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Abstract: The reference evapotranspiration (ET0) information is crucial for irrigation planning and
water resource management. While the Penman-Monteith (PM) equation is widely recognized for ET0

calculation, its reliance on numerous meteorological parameters constrains its practical application.
This study used 28 years of meteorological data from 18 stations in four geographic regions of Taiwan
to evaluate the effectiveness of an artificial intelligence (AI) model for estimating PM-calculated ET0

using limited meteorological variables as input and compared it with traditional methods. The AI
models were also employed for short-term ET0 forecasting with limited meteorological variables.
The findings suggested that AI models performed better than their counterpart methods for ET0

estimation. The artificial neural network using temperature, solar radiation, and relative humidity as
input variables performed best, with the correlation coefficient (r) ranging from 0.992 to 0.998, mean
absolute error (MAE) ranging from 0.07 to 0.16 mm/day, and root mean square error (RMSE) ranging
from 0.12 to 0.25 mm/day. For short-term ET0 forecasting, the long short-term memory model
using temperature, solar radiation, and relative humidity as input variables was the best structure
to forecast four-day-ahead ET0, with the r ranging from 0.608 to 0.756, MAE ranging from 1.05 to
1.28 mm/day, and RMSE ranging from 1.35 to 1.62 mm/day. The percentage error of this structure
was within ±5% for most meteorological stations over the one-year test period, underscoring the
potential of the proposed models to deliver daily ET0 forecasts with acceptable accuracy. Finally,
the proposed estimating and forecasting models were developed in regional and variable-limited
scenarios, making them highly advantageous for practical applications.

Keywords: artificial neural network; long short-term memory; reference evapotranspiration;
Penman-Monteith equation; limited meteorological variables

1. Introduction

With the escalation of the global population and the concomitant rise in water demand,
effectively managing limited water resources while sustaining productivity has become
an important issue in agriculture today [1]. Consequently, assessing crop water demand
has become crucial to achieving a precise allocation of water resources [1,2]. Crop water
demand can be obtained from the product of reference evapotranspiration (ET0) and crop-
specific coefficients [2,3]. Moreover, ET0 can serve to characterize local climatic conditions
or aid in calculating drought indices for drought monitoring [4–6]. Therefore, an accurate
estimation of ET0 is essential for irrigation planning and water resource management.

ET0 is defined as the evapotranspiration of a hypothetical crop with a plant height
of 0.12 m, a fixed surface resistance of 70 s/m, and an albedo of 0.23 [7]. Although

Agriculture 2024, 14, 510. https://doi.org/10.3390/agriculture14040510 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture14040510
https://doi.org/10.3390/agriculture14040510
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0001-7310-3498
https://orcid.org/0000-0001-5144-9586
https://doi.org/10.3390/agriculture14040510
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture14040510?type=check_update&version=1


Agriculture 2024, 14, 510 2 of 20

ET0 can be measured by a lysimeter, the use of this instrument in practical applications
is typically constrained by cost and operational intricacies, making it more suitable for
research purposes [8,9]. Conversely, the approach of using the meteorological data recorded
by weather stations to establish ET0 equations through mathematical and physical theories
is a more practical avenue for application [10].

Among the existing ET0 equations, the Penman-Monteith (PM) equation stands out
as the most renowned [11,12]. The PM equation is deduced based on energy balance
and water vapor diffusion, and it also considers crop canopy resistance and aerodynamic
resistance. Since the laws of physics do not change from location to location, the physics-
based PM equation is sufficient as a basis for estimating ET0 globally when high-quality
meteorological data can be obtained [13]. Therefore, the PM equation was recommended
as a standard method for estimating ET0 in the FAO-56 report of the Food and Agriculture
Organization (FAO) of the United Nations in 1998. Subsequent sensitivity analyses and
regional assessments have confirmed the applicability of the PM equation across diverse
environments [10,13]. However, the application of the PM equation requires many me-
teorological parameters including, solar radiation (Rs), mean air temperature (T), mean
relative humidity (RH), and mean wind speed at 2 m above ground (u2). The construction
and maintenance of corresponding sensors can be expensive. In addition, it is difficult
to collect reliable meteorological data in some regions, or some parameters cannot be
achieved [14]. Therefore, developing methods that could accurately estimate ET0 using a
subset of meteorological variables had value from either a cost or practical perspective.

Three strategies have been developed to address the absence of requisite parameters
for the PM equation, including using PM-alternative equations, estimating the lacking
meteorological variable(s), and estimating the ET0 based on artificial intelligence (AI)
algorithms. The FAO recommends initially estimating the lacking meteorological variable
and then plugging the estimate into the PM equation [13], an approach known as the
reduced-set PM (RPM) [15,16]. There are also PM-alternative equations such as Hargreaves-
Samani (HS), Makkink, and Turc equations that require fewer meteorological variables and
are easier to compute than the PM equation. However, the performance of these equations
varies from location to location, so they generally require local calibration, which limits the
applicability of alternative models [17]. Recently, various AI-based substitution approaches
to the PM equation have been reported.

Since evapotranspiration is a nonlinear and complex phenomenon, deriving a for-
mula capable of encapsulating all relevant physical phenomena becomes a challenge [18].
Therefore, neural networks have emerged as a prominent tool, owing to their capacity to
delineate input-output relationships without necessitating an intricate understanding of un-
derlying physical mechanisms [19–21]. Antonopoulos and Antonopoulos [22] employed an
artificial neural network (ANN) with a limited set of input variables to estimate daily ET0.
Their ANN models yielded values of correlation coefficient (r) ranging from 0.952 to 0.978
and 0.910 to 0.956 when utilizing three input variables (T-RH-Rs) and two input variables
(T-Rs or T-RH), respectively. Ferreira et al. [10] evaluated the efficacy of ANN and a support
vector machine in daily ET0 estimation in Brazil using temperature and RH or tempera-
ture alone, concluding that adding temperature and RH data from four previous days as
input for the ANN model had the best performance. Chen et al. [23] evaluated the perfor-
mance of three deep learning methods, i.e., deep neural network, temporal convolution
neural network (TCN), and long short-term memory (LSTM), for daily ET0 estimation
with incomplete meteorological variables, showing that the TCN and LSTM models con-
sistently outperformed PM-alternative equations across all tested scenarios. With recent
advancements in AI, a variety of hybrid algorithms have been proposed to increase the
accuracy of stand-alone algorithms [17]. Sharma et al. [24] proposed a convolutional neural
network-LSTM (CNN-LSTM) for ET0 estimation using limited meteorological variables,
surpassing the performance of existing PM-alternative equations such as HS and Makkink.
Xing et al. [25] introduced a hybrid model named D-LSTM, which integrated the deep belief
network (DBN) module for feature extraction from meteorological data and the LSTM
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module for sequential feature processing. The D-LSTM model synergistically leveraged the
strengths of DBN and LSTM, achieving superior performance in daily ET0 estimation with
incomplete meteorological variables on the Loess Plateau.

In addition to estimating ET0 from past and current periods, forecasting ET0 in ad-
vance can help optimize irrigation scheduling [26,27], for example, to improve timely
irrigation scheduling and water resource management [28]. Although monthly or yearly
ET0 forecasting aids in the middle- to long-term irrigation planning, daily ET0 forecasting
is particularly advantageous for short-term irrigation management, especially for systems
requiring high-frequency irrigation [27]. However, daily ET0 forecasting is more complex
than monthly or yearly forecasting since the daily ET0 data fluctuates more [17]. Many stud-
ies have employed forecasted meteorological data as inputs into the ET0 equation (e.g., HS)
to achieve ET0 forecasting [15,27]. However, the efficacy of such a method hinges on the
forecasting accuracy of the meteorological data [11,29], as any biases in meteorological
variable forecasting can result in systematic errors in daily ET0 forecasts [15,29]. Another
way to address this challenging task is to use AI algorithms, e.g., LSTM, to deal with the
sequential data. Ferreira and da Cunha [26] utilized CNN-LSTM with past ET0 values and
meteorological variables as inputs to forecast ET0 seven days in advance. Roy et al. [30]
incorporated past ET0 values as inputs into the bi-directional LSTM to forecast five-day-
ahead ET0. However, the use of past ET0 values may not be suitable for scenarios with
limited variables, as it necessitates ET0 calculation beforehand. Yin et al. [31] developed
the hybrid bi-directional LSTM (Bi-LSTM) with three meteorological inputs (maximum
temperature, minimum temperature, and sunshine duration), which outperformed the ad-
justed HS method for short-term (1–7-day lead time) daily ET0 forecasting. Zhang et al. [16]
demonstrated the effectiveness of the LSTM model in the short-term (1–7 days ahead) daily
ET0 forecasting across diverse climate zones in China. Despite the growing interest in
forecasting ET0, the literature on this topic with data over 20 years is limited [16,26,30,31].

Taiwan has abundant rainfall, around 2000 mm per year, but the amount of available
water per person is only one-sixth of the global average. This discrepancy arises from the
geographical characteristics of Taiwan, characterized by short and steep rivers, leading
to rapid rainfall discharge into the sea with uneven rainfall patterns across the regions
and seasons. This variability makes the utilization and management of water resources
more difficult. Considering that agricultural irrigation accounts for more than 60% of
Taiwan’s water resources usage, accurate estimation and forecasting of ET0 could help
in the determination of the water requirements for crop cultivation to make informed
decisions regarding water management. Therefore, this study used about three decades of
meteorological data collected from stations across Taiwan to (1) evaluate the effectiveness
of ANN in estimating ET0 using limited meteorological variables as inputs compared to
the two traditional methods; (2) use LSTM and CNN-LSTM to conduct short-term ET0
forecasting with limited variables based solely on historical meteorological data.

2. Materials and Methods
2.1. Study Area and Meteorological Data Collection

Taiwan Island is situated in the northwestern Pacific Ocean, spanning latitudes be-
tween 22–25◦ N and longitudes between 120–122◦ E. Taiwan Island can be broadly divided
into four geographic regions, namely, the northern, central, southern, and eastern regions.
Northern and central Taiwan have a subtropical monsoon climate, whereas southern Tai-
wan has a tropical monsoon climate. Due to the numerous high mountains in Taiwan, some
areas have the characteristics of a temperate climate.

Daily meteorological data, including T, maximum air temperature, minimum air tem-
perature, RH, Rs, u2, and mean atmospheric pressure were collected from 18 meteorological
stations across the four geographic regions between 1 January 1995 and 31 December 2022.
These meteorological stations are located within the primary crop cultivation zones of each
geographic region (Figure 1). The original meteorological data were downloaded from



Agriculture 2024, 14, 510 4 of 20

the website of the Central Weather Administration of Taiwan (https://agr.cwa.gov.tw/,
accessed on 18 January 2024).
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Figure 1. Spatial distribution of the 18 meteorological stations utilized in this study.

2.2. Data Processing and PM-ET0 Calculation

The total missing rate of the original dataset was about 10%. The missing values in the
dataset were imputed with the same day-of-the-year average [32] for each station. After
missing value imputation, the PM equation (Equation (1)) [7] was used to calculate daily
ET0. A summary of the meteorological characteristics of the studied stations is presented
in Table 1.

ET0 =
0.408∆(Rs −G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

es = 0.6108× exp
(

17.27T
T + 273.3

)
(2)

ea = es ×
RH
100

(3)

https://agr.cwa.gov.tw/
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4 = 4098× es

(T + 273.3)2 (4)

γ = 0.00163× P
2.45

(5)

where Rs represents the solar radiation (MJ/m2/day); G denotes the soil heat flux density
(MJ/m2/day); T is the mean air temperature (◦C); u2 indicates the mean wind speed at
2 m height (m/s); es stands for the saturation vapor pressure (kPa); ea is the actual vapor
pressure (kPa);4 denotes the slope of the vapor pressure curve (kPa/◦C); γ indicates the
psychrometric constant (kPa/◦C); RH represents the mean relative humidity (%); and P is
the mean atmospheric pressure (kPa) [33,34]. Because G is typically negligible compared to
Rs, it is assumed to be zero on a daily scale.

Table 1. Summary of the meteorological characteristics of each station. The mean and standard
deviation (SD) of each station were calculated using the daily data from 1995 to 2022.

Region Station
T (◦C) RH (%) u2 (m/s) Rs (MJ/m2/day) ET0 (mm/day)

Mean SD Mean SD Mean SD Mean SD Mean SD

Northern 72C440 22.27 5.36 80.85 9.40 3.94 1.95 12.97 7.39 4.19 2.23
72D080 17.32 4.80 88.31 9.64 0.50 0.24 9.83 6.03 2.74 1.76
82A750 20.06 5.33 85.94 10.01 1.45 1.21 10.43 8.00 3.11 2.38
82C160 21.56 5.53 82.30 9.86 2.89 1.50 11.76 7.15 3.71 2.23
K2E360 22.23 5.39 82.30 9.19 2.36 1.32 13.18 6.34 4.04 2.02

Central 72G600 23.39 4.93 80.54 7.83 1.99 0.92 11.60 5.32 3.72 1.64
72K220 23.38 4.81 81.22 7.40 1.87 0.82 12.35 5.00 3.88 1.57
72M360 23.59 4.83 82.76 7.89 3.02 1.22 15.03 5.86 4.51 1.77
82H840 21.52 4.38 87.25 11.13 0.91 0.46 12.69 5.26 3.64 1.59
G2F820 23.52 4.73 81.67 7.31 2.21 0.92 12.53 5.72 3.94 1.78
U2H480 17.05 3.55 89.49 6.32 1.06 0.35 9.24 3.97 2.49 1.08

Southern 72Q010 24.98 3.80 78.70 8.45 1.45 0.63 12.35 6.40 4.02 1.95
B2N890 23.71 4.49 82.31 7.08 1.82 0.82 12.19 5.18 3.80 1.58
B2Q810 25.34 3.11 77.25 7.93 4.12 1.65 16.40 6.54 5.47 1.80

Eastern 72S200 22.50 4.02 81.18 8.02 1.51 0.47 8.72 4.85 2.88 1.54
72S590 22.43 3.76 86.26 8.85 1.30 0.69 7.84 5.31 2.48 1.58
72T250 22.92 4.24 81.50 6.77 1.13 0.54 10.56 6.67 3.34 2.01
72U480 22.45 4.99 83.44 8.36 1.82 0.76 11.64 7.67 3.63 2.36

T: mean air temperature; RH: mean relative humidity; u2: mean wind speed at 2 m height; Rs: solar radiation;
ET0: reference evapotranspiration.

2.3. Daily ET0 Estimation under Variable-Limited Conditions
2.3.1. Use of PM-Alternative Equations

When it is difficult to obtain certain meteorological variables, other equations that
do not require as many meteorological variables as the PM equation can be used to es-
timate ET0 [33,35]. The HS (Equation (6)) [36], Makkink (Equation (7)) [37], and Turc
(Equation (8)) [35] are three commonly used PM-alternative equations. The HS equation
only requires observed temperature data, while the Makkink equation requires both T and
Rs data. Conversely, the Turc equation needs T, Rs, and RH data.

ET0 = 0.0023
Ra

2.45
(T + 17.8)

√
(Tmax − Tmin) (6)

ET0 = 0.61
(

Rs

2.45
∆

∆ + γ

)
− 0.12 (7)
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ET0 =

 0.013(23.88Rs + 50)
(

T
T+15

)
, if RH ≥ 50%

0.013(23.88Rs + 50)
(

T
T+15

)(
1 + 50−RH

70

)
, if RH < 50%

(8)

where T is the mean air temperature (◦C); Tmin and Tmax are the minimum and maximum
temperature (◦C), respectively; Rs denotes solar radiation (MJ/m2/d); 4 represents the
slope of the vapor pressure curve (kPa/◦C) and can be achieved by Equation (4); γ indicates
the psychrometric constant (kPa/◦C) and can be calculated by Equation (5); RH stands for
the mean relative humidity (%); and Ra is extraterrestrial radiation (MJ/m2/day) which
can be obtained by latitude and day of year (DoY) as follows [34]:

Ra =
1440
π

Gscd2
r [ωssin(lat)sin(δ) + cos(lat)cos(δ)sin(ωs)] (9)

where Gsc is the solar constant and equals 0.0820 MJ/m2/min; dr stands for the Earth-
Sun inverse relative distance; d2

r = 1 + 0.033cos
( 2π

365 DoY
)
; lat represents latitude (rad)

(negative for the southern hemisphere); δ denotes the solar declination (rad), δ = 0.409sin( 2π
365 DoY− 1.39

)
; andωs is the sunset hour angle (rad),ωs = arcos[−tan(lat)tan(δ)].

2.3.2. Estimation of Lacking Meteorological Variables in RPM Approach

Meteorological variables that are readily accessible and reliably measured can be used
to estimate the lacking meteorological variables required for the PM equation. When the
observed RH data are unattainable, the ea can be estimated by Equation (10). Equation (11)
offers an estimation method for Rs in the absence of observed radiation data. The regional
or global average wind speed (2 m/s) can be used as a substitute when the u2 is not
measured [33,38].

Ea = 0.611× exp
(

17.27Tmin

Tmin + 237.3

)
(10)

Rs = kRs

√
Ra(Tmax − Tmin) (11)

where ea is the actual vapor pressure (kPa); Tmin and Tmax are the minimum and maximum
temperature (◦C), respectively; kRs denotes the adjustment coefficient that needs to be
locally calibrated; and Ra represents extraterrestrial radiation (MJ/m2/day) calculated by
Equation (9).

This study used 28-year meteorological data to calibrate the average wind speed (used
to substitute the u2) and kRs (required to estimate Rs), which are specific for each geographic
region (Table 2). The different values in each geographic region reflect the distinction in
climate conditions among the four regions.

Table 2. Results of the calibration of the average wind speed and kRs.

Region ˆkRs û2

Northern 0.13 2.23
Central 0.12 1.84

Southern 0.15 2.46
Eastern 0.10 1.44

ˆkRs : estimated adjustment coefficient kRs; û2: estimated mean wind speed at 2 m height.

2.3.3. ANN Models

The typical ANN architecture comprises an input layer for data introduction, one or
more hidden layers for data processing, and an output layer for generating the final
results [17]. The basic operation of ANN is as follows: initially, data are inputted into the
network’s input layer, where each input variable is represented by a neuron. Subsequently,
the information in each neuron is weighted and summed, with the resulting weighted
sum serving as input for the subsequent layer. Finally, the output is converted through



Agriculture 2024, 14, 510 7 of 20

an activation function such as the logistic and hyperbolic tangent commonly used in
hydrological research [19]. After the model is constructed, the ANN measures the difference
between the model output and the reference value through a loss function, iteratively
adjusting the weights until it finds a set of weights that minimize the loss function value.

This study employed feed-forward multilayer perceptron ANNs and an Adam train-
ing algorithm. The ratio of training data commonly used in machine learning is 60%
to 80% [10,16,31]; therefore, the 28 years of daily data from each meteorological station
were randomly split into three parts for model training (70%), validation (15%), and testing
(15%), respectively. The training set was used to develop the ANN model and optimize the
model parameters. The validation set served to assess overfitting during the training stage,
and the testing set evaluated the generalizability of the developed model. Next, data from
all stations within the same geographic region were pooled to construct ANN models for
each region.

The following hyperparameter combinations were evaluated: the number of epochs
was 50, and the batch size was 32. The hyperbolic tangent function was used as an activation
function [19], and the type of loss function was the mean square error. The model becomes
more complex as the number of hidden layers and units increases, thereby increasing
the computational cost and causing overfitting. Additionally, increasing the number of
neurons is not always good [39]; therefore, this study assessed the number of hidden layers
ranging from 1 to 3 layers and the number of hidden units ranging from 10 to 200 with a
step size of 10. The learning rate was set to 0.001. Additionally, a patience value of 5 was
set [40,41], indicating that if there is no improvement in the validation error after 5 epochs,
the training process would be stopped to prevent overfitting. The T, RH, and Rs were used
as input variables, and the PM-calculated ET0 was the output variable (Figure 2). The
input variables were standardized using Equation (12) to ensure a uniform contribution
from each feature before training and testing [31,42]. Four combinations of input variables
were explored: (1) T, (2) T and Rs, (3) T and RH, and (4) T, Rs, and RH. The ANNs were
implemented using Tensorflow2.6 based on Python (version 3.7), and the standardization
was implemented using the StandardScaler function in the sklearn.preprocessing package
based on the scikit-learn module. The best combination of the number of hidden layers
and hidden units was determined by grid search. The final hyperparameter configurations
of the ANN models using different input variable combinations for each geographic region
are summarized in Table 3. The data are standardized as follows:

xs =
xo − x

SD
(12)

where xo and xs are values before and after the standardization, respectively. x and SD are
the mean and standard deviation of the data, respectively.

Table 3. The hyperparameter values with different input combinations for each geographic region.

Inputs
Variables

Number of Hidden Layers/Number of Hidden Units

Northern Central Southern Eastern

T 3/170 2/200 2/140 2/110
T, Rs 1/190 1/170 1/180 1/180
T, RH 1/140 1/170 1/160 1/120

T, Rs, RH 1/180 1/200 1/150 1/160
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2.4. Short-Term Forecasting Daily ET0 under Variable-Limited Conditions

Since LSTM can capture and model temporal dependencies, it is widely used for
processing time-series data [43]. A neuron in the LSTM model comprises a cell state and
three gates: the input gate (it), forget gate (ft), and output gate (Ot), enabling selective
retention or modification of information. The general LSTM structure is shown in Figure 3a
and its computing steps can be described as the following equations:

it = σ(Wi·[ht−1, xt] + bi) (13)

ft = σ
(
Wf·[ht−1, xt] + bf

)
(14)

∼
Ct = tanh(WC·[ht−1, xt] + bC) (15)

Ct = ft � Ct−1 + it �
∼
Ct (16)

Ot = σ(Wo·[ht−1, xt] + bo) (17)

ht = Ot � tanh(Ct) (18)

where
∼
Ct is the cell state candidate; Ct denotes the new cell state; ht is the hidden state

vector; xt represents the input vector; Wi, Wf, WC, and Wo stand for the weight matrices;
bi, bf, bC, and bo are the bias vectors; σ(·) is the sigmoid function; tanh(·) represents the
hyperbolic tangent function; and � denotes the element-wise product [31,40,44].

In CNN-LSTM architecture, the convolution layer is employed for extracting features
from input data, and the extracted features are subsequently fed into LSTM layers for
processing information with sequential features. The convolution layers extract salient
features automatically, with a one-dimensional (1D) convolutional layer typically used for
sequential data or time series [26]. In the CNN-LSTM model, an input layer is followed by
a 1D convolutional layer; subsequently, the output of the convolutional layer undergoes
further processing through LSTM layers, and finally, the model concludes with an output
layer in the form of a dense layer.

A 90%–5%–5% split [40] was used to allow the models to learn complex patterns,
so the 28 years of daily data from each meteorological station were sequentially divided
into three parts: training (1 January 1995 to 13 March 2020), validation (14 March 2020
to 6 August 2021), and testing (7 August 2021 to 31 December 2022). Subsequently, the
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data of all stations belonging to the same geographic region were pooled to construct ET0
forecasting models for each region. In this study, the past meteorological variables were
used as inputs to forecast four-day-ahead ET0, and three combinations of input variables
were examined: (1) T and Rs, (2) T and RH, and (3) T, Rs, and RH. A standardization process
(Equation (12)) was used to ensure an equal contribution from each feature. The model
structure comprised one 1D convolution layer, one 1D max pooling layer, one to three LSTM
layers, and one densely connected NN layer (Figure 3b). The following hyperparameter
combinations were evaluated: the number of epochs was 50, and the batch size was 32. The
hyperbolic tangent function was used as the activation function [19], and the mean square
error was used as the loss function. The number of hidden units was set from 10 to 200
with a step size of 10, the learning rate was set to 0.001, and the optimizer used the Adam
algorithm. This study chose a 90%–5%–5% split percentage to establish models, but this
extreme split could increase the risk of overfitting. Therefore, a dropout rate of 0.4 [40] and
a patience value of 5 for early stopping [40,41] were set to prevent overfitting. The models
were developed using Tensorflow2.6 based on Python (version 3.7), and the standardization
was implemented using the StandardScaler function. In this study, the best combination
of the number of hidden layers and hidden units was determined by grid search. The
final hyperparameter configurations for the LSTM and CNN-LSTM models using different
combinations of input variables for each geographic region are summarized in Table 4.
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Table 4. The hyperparameter values of the ET0 forecasting models with different input combinations
for each geographic region.

Algorithm Inputs
Variables

Number of LSTM Layers/Number of LSTM Units

Northern Central Southern Eastern

LSTM
T, Rs 1/160 3/110 3/150 1/180
T, RH 3/70 2/160 3/200 2/70

T, Rs, RH 1 /110 2/110 3/200 1/190

CNN-LSTM
T, Rs 1/170 3/180 3/180 3/200
T, RH 2/10 3/190 3/180 1/30

T, Rs, RH 1/190 2/180 3/140 2/120
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2.5. Performance Comparison Criteria

The performance of each method was evaluated using three standard statistical metrics:
the r, mean absolute error (MAE), and root mean square error (RMSE). The value of r ranges
between −1 and 1, serving as an indicator to evaluate the linear relationship between the
predicted and observed values. MAE and RMSE quantify the bias between the predicted
value and the observed value, with values ranging from 0 to infinity. A higher r, along with
a lower MAE and RMSE, signifies a more accurate prediction.

r = ∑n
i=1 (oi − o)(pi − p)√

∑n
i=1(oi − o)2

√
∑n

i=1(pi − p)2
(19)

MAE =
∑n

i=1|oi − pi|
n

(20)

RMSE =

√
∑n

i=1(oi − pi)
2

n
(21)

where n is the number of observations in the testing set for the AI algorithms (ANN, LSTM,
and CNN-LSTM) and the total number of 28-year data for other methods; oi is the observed
value (the PM-calculated ET0); pi is the predicted (estimated or forecasted) ET0 value by
the other methods; and o and p are the mean of oi and pi, respectively.

3. Results and Discussion
3.1. Evaluation of ET0 Estimation Approaches under Variable-Limited Conditions
3.1.1. Performance of ET0 Estimation Methods

This study used 28 years of meteorological data from 18 stations distributed across
the four geographic regions of Taiwan to evaluate the efficacy of various ET0 estimation
approaches under variable-limited conditions (Table 5). Regarding the alternative equations,
the r between HS-estimated ET0 and PM-calculated ET0 ranged from 0.444 to 0.735, with
MAE ranging from 0.95 to 1.41 mm/day and RMSE from 1.22 to 1.85 mm/day. For the
Makkink equation, the r ranged from 0.972 to 0.990, MAE ranged from 1.33 to 1.93 mm/day,
and RMSE ranged from 1.53 to 2.08 mm/day. The Turc equation performed the best among
the three PM-alternative equations, with the r ranging from 0.984 to 0.997, MAE ranging
from 0.50 to 0.84 mm/day, and RMSE ranging from 0.68 to 1.03 mm/day.

Table 5. Assessment of daily ET0 estimation methods across different geographic regions. The results
highlighted in bold indicate a superior performance.

Method’s Name
Variables

Need
Observed

Northern Central Southern Eastern

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

HS T, Tmax, Tmin 0.735 1.22 1.56 0.699 0.95 1.22 0.444 1.41 1.85 0.685 1.22 1.50
Makkink T, Rs 0.978 1.50 1.75 0.980 1.52 1.67 0.972 1.93 2.08 0.990 1.33 1.53

Turc T, Rs, RH 0.989 0.68 0.89 0.992 0.59 0.74 0.984 0.84 1.03 0.997 0.50 0.68

RPM (T) T 0.735 2.42 3.04 0.698 2.44 2.84 0.357 2.87 3.39 0.719 2.12 2.72
RPM (T, u2) T, u2 0.674 2.47 3.07 0.631 2.46 2.85 0.468 2.99 3.47 0.645 2.13 2.72
RPM (T, Rs) T, Rs 0.975 0.33 0.49 0.980 0.28 0.36 0.953 0.41 0.59 0.990 0.21 0.27
RPM (T, RH) T, RH 0.804 2.44 3.03 0.704 2.59 2.96 0.610 2.81 3.28 0.706 2.17 2.77

RPM (T, u2, Rs) T, u2, Rs 0.976 0.28 0.48 0.983 0.24 0.33 0.952 0.38 0.61 0.992 0.18 0.25
RPM (T, u2, RH) T, u2, RH 0.655 2.40 3.00 0.616 2.56 2.94 0.527 2.82 3.28 0.614 2.15 2.76
RPM (T, Rs, RH) T, Rs, RH 0.995 0.14 0.24 0.996 0.09 0.16 0.990 0.18 0.27 0.998 0.07 0.12

ANN (T) T 0.701 1.25 1.56 0.616 1.04 1.32 0.543 1.36 1.68 0.731 1.04 1.32
ANN (T, Rs) T, Rs 0.979 0.27 0.45 0.983 0.21 0.31 0.977 0.30 0.43 0.991 0.19 0.25
ANN (T, RH) T, RH 0.828 0.94 1.23 0.744 0.87 1.12 0.710 1.12 1.40 0.803 0.88 1.15

ANN (T, Rs, RH) T, Rs, RH 0.994 0.14 0.24 0.996 0.10 0.15 0.992 0.16 0.25 0.998 0.07 0.12
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Regarding the RPM approach, it does not perform well when only considering the
temperature, i.e., RPM (T), as evidenced by r ranging from 0.357 to 0.735, MAE ranging
from 2.12 to 2.87 mm/day, and RMSE ranging from 2.72 to 3.39 mm/day (Table 5). For
the combination of two variables, RPM (T, Rs) performed the best, with r ranging from
0.953 to 0.990, MAE ranging from 0.21 to 0.41 mm/day, and RMSE ranging from 0.27 to 0.59
mm/day; in contrast, RPM (T, u2) performed the worst, with r ranging from 0.468 to 0.674,
MAE ranging from 2.13 to 2.99 mm/day, and RMSE ranging from 2.72 to 3.47 mm/day.
In the RPM model with three variables, the accuracy of estimating ET0 is the worst when
the Rs variable is not included in the model, with r of RPM (T, u2, RH) ranging from
0.527 to 0.655, MAE ranging from 2.15 to 2.82 mm/day, and RMSE ranging from 2.76 to
3.28 mm/day. However, the lack of u2 has the most negligible impact on accuracy within
the three-variable model, as evidenced by r of RPM (T, Rs, RH) ranging from 0.990 to 0.998,
MAE ranging from 0.07 to 0.18 mm/day, and RMSE ranging from 0.12 to 0.27 mm/day.

In terms of the application of ANN to establish the ET0 estimation models, the com-
binations of (T, Rs) and (T, Rs, RH) demonstrated a favorable performance, with r rang-
ing from 0.977 to 0.998, MAE ranging from 0.07 to 0.30 mm/day, and RMSE ranging
from 0.12 to 0.45 mm/day (Table 5). The performance of the proposed ANN models is
similar to that of ANN using the same input variables reported in Antonopoulos and
Antonopoulos [22]. In addition, the performance of the ANN (T) model is compara-
ble to that of the HS equation, with r ranging from 0.543 to 0.731, MAE ranging from
1.04 to 1.36 mm/day, and RMSE ranging from 1.32 to 1.68 mm/day.

3.1.2. Comparison of Different ET0 Estimation Methods and Inputs Combination

The results in Table 5 revealed that irrespective of the approach employed, using the
combination of T, Rs, and RH (e.g., Turc, RPM (T, Rs, RH) and ANN (T, Rs, RH)) achieved
the best results, characterized by r above 0.984 with MAE and RMSE values below 0.84 and
1.03 mm/day, respectively. Notably, both RPM (T, Rs, RH) and ANN (T, Rs, RH) slightly
outperformed the Turc equation. Conversely, the performance of each approach is poor
when only considering the temperature in the model (e.g., HS, RPM (T), and ANN (T)),
especially in southern Taiwan. For the case when only temperature data were available,
the HS equation and ANN (T) exhibited equally poor performance, but with noticeably
lower MAE values compared to RPM (T). Yang et al. [15] conducted a comparison between
the HS equation and RPM (T), concluding that the HS equation outperformed RPM in
subtropical regions. Similarly, Córdova et al. [45] reported that the HS equation performed
slightly better than RPM (T), but still yielded an unsatisfactory result.

The results in Table 5 indicate that accurate ET0 estimates can still be achieved even
without u2. Therefore, as mentioned by Córdova et al. [45], the absence of u2 was not a major
source of error in humid climates. The role of u2 in ET0 calculation is subject to two main
perspectives: some argue that it is a decisive factor due to the potential for measurement
errors, while others contend that u2 does not have much impact on ET0 [17]. Nevertheless,
Fisher et al. [46] stated that wind speed plays an important role in modeling the complex
nonlinear behavior of ET0. Furthermore, Makwana et al. [47] found that the performance
of the ANN model could be significantly improved in windy regions by including wind
speed and Tmax, with r and MAE values of 0.91 and 0.59 mm/day, respectively.

Temperature and radiation are considered essential inputs to estimate ET0 [22,24];
therefore, including observed Rs in the ET0 calculation generally yields satisfactory results,
except that the Makkink equation exhibits higher MAE and RMSE values (Table 5). RH is an
important variable in estimating ET0 in humid regions [17], such as Taiwan. Consequently,
the Makkink equation, which does not incorporate RH information, performs poorly. How-
ever, RPM (T, Rs) also lacks observed RH data, but the information about RH is estimated by
Equation (10), hence it can still perform well. Conversely, methods lacking Rs observations
perform poorly (Table 5). Even though the RPM approach estimates the absent Rs infor-
mation through Equation (11), its performance remains unsatisfactory. Córdova et al. [45]
observed that estimating Rs based on Equation (11) yielded poor results in humid condi-
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tions for the RPM approach. Sentelhas et al. [12] discovered that when the actual Rs falls
below 20 MJ/m2/day, Equation (11) tends to systematically overestimate radiation. Given
that Taiwan exhibits a humid climate with Rs values less than 20 MJ/m2/day (Table 1), this
could account for the suboptimal performance of RPM in this study.

This study aimed to evaluate the effectiveness of ANN in estimating ET0 using lim-
ited meteorological variables. Traore et al. [48] noted that the ANN model fed with only
temperature data performed better than the HS equation, which included some radiation
information by using Ra as inputs. In this study, the ANN (T) model yielded r ranging
from 0.543 to 0.731, MAE ranging from 1.04 to 1.36 mm/day, and RMSE ranging from
1.32 to 1.68 mm/day (Table 5). Notably, the ANN (T) model exhibited superior perfor-
mance compared to RPM (T) and demonstrated comparable efficacy to the HS equation.
In scenarios involving two input variables, the ANN (T, RH) model exhibited r ranging
from 0.710 to 0.828, MAE ranging from 0.87 to 1.12 mm/day, and RMSE ranging from
1.12 to 1.40 mm/day; the ANN (T, RH) performed better than RPM (T, RH). On the other
hand, the ANN (T, Rs) model demonstrated r ranging from 0.977 to 0.991, MAE ranging
from 0.19 to 0.30 mm/day, and RMSE ranging from 0.25 to 0.45 mm/day, surpassing
both RPM (T, Rs) and the Makkink equation. When T, RH, and Rs data are available,
the ANN (T, Rs, RH) model exhibited r ranging from 0.992 to 0.998, MAE ranging from
0.07 to 0.16 mm/day, and RMSE ranging from 0.12 to 0.25 mm/day. The ANN (T, Rs, RH)
model performed better than the Turc equation and showed comparable performance to
RPM (T, Rs, RH). These findings underscore the superior performance of ANN models
compared to traditional methods utilizing the same inputs. Additionally, the performance
of ANN using T and Rs as input variables is comparable with the models using more input
variables, as mentioned by Jain et al. [49].

3.2. Performance of AI Algorithms for the Short-Term Forecasting ET0 with Limited Variables

This study used 28 years of meteorological data from 18 stations in four geographic
regions of Taiwan to construct LSTM and CNN-LSTM models for short-term ET0 forecast-
ing with limited meteorological variables. When considering scenarios with two input
variables, the LSTM (T, RH) model exhibited an r ranging from 0.159 to 0.711, MAE ranging
from 1.29 to 1.60 mm/day, and RMSE ranging from 1.60 to 2.01 mm/day (Table 6). Notably,
the LSTM (T, RH) performed better than CNN-LSTM (T, RH) in the majority of regions.
Similarly, the LSTM (T, Rs) model yielded the values of r ranging from 0.609 to 0.755, MAE
ranging from 1.04 to 1.31 mm/day, and RMSE ranging from 1.35 to 1.62 mm/day, outper-
forming the CNN-LSTM (T, Rs) model. Considering T, RH, and Rs data simultaneously, the
LSTM (T, Rs, RH) model attained the values of r ranging from 0.608 to 0.756, MAE ranging
from 1.05 to 1.28 mm/day, and RMSE ranging from 1.35 to 1.62 mm/day, exhibiting a
superior performance compared to the CNN-LSTM (T, Rs, RH) model (Table 6). Moreover,
the performance of the proposed models was consistent between the training (Table S1)
and testing phases (Table 6) indicating that overfitting did not occur.

Table 6. Testing performance of short-term ET0 forecasting models in each geographic region. Bold
characters indicate better results among the models.

Model’s Name Inputs
Variables

Northern Central Southern Eastern

r MAE RMSE r MAE RMSE r MAE RMSE r MAE RMSE

LSTM (T, Rs) T, Rs 0.746 1.31 1.62 0.743 1.04 1.35 0.609 1.23 1.62 0.755 1.13 1.47
LSTM (T, RH) T, RH 0.711 1.50 1.82 0.606 1.32 1.60 0.159 1.60 2.01 0.691 1.29 1.62

LSTM (T, Rs, RH) T, Rs, RH 0.751 1.28 1.61 0.744 1.05 1.35 0.608 1.23 1.62 0.756 1.12 1.47

CNN-LSTM (T, Rs) T, Rs 0.642 1.55 1.87 0.617 1.29 1.59 0.341 1.45 1.84 0.683 1.31 1.64
CNN-LSTM (T, RH) T, RH 0.612 1.63 1.93 0.476 1.46 1.77 0.336 1.74 2.15 0.557 1.51 1.87

CNN-LSTM
(T, Rs, RH) T, Rs, RH 0.742 1.32 1.63 0.733 1.08 1.37 0.595 1.24 1.64 0.742 1.17 1.51
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For CNN-LSTM models, the expectation is that CNN layers can extract features
from input data, while LSTM layers can capture time patterns to enhance the model’s
capability and achieve higher performance. However, in the present study, the CNN-
LSTM models performed worse than the LSTM models. This finding contrasts with those
of Barzegar et al. [50] and Yin et al. [31], who reported that integrated or hybridized
algorithms outperformed standalone algorithms for ET0 forecasting. Moreover, while
hybrid algorithms can enhance the model performance, the extent of improvement may
not always be substantial [51]. Additionally, hybrid algorithms typically necessitate tuning
more hyperparameters, making them time-consuming during model deployment [17].
Zhang et al. [16] compared LSTM to three novel AI models and found that the LSTM
model marginally outperformed in short-term daily ET0 forecasting across diverse climate
conditions. Considering the computational efficiency and model performance, the LSTM
(T, Rs, RH) was regarded as the best structure in this study.

In evaluating the LSTM (T, Rs, RH) model across various geographic regions for forecast-
ing four-day-ahead ET0 at each meteorological station, the overall trend of the daily ET0 fore-
casting was consistent with the daily ET0 values calculated by the PM equation (Figures 4–7),
underscoring the forecasting ability of proposed models. During the test period lasting more
than one year, the disparity between the cumulative ET0 forecasted by the LSTM (T, Rs, RH)
model and the observed ET0 ranged from −166.05 to 68.12 mm, with most differences within
±5%, except for stations 72D080 and 72S590 (Table 7). The poor performance of the forecasting
models at these two stations may be due to their differing meteorological characteristics from
most stations in the same region (Table 1). Interestingly, there was a large difference between
predicted and observed values in autumn (September–November) (Figures 4–7), which is
different from the previous studies that reported that winter and summer were more prone
to forecasting errors [52,53]. This might be due to Taiwan’s climate conditions suffering the
large meteorological fluctuations affected by typhoons, southwest monsoons, and northeast
monsoons [54]. The model performance could be increased by using the day of the year as
an additional input variable [26] to provide information about seasons or grouping the data
into different seasons to establish a specific model for each season [55]. Future studies should
explore these strategies to refine ET0 forecasting models.

Table 7. Forecasting result of LSTM (T, Rs, RH) models and the cumulative values of model-forecasted
ET0 and the observed PM-calculated ET0 of each station for the test period (7 August 2021 to
31 December 2022).

Region Station Observed ET0 (mm) Forecasted ET0 (mm) Error a/
Percentage Error b

Northern

72C440 2435.03 2333.41 −101.61/−4.17%
72D080 1694.40 1594.58 −99.82/−5.89%
82A750 1679.82 1747.94 68.12/4.06%
82C160 2206.86 2200.66 −6.19/−0.28%
K2E360 2194.46 2163.84 −30.62/−1.40%

Central

72G600 2626.29 2525.82 −100.47/−3.83%
72K220 2516.21 2433.42 −82.79/−3.29%
72M360 2689.00 2567.05 −121.95/−4.54%
82H840 2131.62 2075.59 −56.04/−2.63%
G2F820 2614.64 2525.49 −89.15/−3.41%
U2H480 1396.68 1407.67 10.99/0.79%

Southern
72Q010 3221.07 3063.86 −157.21/−4.88%
B2N890 2493.22 2554.38 61.16/2.45%
B2Q810 2897.23 2845.22 −52.01/−1.80%

Eastern

72S200 2051.92 1974.23 −77.70/−3.79%
72S590 2000.07 1834.02 −166.05/−8.30%
72T250 1963.31 1956.38 −6.93/−0.35%
72U480 1914.17 1933.81 19.64/1.03%

a Error = Forecasted value−Observed value. b Percentage error = Forecasted value−Observed value
Observed value × 100%.
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3.3. Advantages and Limitations of the Proposed Models

This study shows that the AI algorithm can sufficiently estimate and even forecast
ET0 using only a few meteorological variables but its forecasting capabilities could be
improved and tested over longer periods to increase the reliability. Many studies caution
that AI models remain empirical, implying that a model developed for one location may not
generalize well to the other locations [16,19]. Increasing the data variability for modeling
may increase the generalizability of AI models [10,19]. This study developed ET0 estimating
and forecasting models in regional scenarios, i.e., trained with pooled data from several
meteorological stations, to achieve a higher generalization capacity. These regional models
are more readily applicable in practical settings, as a single model can suffice for an entire
region. However, previous studies pointed out that the regional models exhibit lower
accuracy than those developed in localized scenarios due to dissimilarities in the training
data [10,19,56]. To consider the generalizability and performance, the stations could be
grouped based on meteorological characteristics rather than geographical locations, and
then a specific model was built for each cluster [10,57]. This strategy is expected to improve
the performance of proposed regional models at specific stations.
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It must be mentioned that the ANN and LSTM endeavor to mimic the underlying
evapotranspiration process through the link weights and thresholds. However, the black-
box nature of these models impedes their ability to elucidate the relationship between
input and output through explicit expressions [17,19]. Consequently, they cannot supplant
physical mechanisms [16,19]. In addition, climate change affects evapotranspiration, not
only in Taiwan [58,59] but also in other regions [60–67] worldwide. Consequently, a “fixed”
forecasting model may not make accurate predictions in the future [17], so the forecasting
models should be trained with long-term data and continuously adjusted by incorporating
new data through dynamic modeling [17,68]. Furthermore, greenhouse cultivation is
rapidly growing and as the water demand cannot be met through rainfall, it must be
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supplied through irrigation. However, irrigation in greenhouses is often based on a fixed
schedule or the grower’s experience, often leading to insufficient irrigation or excessive
waste of water resources [69]. Utilizing evapotranspiration information to determine
the appropriate timing and amount of irrigation can greatly enhance the precision of
greenhouse cultivation. Most studies estimated or forecasted evapotranspiration under
open-field conditions [70], but applying these models to greenhouse environments resulted
in discrepancies due to the vastly different conditions [70,71]; therefore, future studies
should focus more on estimating and forecasting evapotranspiration within greenhouses.

4. Conclusions

Since ET0 is related to the quantification of crop water demand, the information on
ET0 is useful for irrigation planning and water resources management. However, the
standard method for calculating ET0, the PM equation, is primarily limited by the costs
associated with collecting numerous meteorological parameters. Considering that AI al-
gorithms are known for modeling complex relationships without requiring an in-depth
understanding of underlying physical processes, they have great potential to obtain ET0
information with fewer variables. The results of this study revealed that ANN models
outperformed the traditional methods (RPM and PM-alternative equations) with the same
inputs for ET0 estimation. Particularly, the ANN (T, Rs, RH) exhibited the highest accuracy
(r was 0.992 to 0.998, MAE was 0.07 to 0.16 mm/day, and RMSE was 0.12 to 0.25 mm/day),
while the ANN utilizing T and Rs yielded satisfactory results (r was 0.977 to 0.991, MAE
was 0.19 to 0.30 mm/day, and RMSE was 0.25 to 0.45 mm/day). For the short-term ET0
forecasting, LSTM models performed better than CNN-LSTM models, with LSTM (T, Rs,
RH) demonstrating the best performance in forecasting four-day-ahead ET0 (r ranging
from 0.608 to 0.756, MAE ranging from 1.05 to 1.28 mm/day, and RMSE ranging from
1.35 to 1.62 mm/day). Over the one-year test period, the error percentage of LSTM (T,
Rs, RH) models was within ±5% for most meteorological stations but these models can
be tested over longer periods to increase their reliability. Moreover, the forecasting ca-
pabilities can be further improved by using the day of the year as an additional input
variable or grouping/clustering data. As the proposed ANN and LSTM models were
developed in regional and variable-limited scenarios, they offer practical utility across
the entire region without necessitating the inclusion of all meteorological variables. In
addition, these models may be applied to other regions that have similar conditions to
Taiwan. Future studies can focus more on estimating and forecasting evapotranspiration
within greenhouses. Additionally, it is important to consider the impact of climate change.
Accurate ET0 estimation and forecasting models enable the agricultural sector to determine
irrigation water requirements promptly or in advance. As the models are refined and their
applicability is expanded, they could significantly benefit precise water managing and
irrigation scheduling in crop production.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/agriculture14040510/s1, Table S1. Training performance of short-
term ET0 forecasting models in each geographic region. Bold characters indicate better results among
the models.
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Abbreviations

AI Artificial intelligence
ANN Artificial neural network
CNN-LSTM Convolution neural network long- short-term memory
ea Actual vapor pressure
ET0 Reference evapotranspiration
HS equation Hargreaves-Samani equation
LSTM Long short-term memory
MAE Mean absolute error
PM equation Penman-Monteith equation
r Correlation coefficient
Ra Extraterrestrial radiation
Rs Solar radiation
RMSE Root mean square error
RH Relative humidity
RPM Reduced-set Penman-Monteith
T Mean air temperature
Tmax Maximum temperature
u2 Mean wind speed at 2 m above ground
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