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Abstract: This study introduces a novel high-accuracy fruit fly detection model based on the Trans-
former structure, specifically aimed at addressing the unique challenges in fruit fly detection such as
identification of small targets and accurate localization against complex backgrounds. By integrating a
step attention mechanism and a cross-loss function, this model significantly enhances the recognition
and localization of fruit flies within complex backgrounds, particularly improving the model’s effec-
tiveness in handling small-sized targets and its adaptability under varying environmental conditions.
Experimental results demonstrate that the model achieves a precision of 0.96, a recall rate of 0.95, an
accuracy of 0.95, and an F1-score of 0.95 on the fruit fly detection task, significantly outperforming
leading object detection models such as YOLOv8 and DETR. Specifically, this research delves into and
optimizes for challenges faced in fruit fly detection, such as recognition issues under significant light
variation, small target size, and complex backgrounds. Through ablation experiments comparing
different data augmentation techniques and model configurations, the critical contributions of the
step attention mechanism and cross-loss function to enhancing model performance under these
complex conditions are further validated. These achievements not only highlight the innovativeness
and effectiveness of the proposed method, but also provide robust technical support for solving
practical fruit fly detection problems in real-world applications, paving new paths for future research
in object detection technology.

Keywords: fruit fly detection; deep learning in plants; transformer architecture; step attention mechanism;
cross-loss function

1. Introduction

With global agricultural production facing increasing challenges [1,2], effective pest
control and management have become key factors in enhancing crop yields [3] and ensuring
food safety [4]. Fruit flies, as widely distributed agricultural pests [5], cause significant
damage to fruits and vegetables during their adult developmental stage [6]. Therefore,
the development of an efficient and accurate method for identifying fruit flies, particularly
focusing on the adult stage that lays eggs leading to the most damaging larval stage within
the fruits, is crucial for early pest warning and implementing precise control measures [7].

In traditional studies of Drosophila identification, reliance has predominantly been
placed on classical image processing techniques and machine learning algorithms, such
as Support Vector Machines (SVMs) and Random Forests. These conventional methods
principally leverage manually designed feature extraction, encompassing shape, texture,
and color features, to achieve classification and identification of Drosophila. Although these
approaches have attained certain success in early research, they often exhibit significant
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limitations when dealing with complex or variable image data. The process of manually
designed feature extraction requires extensive domain knowledge and expert experience;
in addition, the generalizability of this approach tends to perform poorly when faced
with the diversity of Drosophila species and changes in external conditions (e.g., lighting,
background), thus restricting its reliability in practical applications. Furthermore, with the
advancement of image acquisition technologies, the resolution and dimensionality of im-
ages have continuously increased, rendering traditional algorithms inefficient in processing
these high-dimensional data and thereby struggling to meet the demands for rapid and
accurate identification. For instance, Lello and Florence, et al. [8] discovered the use of
photonic electronic fruit fly traps for fruit fly trapping and detection, yet phototransistors
and diodes in light sensors need to be distanced from artificial light due to susceptibility
to interference.

In recent years, with the rapid development of deep learning technology, image-based
pest identification methods have made significant progress. Particularly, the successful
application of Convolutional Neural Networks (CNNs) [9] in the field of object detection
has opened new technical paths for pest image recognition [10]. However, despite the
proven effectiveness of CNN-based models such as You Only Look Once (YOLO) [11] and
Faster-RCNN [12] in various domains, they still face challenges in accurately identifying
small targets and highly similar species due to insufficient precision and robustness [13].
For example, Freitas, Lucas, et al. [14] trained several CNN architectures with different
configurations to find the model with the highest accuracy and shortest time. The results
showed that ResNet18 had the best classification effect, achieving an overall accuracy of
90.72%, but with longer inference time; Victoriano Margarida et al. [15] fine-tuned the
YOLOv7 model to identify and classify olive fruit flies, demonstrating precise identification
but lacking model robustness.

The Transformer structure [16], a revolutionary deep learning architecture, initially
achieved great success in the field of Natural Language Processing (NLP) [17]. Its design
principle, leveraging the Self-Attention Mechanism to capture long-distance dependencies
within data, effectively enhances the model’s representation ability. Recently, researchers
have begun to explore the application of Transformer structures in image recognition and
object detection tasks [18], demonstrating remarkable potential. The application of the
Transformer architecture in the field of fruit fly recognition has facilitated the capability of
automatic feature learning, significantly reducing the dependence on manual feature design
and thereby enhancing the model’s generalization ability. Moreover, the deep network
structure and extensive parameters of the Transformer endow it with formidable data
representation and learning capabilities, effectively improving recognition accuracy [19].
More importantly, owing to the flexibility of the self-attention mechanism, the Transformer
model is capable of adapting to various complex image scenarios, demonstrating commend-
able robustness against environmental changes and diversity in species [20]. Therefore,
the adoption of models based on the Transformer structure not only overcomes the limita-
tions of traditional methods, but also paves a more effective and cutting-edge technological
path for high-precision fruit fly recognition.

Qi et al. [21] designed a novel multi-head cross-attention module using the Detection
Transformer (DETR) method for pest detection, achieving an accuracy of 72.5%. In pursuit
of higher accuracy, Li et al. [22] proposed an automatic pest identification method based on
the Vision Transformer (ViT), which achieved 96.71% accuracy in automatic classification
of plant pests through experiments. Dai et al. [23] incorporated the SWin Transformer
(SWinTR) and Transformer (C3TR) mechanisms into the YOLOv5m network, reaching
95.7% accuracy. The proposed method proved more effective, not only in terms of high
precision but also in model robustness.

This paper introduces a high-precision fruit fly recognition model based on the Trans-
former structure, aiming to overcome the limitations of traditional CNN models in fruit fly
identification tasks by leveraging the powerful representation capability of the Transformer
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to enhance recognition accuracy and robustness. The main contributions and innovations
of this work include:

1. High-precision Transformer model design: A new Transformer model architecture
was designed specifically for the characteristics of fruit flies, adjusting the model’s
layers, heads, and dimensions to better suit the properties of fruit fly images.

2. Step attention mechanism: To further enhance the model’s ability to capture subtle
features of fruit flies, a step attention mechanism was proposed, allowing for the
model to progressively focus on key features during image sequence processing,
thereby improving recognition precision and efficiency.

3. Cross-Loss Function: To address the issue of class imbalance in fruit fly identification,
a new cross-loss function was designed, effectively enhancing the model’s ability to
recognize minority classes, thus improving overall model performance.

4. Adaptive Stable Optimizer: To solve potential gradient vanishing or exploding problems
during model training, an adaptive stable optimizer was proposed, dynamically adjust-
ing the learning rate and regularization terms to ensure training stability and efficiency.

Through these innovations, the model presented in this paper achieved results sur-
passing existing technologies in fruit fly identification tasks. Experiments demonstrated
not only the model’s high-precision identification capabilities on local datasets, but also its
good generalization ability and robustness in cross-dataset validation. Furthermore, this
research provides valuable references and insights for future applications of Transformer
structures in similar fields. In summary, this paper not only introduces an efficient and
accurate fruit fly identification model, but also advances the application of deep learning
technology in pest management within the agricultural sector, contributing to the goals
of precision agriculture and sustainable development. Future efforts will explore the po-
tential applications of deep learning technology in pest identification and management,
contributing to precision agriculture and sustainable development goals.

2. Related Work
2.1. Convolutional Neural Network-Based Object Detection Models
2.1.1. One-Stage Networks

One-stage object detection networks, particularly the YOLO series [24], occupy an
important position in the field of object detection due to their unique design and efficient
detection speed [25]. The core idea of YOLO is to simplify the object detection problem into a
single regression problem, directly mapping from image pixels to bounding box coordinates
and class probabilities. This innovative approach has significantly improved detection
speed, allowing for widespread application in real-time scenarios [26]. The network
structure of YOLO can be divided into three main parts: the input layer, the backbone
network, and the neck network.

1. The input layer divides the input image into a grid of cells (typically 13 × 13, 26 × 26,
or higher-resolution grids), each cell responsible for predicting objects whose center
points fall within that cell.

2. The backbone network serves to extract features from the image. In different versions
of YOLO, the backbone network varies. For example, YOLOv1 [27] employed a
custom network structure, while starting from YOLOv3 [28], the backbone network
adopted Darknet-53 [29], a deep convolutional network with 53 convolutional layers,
enhancing feature transfer through residual connections, enabling effective learning
even in deep networks.

3. The neck network, situated between the backbone network and the prediction layer,
further processes the feature maps to make them more suitable for object detection
tasks. YOLOv3 and its subsequent versions introduced the Feature Pyramid Network
(FPN) [30] as the neck network, aiming to improve the model’s detection capability
for small objects by merging feature maps of different scales.
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YOLO’s loss function is one of its core designs, used to train the network to accurately
predict object positions and categories. It consists of three parts: the bounding box location
loss, confidence loss, and classification loss. The bounding box location loss calculates the
difference between the predicted and the actual bounding boxes [31]. YOLO employs the
squared difference loss to measure this discrepancy, including the loss for the coordinates
of the bounding box center and the dimensions of the bounding box. For width w and
height h of the bounding box, YOLO calculates the loss using their square roots to reduce
the discrepancy between the prediction errors of large and small boxes.

Lcoord =
S2

∑
i=0

B

∑
j=0

⊮obj
ij

[
(xi − x̂i)

2 + (yi − ŷi)
2 + (

√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2
]

(1)

Here, ⊮obj
ij denotes the indicator function for the jth bounding box containing an

object in the ith cell, (xi, yi, wi, hi) are the parameters of the predicted bounding box,
and (x̂i, ŷi, ŵi, ĥi) are the corresponding actual bounding box parameters. The confidence
loss measures whether the predicted bounding box contains an object and the confidence of
the object presence [32]. The confidence reflects the IOU (Intersection over Union) between
the predicted bounding box and any actual bounding box.

Lconf =
S2

∑
i=0

B

∑
j=0

[
⊮obj

ij (σi − σ̂i)
2 + λnoobj(1 −⊮obj

ij )(σi − σ̂i)
2
]

(2)

Here, σi is the predicted confidence, σ̂i is the actual confidence (one if there is an object
in the cell, otherwise zero), and λnoobj is the weight for the absence of an object.

The classification loss calculates the difference between the predicted class probabilities
and the actual classes [33], typically using the cross-entropy loss function.

Lclass =
S2

∑
i=0

⊮obj
i ∑

c∈classes
(pi(c)− p̂i(c))2 (3)

Here, pi(c) is the conditional probability that class c is detected in the ith cell, and p̂i(c)
is the corresponding actual probability. In summary, YOLO’s total loss function is a
weighted sum of these three parts:

LYOLO = λcoordLcoord + Lconf + λclassLclass (4)

where λcoord and λclass are weight parameters used to balance the contributions of different
parts of the loss. Through the design of this loss function, YOLO achieves simultaneous
optimization of object position, presence, and category, thereby maintaining high-speed
detection while maximizing detection accuracy. However, due to limitations in YOLO’s
performance on small objects and dense scenes [34], subsequent versions of YOLO have
made multiple improvements in network structure, loss function, and training strategy to
enhance the model’s overall performance and applicability.

2.1.2. Two-Stage Networks

Two-stage object detection networks, especially Faster R-CNN [35], represent a sig-
nificant advancement in object detection technology, achieving high-precision detection
through sophisticated network structure design and meticulous loss function calculation.
Faster R-CNN performs the detection task in two main stages: the first stage generates
candidate object regions using the Region Proposal Network (RPN), and the second stage
classifies these candidate regions and performs precise bounding box regression. This
design significantly improves detection accuracy, particularly in applications requiring fine
bounding box localization. The network structure of Faster R-CNN includes several key
components: the backbone network, the RPN, the RoI Pooling layer, and the classification
and regression head.
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1. The backbone network is responsible for extracting features from the input image.
In Faster R-CNN, various convolutional networks can be used as the backbone net-
work, such as VGG-16 [36], ResNet-50 [37], or ResNet-101. These networks extract
high-level semantic features from the image through multiple convolutional opera-
tions, providing necessary information for subsequent object detection tasks.

2. The RPN is the core of Faster R-CNN, generating candidate object regions from the
feature maps extracted by the backbone network. The RPN slides a small network
over the feature map, predicting multiple scales and aspect ratios of anchor boxes
at each position, indicating whether they contain objects and the adjustments to the
anchor boxes’ positions. This step generates a set of high-quality candidate regions
for further classification and regression.

3. The RoI (Region of Interest) Pooling layer converts candidate regions of varying sizes
into fixed-size feature maps for uniform classification and bounding box regression.
This step ensures a fixed-dimensional feature representation regardless of the original
sizes of the candidate regions.

4. Finally, for each fixed-size feature map output by the RoI Pooling layer, the network
performs two tasks: determining the category of the region (including the background
class) and making precise adjustments to the bounding box to more accurately cover
the object.

The loss function of Faster R-CNN consists of two parts: the loss for the RPN and
the loss for classification and bounding box regression. The RPN loss comprises two
components: the classification loss for anchor boxes (i.e., the probability of anchor boxes
containing objects) and the regression loss for anchor boxes’ position adjustments. The clas-
sification loss uses the cross-entropy loss function, while the regression loss uses the smooth
L1 loss.

LRPN = Lcls + λLreg (5)

Here, Lcls is the classification loss, Lreg is the regression loss, and λ is a weight param-
eter to balance these two. For each RoI, the classification loss also uses the cross-entropy
loss function for calculation, while the bounding box regression loss uses the smooth L1
loss, similar to the regression loss in the RPN.

LFast R-CNN = Lcls + λLreg (6)

Here, Lcls and Lreg represent the classification and regression losses, respectively,
with λ as the balancing factor. The total loss of Faster R-CNN is the sum of the RPN
loss and the Fast R-CNN loss, ensuring that the network can generate high-quality region
proposals and accurately classify and regress these regions. Through this carefully designed
network structure and loss function, Faster R-CNN achieves high precision in object
detection [38], especially in scenarios requiring precise bounding box localization [39].
However, the computational complexity of Faster R-CNN is relatively high, which to some
extent limits its use in real-time application scenarios [40]. Future research may further
optimize the network structure and training strategy to improve speed while maintaining
or even enhancing detection accuracy.

2.2. Transformer-Based Object Detection Models

Since the Transformer model [41] achieved remarkable success in the field of natural
language processing [42], its unique architecture and mechanisms were rapidly adopted in
the field of computer vision, especially for object detection tasks. Compared to traditional
Convolutional Neural Network (CNN) approaches, the Transformer, with its self-attention
mechanism capable of capturing long-distance dependencies, offers a new perspective for
understanding complex scenes in images and precisely detecting small objects. However,
in the specific domain of agricultural pest detection, existing Transformer-based models
face unique challenges, including but not limited to the small size of pests, their conceal-
ment against complex backgrounds, and the diversity of pest forms. Although existing
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Transformer models perform excellently in image processing, their effectiveness in address-
ing these specific challenges remains to be improved. For instance, the Vision Transformer
(ViT) [43], which directly processes images by dividing them into multiple small patches,
might overlook crucial detail information when dealing with small-sized targets, such as
fruit flies. Meanwhile, DETR [44], despite simplifying the object detection process through
an end-to-end approach that directly predicts the categories and bounding boxes of objects,
exhibits low efficiency and is prone to false detections when dealing with scenes containing
a large number of small objects.

To meet the specific needs of agricultural pest detection, this study proposes a model
that optimizes the traditional Transformer structure. Firstly, a step attention mechanism
is introduced, enabling the model to gradually focus on finer details of the targets after
initially identifying their approximate regions, effectively improving the detection accuracy
of small-sized pests. Secondly, a cross-loss function is designed to address the requirements
of class imbalance and localization accuracy in object detection, balancing the needs for clas-
sification accuracy and localization precision. Furthermore, an adaptive stable optimizer
is employed to enhance the stability and efficiency of the training process, particularly
accelerating the model’s convergence speed and improving detection accuracy when deal-
ing with complex backgrounds and diverse pest forms. These targeted optimizations not
only theoretically address the shortcomings of existing Transformer models in the domain
of agricultural pest detection, but also empirically demonstrate their significant effects in
improving the detection accuracy of small-sized pests, handling pests’ concealment against
complex backgrounds, and adapting to the diversity of pest forms. These innovative ap-
proaches and experimental results provide new insights and technical support for the field
of agricultural pest detection, showcasing the considerable potential and practical value of
Transformer-based models for specific tasks.

3. Materials and Method
3.1. Dataset Collection

In this research, a high-precision fruit fly recognition model based on the Transformer
structure was developed with the aim of enhancing the efficiency and accuracy of agri-
cultural pest management. The foundation of achieving this goal was the construction of
a dataset containing a large number of fruit fly images, which were precisely annotated.
This section provides a detailed description of the dataset’s sources, acquisition methods,
reasons for selection, and the annotation process, including the mathematical principles
involved. The dataset used in this paper primarily originates from two sources: the Plant
Protection Laboratory at China Agricultural University and internet scraping. The image
data provided by the Plant Protection Laboratory at China Agricultural University comes
from research projects within the laboratory, accumulating images of fruit flies at various
stages of growth, against different backgrounds, and under varying lighting conditions
throughout multiple research processes. The advantage of this part of the data lies in its
professionalism and high quality, with high image clarity and obvious fruit fly features,
making it highly suitable for training and testing deep learning models. In addition to
images from professional laboratories, a large number of fruit fly images were also collected
from publicly accessible databases and websites through internet scraping. These images
come from a wide range of sources, including different geographical locations, seasons,
and environmental conditions, thereby significantly increasing the dataset’s diversity and
complexity, as shown in Table 1.

The data collected from the internet not only supplement the quantity and diversity
of the laboratory data, but also enable the model to better adapt to and recognize fruit
fly images encountered in practical applications. The primary reason for choosing the
Plant Protection Laboratory at China Agricultural University and internet scraping as
data sources is that these two sources together provide both professionalism and diversity.
The data from the laboratory ensure the accuracy and reliability of the fruit fly images in
the dataset, which is crucial for the model’s accurate recognition. The internet scraping
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data significantly expands the scale and diversity of the dataset, enabling the model to
learn more varieties of fruit fly presentations, thus enhancing the model’s generalization
ability and robustness in practical applications.

Table 1. Number of Images for Each Fruit Fly Species

Fruit Fly Species Scientific Name Family Name Number of Images

Melon Fly Bactrocera cucurbitae Tephritidae 193
Mediterranean Fruit Fly Ceratitis capitata Tephritidae 532
Mexican Fruit Fly Anastrepha ludens Tephritidae 419
Oriental Fruit Fly Bactrocera dorsalis Tephritidae 374

3.2. Dataset Annotation

Precise annotation of the dataset is a key step in training a high-precision recognition
model. A team composed of professional researchers and data annotation experts was
organized to manually annotate all collected fruit fly images. We divide the annotation team
into groups for labeling. After the first round of annotation is completed, cross-validation
is performed. Images with significant discrepancies during the validation process undergo
expert review to ensure uniformity in annotation standards. During the annotation process,
every fruit fly in each image was accurately outlined, and the corresponding category
information was labeled. Specifically, the annotation work mainly included two steps:
determining bounding boxes and labeling categories, as shown in Figure 1.

Figure 1. Screenshot of dataset annotation by Labelimg.

3.2.1. Bounding Box Annotation

For each target (fruit fly) in the images, annotators were required to determine the
smallest rectangular box that completely contained the target while minimizing the inclu-
sion of the background. Bounding boxes can be described by four parameters, namely
(x, y, w, h), where x, y represent the coordinates of the top-left corner of the rectangle,
and w, h represent the width and height of the rectangle, respectively. In practice, these
parameters needed to be manually selected and adjusted using annotation tools until the
bounding box accurately covered the fruit fly in the image.

3.2.2. Category Annotation

Based on the determined bounding boxes, annotators also need to assign a category
label to each bounding box, indicating the type of the contained target. Since this study
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focuses on the recognition of fruit flies, the category label for each bounding box is relatively
straightforward, namely “fruit fly”. Additionally, there is sexual dimorphism among the
adult individuals of these four species of fruit flies; we mix images of males and females
together as a single species. Therefore, sexual dimorphism does not lead the model to
misidentify the same species as two different species. The entire annotation process not
only requires the professional knowledge and meticulous work of the annotators, but
also involves a series of mathematical principles, especially in the determination and
optimization of bounding box parameters. For example, to improve the consistency and
accuracy of the annotations, the IoU could be used as a standard of evaluation, calculating
the overlap between manually annotated bounding boxes and the actual target boundaries:

IoU =
Area of Overlap
Area of Union

(7)

where the closer the IoU value is to one, the more closely the annotated bounding box
matches the actual target boundary, indicating higher quality of annotation. By training
annotators to understand and apply this principle, the quality and consistency of data
annotation can be effectively improved. Through the systematic collection, annotation,
and theoretical support described above, a high-quality fruit fly image dataset that is both
professional and widely diverse is constructed for this research. This dataset not only
provides a solid foundation for training and testing the high-precision fruit fly recognition
model based on the Transformer structure, but also lays the groundwork for further research
work and practical application.

3.3. Dataset Preprocessing

In the study on the high-precision fruit fly recognition model based on the Transformer
structure, data preprocessing is an indispensable step, directly affecting the efficiency of
model training and the accuracy of final recognition. The primary goal of data preprocess-
ing is to improve data quality through a series of technical means, enhancing the model’s
understanding of data, thereby boosting model performance. In this research, data pre-
processing includes image resizing, normalization, denoising, and contrast enhancement,
as shown in Figure 2.

(A) (B) (C) (D) (E) (F)

Figure 2. Dataset Preprocessing. (A) is rotate_augmented; (B) is brightness_augmented; (C) is crop_
augmented; (D) is flipud_augmented; (E) is fliplr_augmented; (F) is contrast_augmented.

3.3.1. Image Resizing

During the training process of deep learning models, to ensure the consistency of input
data, all images need to be resized to the same dimensions. Image resizing is achieved
through interpolation algorithms, among which the most commonly used methods include
nearest-neighbor interpolation, bilinear interpolation, and cubic interpolation. Taking
bilinear interpolation as an example, its mathematical expression can be represented as:

I′(x′, y′) =
1

∑
i=0

1

∑
j=0

I(xi, yj) · (1 − |x′ − xi|) · (1 − |y′ − yj|) (8)

Here, I(x, y) is the pixel value of the original image at coordinates (x, y), and I′(x′, y′)
is the pixel value of the resized image at coordinates (x′, y′), with xi and yj being the coor-
dinates of the four neighboring pixels in the original image closest to the new coordinates,
(x′, y′). This method obtains new image pixel values by calculating the weighted average
of neighboring pixel values in the original image, thereby resizing the image.
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3.3.2. Image Normalization

Normalization is a crucial step in data preprocessing, adjusting the scale of image data
to make the model training process more stable and faster. Typically, normalization can be
performed using the following formula:

Inorm(x, y) =
I(x, y)− µ

σ
(9)

Here, Inorm(x, y) represents the normalized pixel value, I(x, y) is the pixel value of the
original image at coordinates (x, y), µ is the mean pixel value of the image, and σ is the
standard deviation of image pixel values. Through this method, image pixel values are
transformed to a space with a uniform scale, facilitating faster convergence of the model
and improving the stability of model training.

3.3.3. Denoising and Contrast Enhancement

In practical applications, images often suffer from various noise interferences, affecting
the model’s understanding and recognition of the image. Therefore, denoising is an
indispensable part of data preprocessing. Common image denoising methods include
median filtering and Gaussian filtering. For example, the mathematical expression for
median filtering is

Idenoise(x, y) = median{I(xi, yi)} (10)

Here, Idenoise(x, y) is the denoised pixel value, median is the median function, and I(xi, yi)
is the set of pixel values in the vicinity of coordinates (x, y) in the original image. Median
filtering achieves denoising by replacing the pixel value of a point with the median value
of pixels in its neighborhood. Contrast enhancement makes features more pronounced by
adjusting the image’s contrast, facilitating model learning. A simple method for contrast
enhancement is linear transformation, expressed as

Icontrast(x, y) = α · I(x, y) + β (11)

Here, Icontrast(x, y) represents the pixel value after contrast enhancement, α is the
amplification coefficient, and β is the offset. By adjusting the values of α and β, the image’s
contrast can be effectively enhanced, making it easier for the model to recognize features in
the image.

In summary, data preprocessing is an essential step in constructing a high-precision
recognition model. Through image resizing, normalization, denoising, and contrast en-
hancement, data quality is significantly improved, providing a solid foundation for model
training. These preprocessing steps not only help to enhance the training efficiency and
accuracy of the model, but also improve the model’s generalization ability and robustness
in practical applications.

3.4. Image Augmentation

Data augmentation is a commonly used technique in the field of deep learning, es-
pecially in image processing and computer vision tasks, which increases the diversity of
data by applying a series of transformations to the original image data, thus enhancing
the model’s generalization ability and robustness. Considering the characteristics of fruit
fly image data, various data augmentation methods were employed in the research on
the high-precision fruit fly recognition model based on the Transformer structure, includ-
ing random rotation, scaling, color jitter, and random cropping. The concepts, features,
and mathematical principles of these data augmentation methods are detailed below.

Random rotation is a common data augmentation method that increases data diversity
by randomly changing the angle of images. This method is particularly suitable for tasks
where the orientation of the target is not fixed or varies, such as fruit fly recognition.
Random rotation can be represented as

Irot(x′, y′) = I(x, y) (12)
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Here, I(x, y) is the pixel value of the original image at coordinates (x, y), and Irot(x′, y′)
is the pixel value of the rotated image at new coordinates (x′, y′). The relationship between
the new coordinates (x′, y′) and the original coordinates (x, y) can be expressed through a
rotation matrix: (

x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
(13)

where θ is the angle of rotation. By performing random rotations on images, the appearance
of fruit flies from different directions can be effectively simulated, enhancing the model’s
robustness to rotational transformations. Scaling increases the diversity of the dataset by
changing the size of images, simulating fruit fly images at different distances. The scaling
operation can be represented as

Iscale(x′, y′) = I(αx, αy) (14)

where α is the scaling factor, and Iscale(x′, y′) is the pixel value of the scaled image at
new coordinates (x′, y′). A scaling factor α greater than one indicates image enlargement,
while that less than one indicates image reduction. By randomly selecting scaling factors,
the model’s adaptability to changes in fruit fly size can be increased. Color jitter enhances
data diversity by randomly changing color attributes of images (such as brightness, contrast,
and saturation). The mathematical representation of color jitter can be performed as follows:

Icolor(x, y) = α · I(x, y) + β (15)

where α and β represent the coefficients for adjusting color attributes and the offset, re-
spectively, controlling the degree of color changes. By randomly selecting α and β, fruit fly
images under different lighting and environmental conditions can be simulated, improving
the model’s generalization ability. Random cropping simulates the situation where only
part of the fruit fly appears in the field of view by randomly selecting a portion of the image
for cropping. Random cropping can be expressed as

Icrop(x′, y′) = I(x + ∆x, y + ∆y) (16)

where (∆x, ∆y) is the offset of the randomly selected cropping starting point, and Icrop(x′, y′)
is the pixel value of the cropped image at new coordinates (x′, y′). By randomly selecting
the size and position of the cropping area, the model’s ability to recognize partially occluded
fruit flies can be enhanced. In summary, by implementing data augmentation methods
such as random rotation, scaling, color jitter, and random cropping, this study significantly
increased the diversity and complexity of the dataset, providing a solid foundation for
training the high-precision fruit fly recognition model based on the Transformer structure.
These data augmentation techniques not only simulate various situations that fruit flies may
encounter in natural environments, but also effectively enhance the model’s robustness and
adaptability in facing real-world application scenarios.

3.5. Proposed Method

In this research, a high-precision fruit fly recognition model based on the Transformer
structure is proposed, aiming to effectively enhance the accuracy of fruit fly detection and
recognition through deep learning technology. The design philosophy of this method is to
leverage the powerful capabilities of the Transformer to capture long-distance dependencies
in images, combined with attention mechanisms, loss functions, and stable optimization
strategies specifically optimized for object detection tasks, to achieve the purpose of high-
precision recognition. The overall framework and workflow of the proposed method are
summarized below.

3.5.1. Overview

In this study, a model incorporating four key technological components—high-precision
Transformer architecture, step attention mechanism, cross-loss function, and adaptive sta-
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ble optimizer—is proposed to address the challenges of high-accuracy fruit fly detection,
as shown in Figure 3.
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Figure 3. Illustration of the whole method proposed in this paper.

Each component specifically addresses the issues highlighted in the introduction and
related work, with their unique contributions and practical impact detailed as follows:

1. High-precision Transformer Structure: The adopted modified Transformer structure
is specifically designed for image target detection tasks. Compared to the traditional
Transformer, optimizations for image features in the encoder and decoder significantly
enhance the model’s capability to process image data and extract target features. Uti-
lizing the self-attention mechanism, this structure effectively captures global depen-
dencies within images, markedly improving the accuracy of fruit fly recognition. This
improvement directly responds to the need outlined in the introduction for enhanced
handling and recognition accuracy of complex image data.

2. Step Attention Mechanism: The introduced step attention mechanism incrementally
refines the focus of attention, allowing for the model to concentrate on the details of the
target after initially locating it. This mechanism not only boosts the model’s ability to cap-
ture image details, but also enhances accuracy and robustness in recognition, effectively
addressing the challenge of identifying small targets against complex backgrounds.

3. Cross-Loss Function: To balance the issue of class imbalance in target detection tasks and
improve the accuracy of boundary box positioning, the cross-loss function is designed.
Combining classification and location losses, this function effectively enhances the
model’s capabilities in managing class imbalance and improving positioning accuracy.

4. Adaptive Stable Optimizer: The application of the adaptive stable optimizer dynami-
cally adjusts the learning rate based on the model’s performance during training and
introduces a stabilizing factor to reduce fluctuations, accelerating convergence and
enhancing performance. This optimizer overcomes the instability issues common
with traditional optimizers in training deep networks, ensuring stable and efficient
training processes.

Integrating these four technological components, the model framework of this study
begins with data preprocessing, proceeds through feature extraction with the high-precision
Transformer structure, refines target positioning with the step attention mechanism, and com-
pletes model training with the cross-loss function, ultimately adjusting the training process
with the adaptive stable optimizer. This comprehensive approach not only represents the-
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oretical innovation, but also demonstrates significant practical effects in application, fully
reflecting the novelty and practical impact of the proposed method in this study.

3.5.2. High-Accuracy Transformer for Object Detection Task

In this study, for the high-accuracy detection task of fruit flies, the encoder and decoder
structure of the Transformer model is carefully designed and optimized to suit the specific
needs of image object detection. Firstly, the encoder is composed of 6 Transformer blocks,
with each layer dimension set to 512, to adequately process image features. This depth
and dimensionality are chosen based on comparative experiments, proving effective in
capturing global information and complex details in images while ensuring computational
efficiency. Each Transformer block includes 8 attention heads, enhancing the model’s
ability to capture information in different regions of the image in parallel, especially for
small targets like fruit flies, allowing for more detailed feature recognition. Secondly,
the decoder also employs 6 Transformer blocks, maintaining the same dimensionality as
the encoder. The design of the decoder aims to accurately predict each target’s position
and category based on the features extracted by the encoder and the target query sequence.
By introducing 8 attention heads in the cross-attention mechanism, the model can more
effectively distinguish between different targets and the background from the rich features
transmitted by the encoder, thus improving the accuracy of recognition and localization.

The choice of 6 layers of Transformer blocks balances ensuring model performance
while avoiding excessive complexity that could lead to overfitting and computational
burden. This depth is sufficient for the model to learn complex features and relationships in
images, especially crucial in fruit fly detection tasks, where precise handling of small targets
and complex backgrounds is required. The selection of 512 dimensions and 8 attention
heads is based on balancing model performance with computational efficiency. A higher
dimensionality provides sufficient representational space to capture image features, while
multiple attention heads allow for the model to process information in parallel across
different representational subspaces, enhancing the model’s ability to finely recognize target
features. Through such parameter configurations and structural optimizations, the model
can more accurately address the challenges encountered in fruit fly target detection tasks,
such as identifying small targets and separating complex backgrounds, ensuring high
accuracy and good generalization performance.

3.5.3. Step Attention Mechanism

The attention mechanism, a core component of the Transformer model, allows for the
model to learn different aspects of the input data in parallel across various representation
subspaces, as shown in Figure 4.
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Figure 4. Schematic diagram of the step attention mechanism applied in the Transformer-based
high-precision fruit fly adult identification model, illustrating the process by which the model refines
target localization and enhances recognition precision by progressively adjusting the focus area
of attention.

The underlying concept involves projecting queries (Q), keys (K), and values (V) into
multiple spaces for attention calculation, concatenating these attention outputs, and then
applying a linear mapping to produce the final output. The mathematical expression is
as follows:
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MultiHead(Q, K, V) = Concat(head1, . . . , headh)WO (17)

where headi = Attention (QWQ
i , KWK

i , VWV
i ) (18)

Here, WQ
i , WK

i , WV
i , and WO are learnable parameter matrices, and h represents the

number of heads. The step attention mechanism proposed in this study aims to gradu-
ally focus the model’s attention, thereby enhancing its ability to recognize target details,
as shown in Figure 5.
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Figure 5. Detailed design diagram of the step attention mechanism, showing the process by which the
input sequence is transformed into queries (Q), keys (K), and values (V) through the embedding layer
and weight matrices, and how these elements generate the attention matrix (A) through self-attention
computation, culminating in the production of the output sequence (Z).

Unlike the multi-head attention mechanism’s parallel processing of different repre-
sentation subspaces, the step attention mechanism adjusts the focus area of attention in
steps, enabling the model to gradually concentrate on more detailed parts of the target
after initially capturing its approximate location. The basic idea can be described by the
following mathematical expression:

StepAttention(Q, K, V, S) = softmax
(

QKT
√

dk
+ S

)
V (19)

where S is a step control matrix used to adjust the model’s attention focus progressively,
and dk is the dimension of the key vector. In each training step, S is adjusted according to
a predetermined strategy, allowing for the model’s attention to shift from a broad area to
focus on key details gradually. The design of the step attention mechanism is based on the
following two main principles:

1. Gradual learning strategy: By refining the focus range of attention in steps, the model
can learn more local detail information on top of capturing global information, thereby
improving recognition precision.

2. Dynamic adjustment of attention: Unlike the static multi-head attention mechanism,
the step attention mechanism allows for the dynamic adjustment of attention distribu-
tion, more flexibly adapting to the challenges of complex backgrounds and diverse
targets in object detection tasks.

In the high-precision fruit fly recognition task of this paper, the step attention mech-
anism offers clear advantages: it enhances localization precision, enabling the model to
locate fruit flies more accurately, especially in complex backgrounds or when close to other
objects. It strengthens the model’s capability to capture details, improving recognition
accuracy through a gradual focusing process. It boosts the model’s generalization ability,
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as the dynamic adjustment of attention allows for the model to adapt to object detection
tasks under different scenes and conditions, enhancing its generalization.

3.5.4. Cross-Loss Function

In models based on the Transformer structure, the cross-entropy loss function is
commonly used, measuring the difference between the probability distribution predicted
by the model and the actual label distribution in classification tasks. However, in object
detection tasks, using only the cross-entropy loss function may not fully capture the target’s
location information. Therefore, this research proposes a new loss function—the cross-loss
function—designed to optimize both classification accuracy and target localization precision
simultaneously. The cross-loss function, tailored for object detection tasks, combines
classification and localization losses to optimize the model’s performance in identifying
target categories and determining target locations. The specific mathematical expression is
as follows:

Lcross = Lcls(y, ŷ) + λLloc(b, b̂) (20)

where Lcls represents the classification loss; Lloc represents the localization loss; y and ŷ rep-
resent the actual category and the predicted category probability distribution, respectively;
b and b̂ represent the actual and predicted target bounding boxes; λ is a hyperparameter
for balancing the weight of classification and localization losses. The classification loss is
calculated using the cross-entropy loss function:

Lcls = −
C

∑
c=1

yo,c log(ŷo,c) (21)

where C is the total number of categories, yo,c is an indicator function whether the oth sample
belongs to category c, and ŷo,c is the probability predicted by the model that the sample
belongs to category c. The localization loss uses the smooth L1 loss function, defined as

Lloc = ∑
i∈{x,y,w,h}

smoothL1(bi − b̂i) (22)

smoothL1(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(23)

where bi and b̂i represent the coordinates, width, and height of the actual and predicted
bounding boxes. The main advantage of this design is its simultaneous focus on the model’s
performance in both classification and localization. By combining these two parts of the loss,
the model is required to not only accurately identify the target category but also precisely
predict the target’s location, crucial for object detection tasks. Additionally, by adjusting
the value of λ, the balance between classification accuracy and localization precision can be
tuned according to specific task requirements, increasing the model’s flexibility. Compared
to the loss function used in traditional Transformer structures, the cross-loss function is
more suited for object detection tasks, as it optimizes both key performance indicators:
classification and localization. This design enables the model to more accurately recognize
and locate targets in complex object detection scenarios, such as fruit fly detection, signifi-
cantly enhancing the overall performance of the model. Applied to the task in this paper,
the advantages of the cross-loss function are mainly reflected in its ability to effectively
improve the accuracy of fruit fly recognition and the precision of localization, especially
in situations where the contrast between fruit flies and the background is not pronounced,
or when fruit flies are small in size. By precisely capturing and learning the features of fruit
flies, the model can accurately identify targets against complex backgrounds, playing a
crucial role in practical applications.
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3.5.5. Adaptive Stable Optimizer

In the field of deep learning, the choice of optimizer plays a crucial role in the effi-
ciency of model training and its final performance. The traditional method of Stochastic
Gradient Descent (SGD) is widely utilized due to its simplicity and ease of implementation,
yet it struggles with slow convergence and a propensity to fall into local minima when
dealing with complex non-convex optimization problems. To overcome these drawbacks,
the Adaptive Moment Estimation (Adam) optimizer was introduced, accelerating conver-
gence and enhancing the stability of model training by adjusting the learning rate for each
parameter based on estimates of first and second moments of the gradients. However,
Adam may encounter difficulties in hyperparameter tuning and instability in the initial
phase of training under certain conditions. To further enhance the stability and efficiency
of the optimization process, this study introduces a novel optimizer—the Adaptive Stable
Optimizer (ASO). ASO aims to combine the stability of SGD with the adaptive learning
rate characteristics of Adam, incorporating a new dynamic adjustment mechanism for a
more robust and efficient optimization process. The essence of ASO lies in the modification
of the gradient update rule, expressed mathematically as

θt+1 = θt − ηt

(
β1mt +

(1 − β1)gt√
vt + ϵ

)
(24)

Here, θt denotes the parameters at time step t, ηt represents the dynamic learning rate,
gt is the gradient at time step t, mt and vt are estimates of the first and second moments
of the gradient, respectively, β1 is a hyperparameter for adjusting the estimate of the first
moment, and ϵ is a small constant added for numerical stability. The primary distinction
between ASO and SGD or Adam is the incorporation of both the first moment and the raw
gradient through the β1 parameter. This approach is designed to automatically adjust the
reliance on the first moment estimate at different stages of model training, thereby achieving
faster convergence in the early stages and maintaining stability later on. Moreover, unlike
the fixed decay strategy of Adam, the dynamic learning rate ηt of ASO employs an adaptive
adjustment mechanism based on the progress of training, making it more flexible and
robust in the face of complex optimization problems. The advantages of ASO are mainly
reflected in the following aspects:

1. Balance between stability and efficiency: By intelligently combining the stability of
SGD with the adaptiveness of Adam, ASO maintains the stability of the optimiza-
tion process while accelerating convergence, particularly suitable for training deep
networks and complex datasets.

2. Dynamic learning rate adjustment: The learning rate adjustment of ASO not only
takes gradient information into account, but also considers the progress of training,
offering more appropriate learning rates at different stages of model training, thus
optimizing the training process.

3. Improvement in initial instability: Compared to Adam, ASO reduces reliance on the
first moment estimate during the initial phase of training, mitigating early training
instability and facilitating a quicker transition to effective learning phases.

4. Flexible hyperparameter adjustment: ASO provides more adjustment space and
strategies, making model training more aligned with the requirements of real-world
problems, and reducing the difficulty and complexity of hyperparameter tuning.

3.6. Experimental Setup

In the research of the high-precision fruit fly recognition model based on the Trans-
former structure, a reasonable experimental setup is crucial for ensuring the validity and
reliability of the experimental results. The experimental setup mainly includes the con-
figuration of hyperparameters, the selection of hardware platforms and libraries, and the
determination of baseline models.
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3.6.1. Hyperparameter Configuration

The selection of hyperparameters directly impacts the performance of the model
during the training process. To achieve the best training results, several key hyperpa-
rameters were meticulously adjusted based on extensive preliminary experiments and
literature review:

1. Learning Rate: The learning strategy employed in this manuscript is cosine annealing,
a method that gradually decreases the learning rate according to the cosine function,
thereby adjusting the learning rate during neural network training. This approach
facilitates smoother convergence of the model throughout the training process, partic-
ularly in avoiding oscillations caused by excessively high learning rates as it nears the
optimal solution. The fundamental mathematical expression for cosine annealing is
provided as follows:

ηt = ηmin + 0.5 × (ηmax − ηmin)× (1 + cos(
Tcur

Tmax
π)) (25)

where ηt represents the learning rate at the current iteration, ηmax denotes the max-
imum learning rate, typically set as the initial learning rate, and ηmin signifies the
minimum learning rate, which can be a value close to 0. Tcur is the current iteration
number, and Tmax is the total number of iterations in a cycle, after which the learning
rate resets to ηmax. This equation simulates a cycle of the cosine curve, starting the
learning rate at ηmax, gradually decreasing it as Tcur increases, reaching ηmin, and then
rising back to ηmax, completing a cycle. In this manner, the learning rate exhibits
periodic rises and falls, aiding the model in escaping local minima while finely tuning
parameters in the later stages of training for optimal training outcomes.

2. Batch Size: Regarding the selection of batch size in this manuscript, using two NVIDIA
GeForce RTX 3090 graphics cards as an example, the batch size was calculated based
on the graphics card’s memory capacity, the model’s parameter volume, and the com-
putational resources required per sample. The RTX 3090 features 24 GB of GDDR6X
memory. The steps and considerations for calculating the batch size are as follows:
Initially, the total parameter count of the model is 110 M, including weights and biases,
typical of a model based on the Transformer architecture. Each parameter is usually
stored as a 32-bit floating-point number (float32), requiring 4 bytes of storage space.
Subsequently, the memory required to process a single sample is calculated. This
includes the storage needs for input data, intermediate activation values, gradients,
etc. Considering the 24 GB of memory on the RTX 3090, it is imperative to ensure that
the total memory demand for the model’s parameters, a batch of samples, and the
gradients and intermediate values generated during training does not exceed this
capacity. With the premise of not exceeding the memory capacity, the maximum batch
size is calculated based on the memory required by the model to process a single
sample. The batch size should be a value that, while adhering to memory constraints,
effectively utilizes the GPU’s computational resources to expedite the training process.
Assuming the model requires approximately 1 GB of memory per sample (including
memory needs for both forward and backward propagation), theoretically, the RTX
3090 can handle a maximum batch size of 24 GB/1 GB × 2 = 48. However, in practical
applications, additional memory consumption for model parameters, optimizer states,
etc., must be considered, thus the actual chosen batch size is 32.

3. Optimizer: Of the multitude of optimizers, the Adam optimizer was selected. It com-
bines the advantages of Adagrad and RMSprop optimizers by adaptively adjusting
the learning rate for each parameter, making it suitable for training deep learning
models with large-scale data and parameters.

4. Loss Function Weights: In the cross-entropy loss function, different weights were
assigned to the classification loss and localization loss. After repeated experimental
adjustments, the weight for the classification loss was determined to be 1, and the
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weight for the localization loss was set to 2. This configuration aims to balance the
model’s performance between recognition accuracy and localization precision.

5. The division of training and validation data: The study adopted a common random
splitting method to ensure the randomness and representativeness of the data.

The choice of batch size was not only based on hardware resource limitations, but also
considered the potential impact of batch size on model performance. Excessively large
batch sizes could lead to memory overflow, while excessively small sizes might affect the
model’s convergence speed and performance. As for the learning rate adjustment strategy,
a gradual decay method was chosen to refine the parameter adjustment process, especially
when the loss reduction halts, by reducing the learning rate to prevent overfitting and
enable the model to converge more accurately to the global optimum. The selection of these
hyperparameters and adjustment strategies stems from a deep understanding of the deep
learning training process and model behavior, as well as an accurate grasp of the relevant
mathematical principles. The validation of the effectiveness of these strategies can provide
a more scientific and rational reference for future model training.

3.6.2. Software and Hardware Platform

The chosen hardware platform plays a key role as the foundational infrastructure,
directly affecting the efficiency of model training and testing. For this purpose, a high-
performance computer equipped with an NVIDIA GeForce RTX 3090 GPU was selected
as the main experimental platform. The NVIDIA GeForce RTX 3090 GPU, with 24 GB of
GDDR6 memory, provides powerful computational support for processing large datasets
and complex neural network models. Additionally, the GPU’s support for Tensor Core
and Ray Tracing technologies further enhances the efficiency of deep learning tasks. Such
hardware configuration not only shortens model training time but also improves the
experimental parallel processing capability, making it an ideal choice for conducting deep
learning research.

Regarding the software platform, model development, training, and evaluation were
based on the PyTorch 1.8 deep learning framework. PyTorch, an open-source deep learning
library developed by Facebook’s AI research team, offers a flexible programming model
and extensive APIs, supporting rapid experimentation and innovation. The dynamic com-
putation graph feature of PyTorch makes model design and debugging more intuitive
and flexible, greatly accelerating the progress of research. Moreover, the active PyTorch
community provides a wealth of tutorials and documentation, facilitating learning and
problem-solving. To efficiently implement the model and conduct experiments, multiple
library functions under the PyTorch framework were utilized, including but not limited
to ‘torch.nn’, which provides modules and classes for building neural networks, such as
various types of layers (fully connected layers, convolutional layers, etc.), activation func-
tions (ReLU, Sigmoid, etc.), and loss functions (cross-entropy loss, mean squared error loss,
etc.); ‘torch.optim’, which offers various optimization algorithms for updating network
parameters, including SGD, Adam, etc., crucial for training deep learning models; ‘torchvi-
sion’, which an extension package of PyTorch, offering tools for image data processing
and common datasets, model architectures, etc., used for image preprocessing and data
augmentation; and ‘torch.utils.data’, which provides tools for loading and processing data,
facilitating the construction of efficient data input pipelines. By leveraging these hardware
and software resources, an efficient and flexible experimental environment was established,
providing solid support for the research on the high-precision fruit fly recognition model
based on the Transformer structure. This not only ensured the smooth progress of the
experiments but also laid a good foundation for subsequent research and applications.

3.6.3. Baseline Models

For a comprehensive evaluation of the performance of the fruit fly high-precision recog-
nition model based on the Transformer structure, several representative comparison models
were selected, including one-stage models (YOLOv6 [45], YOLOv8 [46], RetinaDet [47]),
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a two-stage model (Faster-RCNN [48]), and a Transformer-based model (DETR [49]). These
models each have distinct characteristics within the domain of object detection. Compari-
son with these models allows for a more objective assessment of the performance of the
model proposed in this study. The rationale behind the selection of these models and their
features are detailed below.

YOLOv6, a newer version within the YOLO series, inherits the series’ characteristics
of speed and accuracy while optimizing the model structure and algorithm to enhance
detection precision and speed. Introducing more effective feature extraction networks
and attention mechanisms, YOLOv6 has improved detection capabilities for small objects,
achieving a balance between real-time performance and accuracy. Another update in
the YOLO series, YOLOv8, further enhances detection performance and efficiency. It
achieves more accurate object recognition and faster detection by adopting advanced
network architectures and optimization techniques, showcasing outstanding performance
in processing large datasets and complex scenes. RetinaDet, optimized for detecting
small objects in one-stage detection models, improves detection precision for small targets
through enhanced feature fusion mechanisms and anchor design, particularly suitable for
applications requiring precise identification of small objects against complex backgrounds.
Faster-RCNN, an influential two-stage model in the field of object detection, first generates
candidate object regions through the RPN and then performs fine-grained classification
and bounding box regression on these regions. It excels in accuracy, especially in scenarios
requiring precise target localization. DETR is the first model to fully apply the Transformer
to object detection. It abandons the conventional anchor and region proposal mechanisms
of traditional object detection models, achieving end-to-end object detection through global
feature understanding and direct set prediction. DETR exhibits unique advantages in
handling scenes with complex relationships and occlusions.

The comparison with the aforementioned models is justified as they each represent
different technological approaches and developmental stages within the field of object
detection. YOLOv6, YOLOv8, and RetinaDet, as one-stage detection models, emphasize
speed and efficiency, serving as important benchmarks for assessing the real-time detection
performance of the new model. Faster-RCNN, representing two-stage detection models,
provides a significant reference standard for accuracy. DETR, as a Transformer-based
model, with its novel design philosophy and excellent performance, offers inspiration
and challenges for the design of the model in this study. Through comparison with these
models, the performance of the model proposed in this study can be comprehensively
evaluated in terms of speed, accuracy, and generalization ability, validating its advantages
and innovations in high-precision fruit fly recognition tasks.

3.6.4. Experiment Metric

In the evaluation of the high-precision fruit fly recognition model based on the Trans-
former structure, four main metrics were used: Precision, Recall, Accuracy, and F1-Score.
These metrics provide a comprehensive assessment of different aspects of model perfor-
mance, as detailed below. Precision measures the proportion of samples correctly identified
as positive (fruit flies) among all samples classified as positive by the model. Its mathemati-
cal expression is

Precision =
TP

TP + FP
(26)

where TP (True Positive) represents the number of samples correctly identified as fruit flies,
and FP (False Positive) represents the number of non-fruit fly samples incorrectly identified
as fruit flies. Precision assesses the model’s accuracy in identifying positive classes.

Recall measures the proportion of samples correctly identified by the model among all
actual positive (fruit fly) samples. Its mathematical expression is

Recall =
TP

TP + FN
(27)
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where FN (False Negative) represents the number of fruit fly samples incorrectly identified
as non-fruit flies by the model. Recall assesses the model’s ability to cover positive samples.

Accuracy, the most intuitive metric, measures the proportion of samples correctly
identified by the model among all samples. Its mathematical expression is

Accuracy =
TP + TN

TP + TN + FP + FN
(28)

where TN (True Negative) represents the number of samples correctly identified as non-
fruit flies. Accuracy assesses the overall accuracy of the model’s identifications.

The F1-Score is the harmonic mean of Precision and Recall, considering both the
model’s accuracy and coverage ability. Its mathematical expression is

F1-Score = 2 · Precision · Recall
Precision + Recall

(29)

The F1-Score is particularly important when the model operates on imbalanced
datasets, as it does not favor classes with a larger number of samples, balancing Precision
and Recall consideration.

In this study, the metrics adopted for model evaluation, including Precision, Recall, Ac-
curacy, and F1-score, are standard benchmarks in the domain of object detection. However,
these metrics alone cannot fully evaluate a model’s performance in practical applications.
For instance, while Precision reflects the model’s accuracy in identifying positive samples,
an excessively high false positive rate could lead to an undue focus on incorrect targets, thus
wasting resources in practical applications. Recall demonstrates the model’s ability to cover
positive samples, but in practical applications like pest control, missing detections could
result in severe consequences due to uncontrolled pests. Accuracy provides an overview
of the model’s overall performance but does not differentiate between false positives and
false negatives, which fails to reflect the model’s reliability in critical tasks. The F1-score,
as the harmonic mean of Precision and Recall, attempts to balance the two, yet in practice,
one may need to prioritize one over the other based on specific circumstances. Therefore,
from a practical application perspective, the rationale behind choosing these evaluation
metrics should be based on an understanding of the actual requirements and expected
performance of the fruit fly detection task. For example, in high-precision fruit fly detection,
given the urgency of pest control, greater emphasis may need to be placed on Recall to
ensure as few misses as possible. Additionally, when conducting an in-depth analysis of
the model’s performance, special requirements in the practical application context, such
as stability under different environmental conditions and the ability to recognize pests of
varying sizes, must be considered. These are crucial aspects of evaluating whether a model
can meet the demands of real-world applications. In summary, the selection of evaluation
metrics should be grounded in actual application scenarios, combined with the specific
demands of the fruit fly detection task, as well as the model’s anticipated performance and
role in real-world settings, to provide a more detailed and comprehensive assessment of
the model’s practicality and efficacy.

4. Results and Discussions
4.1. Fruit Fly Detection Results

This experiment aimed to evaluate and validate the performance of the high-precision
fruit fly recognition model based on the Transformer structure in fruit fly detection tasks.
By comparing with current popular target detection models, the experimental results
intended to demonstrate the advantages of the proposed method in four key performance
metrics: Precision, Recall, Accuracy, and F1-score. The experimental results are displayed
in Table 2 and Figure 6.
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Table 2. Fruit fly detection experiment results.

Model Precision Recall Accuracy F1-Score

RetinaDet 0.87 0.84 0.85 0.85
YOLOv6 0.89 0.86 0.87 0.87
Faster-RCNN 0.91 0.88 0.89 0.89
YOLOv8 0.92 0.91 0.91 0.91
DETR 0.94 0.93 0.93 0.93
Ours 0.96 0.95 0.95 0.95

82%
84%
86%
88%
90%
92%
94%
96%
98%
100%

Precision Recall Accuracy F1-Score

RetinaDet YOLOv6
Faster-RCNN YOLOv8
DETR Ours

Figure 6. Detection Results.

As it is a single-stage target detection model, RetinaDet’s main advantage lies in its
fast detection speed. However, its performance may be limited when dealing with small
targets and complex backgrounds. Mathematically, although RetinaDet’s multi-scale target
detection capability can improve detection of different sizes, it might not match Transformer-
based models in feature extraction and learning of target details. Therefore, its performance
in Precision, Recall, Accuracy, and F1-score is relatively lower. The YOLO series, known
for its speed and accuracy, has seen improvements in models like YOLOv6 and YOLOv8
through the introduction of more advanced feature extraction networks and optimization
technologies, such as attention mechanisms and deeper network structures. Nevertheless,
as single-stage models, YOLOv6 and YOLOv8 still face challenges in handling highly
overlapping targets and very small targets. Despite better performance than RetinaDet,
there remains a gap compared to Transformer-based models. FasterRCNN, a dual-stage
target detection model, exhibits higher detection precision through RPN and subsequent
precise classification and bounding box regression. It can better handle target occlusions
and small target detection, benefiting from its ability to generate high-quality region
proposals for precise classification and regression. However, its more complex process and
slower detection speed may limit its applicability in some real-time applications. DETR,
by fully applying Transformer to target detection and discarding traditional anchors and
complex preprocessing steps, achieves end-to-end target recognition and localization within
a global scope. This method shows superior performance in handling complex scenes and
relationships between targets. DETR’s design philosophy, leveraging the self-attention
mechanism of the Transformer to capture global dependencies, thus improves detection
precision and recall, outperforming traditional target detection models across all metrics.

The proposed model, incorporating the step attention mechanism and cross-loss func-
tion, is specifically optimized for the fruit fly detection task. The step attention mechanism
significantly enhances the model’s recognition precision and localization ability by gradu-
ally focusing on target details after initially identifying the target’s approximate location.
The cross-loss function, by balancing classification accuracy and localization precision,
optimizes key performance indicators in detection tasks. These mathematical principles
ensure the model’s excellent performance in Precision, Recall, Accuracy, and F1-score. Com-
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parative analysis reveals the significant performance advantage of the proposed method
in fruit fly detection tasks, attributable to its innovative network design and optimization
strategies. Through the carefully designed step attention mechanism and cross-loss func-
tion, the proposed method effectively enhances the model’s capability to handle complex
target detection tasks, especially in terms of Precision, Recall, and Accuracy, showcasing its
great potential and applicability in fruit fly detection tasks.

4.2. Analysis of Visualization Results for Fruit Fly Detection

This section delves into the performance of the proposed model for fruit fly detection
against complex backgrounds, comparing it with other advanced object detection models,
as shown in Figure 7. Through a series of visualization results, it is observed that the
high-precision fruit fly recognition model based on the Transformer structure exhibits
superior accuracy and robustness in identifying and locating fruit flies within complex
imagery. This consistency with prior experimental outcomes further validates the model’s
effectiveness and superiority.

(A)

(D) (E) (F)

(B) (C)

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Mediterranean Fruit Fly

Figure 7. Detection result visualization. (A) is our method; (B) is DETR; (C) is YOLOv8; (D) is
YOLOv6; (E) is RetinaDet; (F) is Faster-RCNN.

Comparative visualization between the proposed model and other models distinctly
reveals the proposed model’s higher accuracy and robustness in identifying and locating
fruit flies against complex backgrounds. Specifically, the model is capable of accurately
differentiating between fruit flies and complex backdrops, even in scenarios where fruit flies
closely match the background color or are partially obscured. Mathematically, the design
of the step attention mechanism allows for focus to be concentrated on significant detail
features, crucial for identifying small targets within complex backgrounds. The cross-loss
function, by balancing classification and localization losses, optimizes the model’s ability
to accurately identify target categories while precisely locating them. The Transformer
structure’s self-attention mechanism and encoder–decoder architecture provide the model
with a powerful global information processing capability, enabling key target feature
capture within complex backgrounds.

4.3. Ablation Study on the Step Attention Mechanism

This experiment, through an ablation study, analyzes the role and contribution of differ-
ent attention mechanisms within the high-precision fruit fly recognition model based on the
Transformer structure. By comparing models with no attention mechanism, spatial attention,
channel attention, multi-head attention, and step attention mechanisms, the experiment
aims to reveal the impact of different attention mechanisms on model performance metrics
such as Precision, Recall, Accuracy, and F1-score, thereby demonstrating the step attention
mechanism’s advantages and necessity in enhancing target detection performance.
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Results indicate that incorporating attention mechanisms significantly enhances model
performance, with the step attention mechanism’s model outperforming all metrics, achiev-
ing over 0.95 in Precision, Recall, Accuracy, and F1-score. Conversely, models without any
attention mechanism perform the worst, with all metrics falling below 0.81. Spatial and
channel attention models’ performances lie between those without any attention mech-
anism and the step attention mechanism, with multi-head attention models performing
better than all alternative attention mechanisms but still falling short of step attention.

Models lacking an attention mechanism fail to account for the relative importance of
targets within images, treating all parts equally and not fully exploiting target correlations
and differences. This results in limited feature extraction and representation capabilities,
making accurate background and target distinction challenging, thus affecting overall
model performance. Spatial attention mechanisms, by assigning different weights to each
location on the input feature map, emphasize important image areas, aiding the model in fo-
cusing on key parts. However, focusing solely on spatial dimensions may overlook channel
dependencies, limiting performance enhancement. Channel attention mechanisms concen-
trate on distributing weights across feature channels, enhancing the model’s reliance and
selection ability on different feature channels. This mechanism aids in capturing high-level
semantic information from images but also neglects spatial detail nuances, thereby offering
room for performance improvement despite outperforming spatial attention. Multi-head
attention mechanisms, by distributing attention across multiple heads for parallel process-
ing, capture different aspects of information simultaneously, considering both spatial and
channel information for a more comprehensive feature representation. This integrated
approach significantly improves multi-head attention mechanisms’ performance over sin-
gle spatial or channel attention mechanisms. Step attention mechanisms, by dynamically
adjusting the focus of attention, allow for the model to concentrate on more detailed target
aspects following an initial target location identification. This gradual refinement process,
mimicking the natural way humans observe objects, helps the model accurately locate and
identify targets within complex backgrounds. The step attention mechanism’s design fully
leverages Transformer’s self-attention features, improving target identification precision
and localization through fine-tuned attention distribution, achieving optimum performance
across all evaluation metrics.

4.4. Ablation Study on the Cross-Loss Function

The objective of this experiment was to assess the role of the cross-loss function
within the high-precision fruit fly recognition model based on the Transformer structure
through ablation study. The experimental design aimed to compare the performance of
models utilizing the cross-loss function against those employing other commonly used
loss functions, such as the ones used in YOLOv8 and DETR, in target detection tasks.
The experimental outcomes are presented in Table 3.

Table 3. Ablation study results for different loss functions.

Model Precision Recall Accuracy F1-Score

Loss in YOLOv8 [46] 0.92 0.91 0.91 0.91
Loss in DETR [49] 0.94 0.93 0.93 0.93
Cross-loss 0.96 0.95 0.95 0.95

The YOLOv8 model employs a composite loss function, combining classification loss,
localization loss, and confidence loss. Although this design balances classification and
localization performance to some extent, it may not fully consider the intrinsic connection
and trade-off between classification and localization in target detection tasks. The DETR
model, utilizing a set prediction approach and employing the Hungarian matching al-
gorithm combined with a loss function, directly optimizes the final outcome of target
detection. This method is effective in handling targets with complex relationships but may
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require longer training times to converge in some cases. The cross-loss function combines
classification and localization losses, aiming to optimize two key aspects of target detection
tasks simultaneously: identifying the target’s category and locating its position. Classifi-
cation loss typically uses cross-entropy loss, focusing on improving the model’s accuracy
in recognizing target categories; localization loss employs smooth L1 loss, focusing on
enhancing the model’s precision in predicting target locations. By balancing these two parts
of loss, the cross-loss function encourages the model to improve classification accuracy
while more precisely locating targets. Experimental results show that the model using the
cross-loss function outperforms the YOLOv8 and DETR models across all metrics. Specifi-
cally, the cross-loss function model achieved 0.96, 0.95, 0.95, and 0.95 in Precision, Recall,
Accuracy, and F1-score, respectively. In contrast, the YOLOv8 model scored 0.92, 0.91, 0.91,
and 0.91 in these metrics; the DETR model scored 0.94, 0.93, 0.93, and 0.93, respectively.
These results indicate the cross-loss function’s significant advantage in enhancing fruit fly
detection performance.

4.5. Ablation Study on Preprocessing and Augmentation Method

This section aims to explore the impact of different data preprocessing and augmen-
tation techniques on the performance of the Transformer-based model for high-precision
identification of adult fruit flies. The primary objective of the experimental design is to
assess the influence of various data augmentation methods, including rotation, bright-
ness adjustment, cropping, flipping, and contrast adjustment, on model performance.
The experimental results are displayed in Table 4.

Table 4. Ablation study results of different data augmentation methods. %means not using these
augmentation; ✓ means using these augmentation.

Rotation Brightness Cropping Flipping Contrast P. R. Acc. F1-Score

% % % % % 0.85 0.82 0.83 0.84
✓ % % % % 0.91 0.88 0.90 0.90
% ✓ % % % 0.89 0.90 0.89 0.90
% % ✓ % % 0.92 0.93 0.92 0.93
% % % ✓ % 0.86 0.85 0.85 0.86
% % % % ✓ 0.87 0.85 0.86 0.86
✓ ✓ ✓ ✓ ✓ 0.96 0.95 0.95 0.95

Based on the experimental outcomes, it is observed that when no data augmentation
methods are applied, the model’s performance is lower, with Precision, Recall, Accuracy,
and F1-score being 0.85, 0.82, 0.83, and 0.84, respectively. This suggests that the model has
limited generalization capability on raw, unprocessed data, potentially struggling with
image variations brought about by changes in pose, illumination differences, and obstruc-
tions. Upon the separate application of rotation, brightness adjustment, cropping, flipping,
and contrast adjustment, the model’s performance improves, notably with the most signifi-
cant enhancement observed following the application of cropping augmentation, where
Precision, Recall, Accuracy, and F1-score reach 0.92, 0.93, 0.92, and 0.93, respectively. This
indicates that the cropping technique effectively enhances the model’s precision in target
localization, likely due to cropping forcing the model to focus on local features of images
rather than global information, thereby partially mimicking the partial occlusions that
targets may experience in practical application scenarios. Enhancements in contrast and
flipping also improve the model’s performance, although to a lesser extent. Brightness
adjustment noticeably improves the model’s recall, likely because brightness variation
strengthens the model’s capability to recognize targets under varying lighting conditions.
Rotation augmentation also significantly improves model performance, possibly because it
enables the model to learn the appearance of targets at different angles, thereby enhancing
the model’s robustness to rotational changes. When all data augmentation methods are em-
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ployed simultaneously, the model scores the highest across all evaluation metrics, achieving
0.96, 0.95, 0.95, and 0.95. This demonstrates that the combination of these data augmenta-
tion methods not only adds diversity to the data but also enhances the model’s adaptability
to complex variations. The method of integrating various preprocessing and augmentation
strategies enables the model to more comprehensively understand and recognize targets
under different conditions, significantly boosting the model’s generalization capability.

In summary, different data augmentation techniques enhance the model’s ability to
recognize targets and its generalization power by altering the training inputs. The judicious
application of these augmentation techniques can substantially improve the performance
of the Transformer-based model in the high-precision identification task of adult fruit
flies. Future work may further explore the interaction between these data augmentation
techniques and model structure, as well as ways to design more efficient and effective
augmentation strategies to adapt to a broader range of application scenarios and more
challenging tasks.

4.6. Limitations and Future Work

In this study, a Transformer-based high-precision identification model for adult fruit
flies is developed, which shows excellent detection performance after the introduction of
step attention mechanisms and cross-loss functions. However, the model still has some
limitations that require quantitative analysis and improvement in future work. Firstly,
although the step attention mechanism generally enhances model performance, its perfor-
mance under extreme conditions still needs improvement. For example, for extremely small
targets or those in complex backgrounds, step attention may fail to capture key features in
the early stages, leading to subsequent steps being unable to effectively compensate for
this information. To address this issue, future work could involve adding preprocessing
steps to increase target size or improving the attention mechanism to enhance the model’s
ability to handle such cases. To quantitatively assess the specific impact of these limitations
on performance, a test set containing targets of various sizes could be constructed and the
model’s performance under different size distributions analyzed, thus providing guidance
for improvement strategies. Secondly, although the cross-loss function performed well
in experiments, the choice of hyperparameters significantly affects model performance.
The optimal values of hyperparameters may vary across different tasks, thus necessitating
the development of an adaptive hyperparameter adjustment strategy.

In future work, an automatic adjustment mechanism based on validation set perfor-
mance could be introduced, allowing for the model to find the optimal hyperparameter
configuration for different tasks. Additionally, statistical analysis could be used to assess
the impact of hyperparameter changes on model performance, thereby formulating more
precise adjustment strategies. In terms of generalization ability, although the model per-
forms well on a specific dataset, its performance in other target detection tasks has not been
verified. Future research should apply the model to more diverse and challenging datasets
and use statistical methods to quantitatively analyze the model’s performance across differ-
ent tasks to evaluate and improve its generalization ability. Moreover, the computational
complexity and resource consumption of the model are also important considerations.
In resource-limited situations, reduction in resource consumption while maintaining perfor-
mance is a key issue. Future studies could introduce model compression and acceleration
techniques to reduce the model’s computational requirements and use experiments and
theoretical analysis to assess the specific impact of these methods on performance. In sum-
mary, although this study makes progress in the field of fruit fly identification, it still faces
many challenges. Future work should focus on the existing limitations, quantitatively
assess the specific impact of these limitations through experiments and theoretical analysis,
and explore effective improvement strategies to achieve higher-performance, more widely
applicable target detection models.
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5. Conclusions

In this study, a high-precision fruit fly recognition model based on the Transformer
structure was proposed to address the critical issue in object detection tasks of accurately
identifying and locating small targets against complex backgrounds. Experimental results
demonstrated that the model achieves a Precision of 0.96, a Recall rate of 0.95, an Accuracy
of 0.95, and an F1-score of 0.95. These outcomes significantly surpass those of comparative
models, including popular one-stage models (such as YOLOv6, YOLOv8, RetinaDet) and
two-stage models (such as Faster-RCNN), as well as Transformer-based models (DETR).
Specifically, when compared to the more advanced models YOLOv8 and DETR, the pro-
posed model in this paper shows substantial improvements in Precision, Recall, Accuracy,
and F1-score, fully validating the effectiveness and advancement of the presented method
in the task of high-precision fruit fly recognition. Additionally, the importance of the two
innovative contributions to enhancing model performance was further verified through
ablation studies on the step attention mechanism and cross-loss function. The results of
the ablation study on the step attention mechanism indicated that the introduction of
this mechanism significantly enhanced the model’s detection performance, especially in
terms of precision and recall. The ablation study on the cross-loss function revealed that,
compared to traditional loss functions, the cross-loss function more effectively balanced the
accuracy of classification and the precision of target localization, thereby achieving better
results across all evaluation metrics. In summary, the high-precision fruit fly recognition
model based on the Transformer structure presented in this paper demonstrated significant
performance advantages in the field of object detection, particularly in handling complex
backgrounds and small target detection tasks. Despite the achievements of this research, it
is believed that there is still considerable room for improvement in model optimization,
generalization capability enhancement, and computational efficiency. Future research
will continue to explore more efficient and accurate object detection models to meet the
demands for high-performance object detection models in practical applications.
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