 0.1903 0.0000 0.1591 0.0000
X8 (IR) 0.2586 0.0000 0.0516 0.2138 0.1051 0.0116 0.0952 0.0189 0.1374 0.0028

X9 (ALA) 0.0729 0.0289 0.0706 0.0615 0.1326 0.0000 0.1769 0.0000 0.1540 0.0000
X10 (GOV) 0.0734 0.0115 0.3196 0.0000 0.2492 0.0000 0.0851 0.0243 0.1533 0.0000
X11(MC) 0.0664 0.0408 0.0245 0.5603 0.1668 0.0000 0.0463 0.1547 0.1174 0.0000
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Based on the above analysis, the impacts of socioeconomic factors and cultivated land
resource endowment factors for LCUE are gradually higher than the institutional factors
and natural factors. We conclude that differentiated farmland protection policies cannot
ignore the differences in economic level and land resource endowments in each region.

3.2.2. Direction and Intensity of Spatial and Temporal Variation in Influencing Factors

From the average impact level, AT, MC, and AF have less single explanatory power
for LCUE during the study period. We chose SRT, LCP, EPC, PR, UR, IR, ALA, and GOV to
analyze the spatial and temporal variation in LCUE using the GTWR model.

Figure 5 shows that in 2001, straw returning technology (SRT) had a negative impact
on LCUE in the Western region and had a significant promoting effect on the Northeastern
region. From 2001 to 2011, the negative impact of SRT gradually expanded from the west
to the east. However, in 2016, the negative impact of SRT narrowed and the positive
impact expanded, including Heilongjiang Province and some eastern provinces. This may
be related to the policy of pilot projects for the protection and utilization of black soil in
Northeast China. The demonstration and promotion of conservation farming technology
are important measures to protect soil fertility. In 2021, the impact of SRT on LCUE was
relatively stable, and the positive impact was mainly concentrated in major grain-producing
areas such as the Heilongjiang, Shandong, and Henan provinces. The main grain-producing
areas bear the important task of ensuring national food security. The granting of technical
subsidies for straw returning technology can effectively reduce the cost of technology
application and improve the ecological benefits of cultivated land. The spatiotemporal
non-stationarity of SRT became strong after 2011.
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The impact of the land consolidation project (LCP) is shown in Figure 6. In 2001, the AT
had a significant negative impact on the Northeastern and Western regions. The negative
effects gradually expanded from the west to the central to the east from 2001 to 2021. The
positive effect of LCP fluctuated greatly before 2011, and then it became more stable from
2016 onwards. The positive effects of LCP are mainly concentrated in the Anhui and
Jiangsu provinces. The above results may be related to the incomplete multi-departmental
coordination mechanism and the lack of guaranteed funds for land consolidation. The
spatiotemporal non-stationarity of LCP increases, and the number of negatively affected
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provinces gradually increases. Comprehensive rural land consolidation based on urban
and rural coordination still faces huge challenges and requires the cooperation of fund
management, diversified financing, ownership adjustment, and other systems [53].
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Figure 7 shows that the positive effects of environmental pollution control (EPC)
covered a large number of provinces in 2001. However, the negative effects of EPC increased
in 2006, mainly concentrated in the central and Western regions. In 2011, the negative
effects in the central region still existed. In 2016, the positive effects of EPC in the Western
region became prominent. From 2016 to 2021, compared with the Western region, the
positive effects of EPC in the central region, including Henan, Hebei, Beijing, and Tianjin,
gradually increased. It can be seen that the spatiotemporal non-stationarity of EPC in the
central and Western regions is very strong. The above results reveal that environmental
pollution control is closely related to the economic level of the province. Environmental
pollution control mainly focuses on industrial pollution control and urban infrastructure
construction [54]. Most of the central regions are provinces with developed secondary and
tertiary industries, which have large investments in environmental pollution control.

Figure 8 shows the spatiotemporal non-stationarity of precipitation (PR) decreases.
From 2001 to 2021, PR always had a significant negative impact on the Western region. The
Western region has an arid climate, with low rainfall and extremely uneven distribution
throughout the year. The serious misallocation of water and land resources resulted in
serious land salinization and desertification. The positive effect of PR on South China
has always been stable. South China has many islands and sufficient rainfall, which is
extremely critical for maintaining soil fertility. The above data show that natural resources
such as water and air play irreplaceable roles in agricultural production, and a poor natural
environment affects LCUE.
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Figure 9 shows that from 2001 to 2006, the positive effects of urbanization (UR) were
mainly concentrated in the East, Northeastern regions, and Beijing. After 2006, the positive
effects of UR in the East and in Beijing were stable. This shows that the level of regional
economic development is positively correlated with urbanization. Jiangsu, Zhejiang, Shang-



Agriculture 2024, 14, 526 19 of 26

hai, and Beijing are all first-tier cities with developed economies. The rapid flow of urban
and rural factors has promoted a large amount of industrial and commercial capital to
the countryside to develop rural tourism and other industries, improving the economy
while protecting the ecological environment. Before 2011, the negative effects of UR in
the central and Western regions were prominent, indicating that the levels of urban/rural
integration in the central and Western regions need to be improved urgently. From 2016 to
2021, the negative impact of urbanization on the central and Western regions weakened,
which is inseparable from the country’s strategic deployment of new urbanization. The 18th
National Congress of the Communist Party of China proposed to promote the “integration
of urban and rural development”, which plays a key role in the efficient allocation of rural
land resources.
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Figure 10 shows the spatiotemporal non-stationarity of irrigation (IR) increases. From
2001 to 2011, IR had a significant positive effect on the Xinjiang and Jiangsu provinces
and a significant negative effect on other Western regions. Xinjiang is a typical arid inland
area. With the construction of major water conservancy projects, the area of water-saving
irrigation continued to expand, and the comprehensive benefits and utilization rate of
farmland improved. From 2016 to 2021, the area covered by the positive effects of IR
changed significantly, shifting from the Eastern regions to the Western and Northeastern
regions such as Shaanxi, Ningxia, Sichuan, and Heilongjiang. This may be related to the
“National High-Standard Farmland Construction Plan” released by the government in
2021. The government emphasizes that focusing on permanent basic farmland and food
production functional areas strengthens the construction of water-saving projects in areas
lacking water resources.

Figure 11 shows that from 2001 to 2021, the spatiotemporal non-stationarity of arable
land area (ALA) decreased. The positive effects of ALA have always been concentrated
in Inner Mongolia and Heilongjiang Province. It can be seen that Inner Mongolia and
Heilongjiang are provinces with larger cultivated land areas in the country. This larger
cultivated land area promotes the intensive utilization of factors and carbon reduction [55].
The negative effects of ALA have always been concentrated in the eastern provinces of
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Zhejiang, Fujian, and Guangdong. These provinces have small cultivated land areas, and
their economic development mainly relies on the secondary and tertiary industries, paying
less attention to agricultural production.
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Figure 12 shows the spatiotemporal impact of grain output value (GOV) on LCUE,
and the spatiotemporal non-stationarity of the GOV increases. In 2001, GOV’s positive
impact was concentrated in Inner Mongolia, Heilongjiang, and Jilin provinces. From 2006
to 2021, the negative impact of GOV on LCUE in Western regions continued to weaken and
gradually shifted to positive effects, such as in Shaanxi, Shanxi, Chongqing, and Sichuan.
By 2021, GOV had significant positive effects on LCUE in cities in the Northeast and in
some Western regions, which means that an increase in unit output value helps to stimulate
environmental benefits. In comparison, the substantial increase in grain output value
was mostly at the expense of the ecological environment in most areas. Large amounts of
pesticide and chemical fertilizer investment have caused serious agricultural non-point
source pollution [56]. Policies for the coordinated development of food security and
ecological security need to be improved urgently in the East and central regions.
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4. Discussion
4.1. Analysis of Regional Differences in LCUE

Our findings revealed that the LCUE value in the Eastern region is 0.3% higher than
the national average value, and the LCUE value in the Northeastern region is 0.5% lower
than the national average. This result is consistent with Chai et al. [20] and Ke et al. [57].
Existing research found that the quantity and quality of black soil in Northeast China
have declined and that large amounts of pesticides and fertilizers have been invested in
pursuit of high yields, resulting in agricultural non-point source pollution and a decline
in soil fertility [58]. The total amount of agricultural carbon emissions in the Northeast
region ranks among the top, which is mainly related to the farming method and large-
scale mechanization [59]. Compared with other regions, the economic development of
the Northeast region lags behind, and the high cost of green technology application limits
sustainable agricultural development. The applications of low-carbon technology and
clean agricultural machinery need to be supported by policies and funds in the Northeast
region. We found that the average LCUE value in the central region is higher than that in
other regions, which is related to the active implementation of farmland protection policies
and high-standard farmland construction [14]. Most of the central regions are major grain-
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producing provinces, and agricultural land improvement projects have been vigorously
implemented to effectively prevent yield losses caused by droughts and floods [60] and
increase grain production while protecting the quality of cultivated land. In our study, we
found the number of provinces in the Western region with higher LCUE to be gradually
increased, and this finding is similar to that of Kuang et al. [36]. Although the Western
region has a complex terrain and harsh climate conditions, provinces such as Chongqing,
Sichuan, and Gansu have actively introduced advanced low-carbon technologies and
strived to narrow the gap with other regions. These areas have strictly implemented the
zoning and classification use control system and resolutely prevented the conversion of
cultivated land into non-grain and non-agricultural land [61].

4.2. Driving Mechanism of LCUE Spatiotemporal Variation

Consistent with previous studies [62], the positive effect of UR on the spatiotemporal
differentiation of LCUE is mainly concentrated in the eastern provinces. This is because
the economy of Jiangsu, Zhejiang, and Fujian provinces has developed rapidly and the
flow of factors between urban and rural areas is faster. A large number of migrant laborers
can promote the intensive and professional management of cultivated land [63]. Areas
with a developed economy attract a large amount of industrial and commercial capital
to the village, increasing farmers’ income while taking into account ecological benefits.
However, the acceleration of urbanization will also bring about the expansion of rural
construction land, concentrated in Hebei and Shandong [64], which is consistent with
our research. Economically developed areas must pay attention to the losses caused by
destroying environmental resources.

Existing research has found that the application of green technology can help to reduce
agricultural carbon emission intensity, especially for major grain-producing areas [65].
This is similar to our research results. We found that SRT has a significant positive effect
on LCUE in major grain-producing provinces such as Heilongjiang, Shandong, Anhui,
and Henan, which is mainly due to the larger cultivated land area and the sound grain
subsidy mechanism.

Previous research has shown that the interaction results and the synergy of climate
change with other factors on spatial differentiation have become stronger and stronger over
time [66]. Our study shows that PR has strong explanatory power for LCUE, especially in
coastal and surrounding areas, such as the Zhejiang, Guangdong, and Fujian provinces,
which is due to sufficient rainfall in coastal areas as this helps to ensure soil fertility and
enhance the carbon sink effect of the land.

IR has an increasing effect on LCUE in the Western region, which is consistent with
the research results of Liu et al. [67]. The Western regions face serious water shortage,
so artificial irrigation is necessary. The efficient supply of water conservancy facilities
and long-term management and funding of irrigation facilities will promote the green
transformation of cultivated land [36]. In our study, the positive effects of ALA have
always been concentrated in the main grain producing areas such as Inner Mongolia and
Heilongjiang provinces, which are areas with larger cultivated land areas and complete
cultivated land protection measures. The expansion of cultivated land promotes the optimal
allocation of resources and technological progress [53].

This study shows that the positive effects of EPC on the LCUE in the central region,
including Henan, Hebei, Beijing, and Tianjin, have gradually increased, indicating that
environmental pollution control is closely related to the economic level of the province [54].
This is due to environmental pollution control which is a public good with obvious ex-
ternalities and depends on the governance decisions of local governments. The scale of
government fiscal expenditures in economically developed areas has increased, ensuring
the sustainable investment of funds.
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5. Conclusions

This paper uses the MinDS-U-M productivity index to calculate the LCUE based on
data from the 31 provinces, from 2001 to 2021, in China. We explore the driving strength of
influencing factors on the spatial and temporal distribution of LCUE with the geographical
detector model and GTWR model. The results are as follows: (1) Notable differences
in LCUE exist across different regions, but the LCUE gap in most regions is gradually
narrowed. In comparison, the LCUE value in the Eastern region is 0.3% higher than the
national average, and the LCUE value in the Northeastern region is 0.5% lower than the
national average. The above results imply that the Northeastern region relies more on
high investment to achieve high economic growth, and the promotion of green low-carbon
technology needs to be improved. (2) According to the geographic detector model, the
influence of UR, IR, GOV, PR, and ALA on the LCUE gradually increased. The driving
force of LCP shows an inverted U-shaped change. (3) The GTWR model shows that the
spatiotemporal non-stationarity of LCP, EPC, IR, and GOV gradually increases. This is
because LCP, EPC, and IR are multi-sector collaborative projects, and the sustainability of
capital investment and a long-term supervision mechanism for farmland utilization are
still incomplete. The spatiotemporal non-stationarity of SRT, PR, UR, and ALA gradually
decreased from 2001 to 2021. It can be seen that the areas covered by the positive effects of
SRT, PR, UR, and ALA have common features. On the one hand, these areas may be major
grain-producing areas with large land plots, which will help to promote the technology
of returning straw to fields. On the other hand, these areas may be located in the eastern
coastal areas, with superior geographical location and economic advantages, promoting
the integrated development of urban and rural areas. The above results illustrate that it
is necessary to create a differentiated cultivated land protection system based on the land
endowment and the economic conditions of each region.

There are still some limitations in our study. First, there are obvious regional differ-
ences and spatial correlations in the LCUE on the provincial level. However, as time passes,
the low-carbon utilization of cultivated land will remain a dynamic process of change,
and the internal driving mechanism of low-carbon transformation of cultivated land will
also change. The construction of a low-carbon utilization index system of cultivated land,
on the country level, needs to be further deepened. Second, we analyzed the driving
factors of LCUE during different periods and their interactive effects. On this basis, further
exploration is needed on the driving mechanisms of the main factors, and we can obtain a
more innovative theoretical analysis framework. Third, we conducted a detailed analysis
of LCUE, and the arable land ecosystem that achieves the dual goals of food security and
agricultural green transformation should be established.
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