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Abstract: With the development of industrial activities and the agricultural and mining industries,
farmland soils are facing serious problems related to heavy metal contamination, especially cadmium
(Cd) and arsenic (As) contamination. In this study, two industrial by-products, phosphogypsum (PG)
and red mud (RM), were modified by lanthanum (La) impregnation to form a new composite (L-PR)
to investigate the adsorption performance of Cd(II)/As(V) in both single and binary systems. The
adsorption mechanisms of Cd(II)/As(V) on L-PR were analyzed using SEM, XRD, FTIR, and XPS.
The passivation effect of L-PR on the Cd-As composite contaminated soil was confirmed through
a soil cultivation experiment. The adsorption experiments revealed that L-PR showed superior
adsorption capabilities for Cd(II) and As(V) compared to PG and RM. Additionally, L-PR was found
to be less affected by changes in pH. The kinetic studies indicated that Cd(II) and As(V) adsorption by
L-PR followed the second-order kinetic model most accurately. Isothermal adsorption experiments
revealed that the adsorption of Cd(II) by L-PR was more in accordance with the Freundlich model,
while As(V) was more in accordance with the Langmuir model. The mechanisms of Cd(II) and As(V)
adsorption on L-PR involved electrostatic attraction, ion exchange, complexation, and precipitation.
The adsorption of Cd(II) is dominated by complexation and precipitation, and the adsorption of
As(V) is dominated by ion exchange and complexation. Soil cultivation experiments showed that
L-PR significantly reduced the available Cd and As concentrations in soil by 86.01% and 27.80%,
respectively, and it could induce the transformation of non-stable Cd(II)/As(V) to the more stable
residual. In summary, L-PR exhibits facile preparation, excellent adsorption performance, and is
capable of simultaneously removing Cd(II) and As(V) from aqueous solutions while immobilizing
these contaminants in soil. These remarkable attributes made it a highly promising alternative for the
simultaneous treatment of various toxic metal contaminants.

Keywords: industrial by-products; lanthanum; cadmium; arsenic; adsorption

1. Introduction

The highly toxic elements cadmium (Cd) and arsenic (As) are classified as class
I carcinogens by the International Agency for Research on Cancer (IARC) [1]. When
contaminants in aquatic and soil environments exceed regulatory standards and remain
unremediated, they pose significant health risks [2,3], Long-term exposure to Cd and As
in humans can result in various diseases. For instance, prolonged exposure to Cd has
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been associated with lung cancer, osteoporosis, and spinal deformities [4,5], while the
excessive intake of As can lead to skin cancer, liver cancer, bronchitis, acute gastroenteritis,
kidney damage, and cardiovascular diseases [5,6]. They are released into aquatic and
terrestrial environments mainly through anthropogenic activities such as the discharge
of wastewater and sewage, the use of pesticides and fertilizers, the mining of ores, and
the burning of fuels, and they accumulate in living organisms through the food chain;
they present a significant threat to the environment and human well-being [7–9]. The
Report on the National General Survey of Soil Contamination reveals that the farmland soil
exceedance rate in China reached a staggering 19.4%, with specific exceedance rates for Cd
and As standing at 7% and 2.7%, respectively [10]. Chen et al. showed that approximately
1.4 million hectares of farmland soils in China have been contaminated by irrigation with
sewage, 64.8% of which are contaminated with heavy metals [11]. Zeng et al. found that
the Cd and As contamination in the soil of vegetable fields in China was severe; sample
analysis showed that the exceedance rate of Cd was 24.1%, the exceedance rate of As was
9.2%, and 44.2% of samples exhibited As accumulation [12]. Cd and As are highly toxic,
widely distributed contaminants and tend to form complexes, resulting in contamination
that is difficult to remediate due to their conflicting chemical properties, which poses a
major risk to the quality of agricultural products and ecological safety [13,14]. For Cd-As
composite contamination, it is difficult for a single passivation material to achieve good
remediation results, and the simultaneous chemical passivation of Cd and As has become
an emerging hotspot for heavy metal research.

Scientists are interested in developing passivation materials that are efficient, low-cost,
and environmentally beneficial to control the contamination of Cd and As. Phosphogypsum
(PG) is a by-product of wet-process phosphoric acid production. It consists mostly of
calcium sulfate dihydrate and is known for its acidity, high production volume, and
complicated composition. Around 4 to 6 tons of PG is emitted for every ton of phosphoric
acid that is manufactured [15,16]. Red mud (RM) refers to the iron oxide-rich by-product
generated during the industrial refining of alumina from bauxite ore, which gives it its
characteristic red color; the distinguishing features of it include a high level of alkalinity,
a complex composition, and a porous structure. Additionally, the annual production of
RM is approximately 180 million tons [17]. China’s comprehensive utilization rate of PG is
approximately 40% [18], whereas that of red mud is less than 5% [19]. The accumulation of
both materials in large quantities not only occupies a large amount of land resources but
also tends to cause environmental contamination [20,21]. Due to the specific properties and
structures of PG and RM, they have a certain adsorption capacity [22–24], but to improve
their adsorption performance and safety in utilization, they must be modified.

Lanthanum (La) is a rare earth element with a high relative abundance, mainly found
in the trivalent form with a special electronic layer structure, and these special structures
make La highly chemically active and biocompatible; therefore, researchers have used
La to modify zeolite [25], biochar [26], and CoFe2O4 nanocomposites [27] to improve the
adsorption performance for As and P. However, relatively little research has examined the
simultaneous adsorption of Cd and As on La-modified materials.

In this study, the raw materials PG and RM were utilized and transformed into the
composite material L-PR through La impregnation. The objective was to investigate the
impact of various factors, including dosage, pH, initial concentration, and adsorption time,
on the efficacy of removing of Cd(II) and As(V) through batch adsorption experiments.
Furthermore, our aim was to elucidate the potential mechanisms underlying Cd(II) and
As(V) adsorption by L-PR and its passivation effect on soil contamination. Ultimately, our
overarching goal was to provide a theoretical foundation and technical support for the
remediation of water bodies and agricultural soils contaminated by Cd and As, as well as
for the resourceful use of PG and RM.
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2. Materials and Methods
2.1. Materials

Phosphogypsum (PG) was obtained from a phosphorus chemical company in Guizhou,
China, and red mud (RM) was obtained from an aluminum plant in Guizhou, China. The
chemical compositions of the two raw materials are presented in Table S1. The tested soil
was collected from the topsoil layer (0–20 cm) of a paddy field (28◦0′33′′ N, 113◦19′25′′ E)
in Liuyang City, Hunan Province, China. The basic physico-chemical properties of the soil
are as follows: pH = 5.02, total Cd and total As concentration were 2.17 and 82.65 mg/kg,
respectively, and the Cd and As concentrations of this soil were much higher than the
screening value of the soil contamination risk of farmland soils. At pH ≤ 5.5, the limits
for Cd and As are 0.3 and 30 mg/kg, respectively (China Environmental Quality Standard
GB 15618-2018) [28]. The basic physico-chemical properties of the test soil are shown in
Text S1, and the parameters are shown in Table S2. Lanthanum chloride heptahydrate
(LaCl3·7H2O, AR) and cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O, AR) were supplied
by Aladdin Biochemical Technology Co., Ltd., in Shanghai, China, and disodium arsenate
heptahydrate (HAsNaO4·7H2O, AR) was supplied by Sigma Au Sigma Oderich (Shanghai)
Trading Co., Shanghai, China. The fundamental physical and chemical properties of the
test materials are presented in Table S3.

2.2. Preparation of Adsorbents

Phosphogypsum (PG): PG was washed with ultrapure water (KNSY1016, Chengdu
Aike Water Treatment Equipment Co., Ltd., Chengdu, China) to remove soluble impurities,
filtered, subjected to vacuum drying in a DZF-6050 oven (Shanghai Yiheng Scientific
Instrument Co., Ltd., Shanghai, China) at 80 ◦C, and then ground to 100 mesh. Red mud
(RM): fresh Bayer RM was dried and ground to 100 mesh. Phosphogypsum red mud (PR):
PG and RM were mixed in a 1:4 ratio, ultrapure water was added at a solid–liquid ratio of
1:20 and put into a magnetic stirrer (HSC-19T, Ningbo Qunan Experimental Instrument
Co., Ltd., Ningbo, China) with thorough stirring, and the resulting mixture was centrifuged
(Eppendorf5430r, Shanghai Jianling Information Technology Co., Ltd., Shanghai, China),
dried, and ground to 100 mesh. Lanthanum-modified phosphogypsum red mud (L-PR):
A certain amount of PR was placed into a beaker; 0.1 mol/L LaCl3 7H2O was added at a
solid–liquid ratio of 1:20. The mixture was subsequently agitated on a magnetic stirrer for
5 h before being centrifuged and washed with ethanol. Finally, the samples were subjected
to drying at a temperature of 80 ◦C and ground to 100 mesh.

2.3. Adsorption Experiments

Cd(NO3)2·4H2O and HAsNaO4·7H2O were dissolved in ultrapure water to prepare
stock solutions of Cd(II) and As(V), respectively, with a concentration of 1000 mg/L. These
solutions were further diluted for use. The effects of different factors, including dosage
(0.1–12 g/L), adsorption time (0–1440 min), pH (3–9), and initial concentration, were in-
vestigated. The composite solutions of Cd(II) and As(V) for the isothermal adsorption
experiments were prepared as follows: the concentration of Cd(II) was held constant
(1 mg/L), and the initial concentration of As(V) was varied (1–100 mg/L); the concentration
of As(V) was kept constant (40 mg/L), and the initial concentration of Cd(II) was varied
(1–100 mg/L). The concentrations of Cd(II) and As(V) used in all the adsorption experi-
ments were 1 and 40 mg/L, respectively, except for the isothermal adsorption experiments.
The filtrate was obtained by centrifugation at a uniform speed of 200 r/min for 24 h at
ambient temperature, passed through a 0.45 µm filter membrane, and then detected by an
inductively coupled plasma mass spectrometer (ICP-MS, ICAP RQ, Thermo Fisher Scien-
tific, Waltham, MA, USA) and an atomic fluorescence spectrometer (AFS, AF-640A, Beijing
Beifen Ruili Analytical Instrument (Group) Co., Beijing, China). The Cd(II) and As(V) con-
centrations were detected, and the adsorption experiments in this series were performed in
100 mL round-bottom centrifuge tubes. Each treatment was repeated three times.
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The adsorption capacity (Qe) [29] and removal rate (R) [30] were determined using
the following equations:

Qe =
(C 0 − Ce)V

m
(1)

R =
C0 − Ce

C0
× 100% (2)

Kinetic adsorption data were fitted with pseudo-first-order and pseudo-second-order
kinetics models [31], while Cd(II)/As(V) adsorption by L-PR was simulated using Langmuir
and Freundlich isotherm models [32].

ln(Qe − Qt ) = ln Qe − K1t (3)

t
Qt

=
1

K2Q2
e
+

t
Qe

(4)

Ce

Qe
=

Ce

Qm
+

1
QmKL

(5)

ln Qe =

(
1
n

)
ln Ce + ln KF (6)

The initial and equilibrium concentrations of metal ions are represented by C0 and Ce
(mg/L), respectively. The mass of the adsorbent is denoted as m (g), while V (L) refers to
the volume of the liquid. Qt, Qe, and Qm (mg/g) denote the adsorption amount at reaction
time t, the adsorption amount at equilibrium, and the maximum saturated adsorption,
respectively. The time of the adsorption reaction is denoted as t (min). K1 and K2 refer to
the pseudo-first-order and pseudo-second-order rate constants, respectively. KL and KF
represent the Langmuir and Freundlich adsorption constants, respectively. And n signifies
the Freundlich parameter indicating the adsorption strength.

2.4. Characterization

The surface morphology was analyzed using a scanning electron microscope (SEM,
HITACHI/SU8600, Hitachi High-Technologies, Ltd., Tokyo, Japan) coupled with energy-
dispersive X-ray spectroscopy (EDS, Oxford/ULTIM MAX40, Oxford Instruments Nan-
otechnology Tools Ltdools Ltd., Tokyo, Japan), and the major components in the field of
view were identified through energy spectral analyses. Specific surface area and pore size
analyses were conducted using a Brunauer–Emmett–Teller (BET) analysis system (ASAP
2460 3.01, Mack Instruments, Norcross, GA, USA). The main crystal components were ana-
lyzed by X-ray diffraction (XRD; Rigaku Ultima IV, Rigaku Corporation, Tokyo, Japan). The
chemical composition of the adsorbent was measured using X-ray fluorescence (XRF, ZSX
Primus III+, Rigaku Corporation, Tokyo, Japan). Surface functional groups were identified
using Fourier-transform infrared spectroscopy (FTIR, Nicolet 670, Nicorette Corporation,
Madison, WI, USA) and X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha
Nexsa, Waltham, MA, USA). The isoelectric point and zeta potential of the adsorbent were
determined under different conditions using a laser particle sizer (Zetasizer Nano ZS90,
Malvern Panalytical, Malvern, UK).

2.5. Soil Incubation Experiments

The tested material and soil were thoroughly mixed in a beaker with 3% w/w deionized
water added, stirred once a day, equilibrated for 1 week, and then transferred to a 25 ◦C,
70% RH incubator for incubation. Deionized water was replenished every 3 d during
incubation using the weighing method to maintain the soil water content at 70% of the
field holding capacity without the addition of passivator (Control, CK), and five parallels
were established for each treatment. Sampling was performed after 55 d of incubation to
determine the availability and fractions of As and Cd in the soil. The soil availability of
Cd, reference [33]; the soil availability of As, reference [34]; the fractions of As and Cd in
the samples were determined by the modified BCR sequential extraction method [35]. The
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availability and fractions of As and Cd in the soil and the detailed procedure are described
in Table S4.

2.6. Statistical Analysis

Excel 2010 (Microsoft Corp., Redmond, WA, USA) was used for data processing,
and SPSS 26.0 (IBM Corp., Armonk, NY, USA) statistical analysis software was used for
descriptive statistics, Pearson’s correlation analysis, and one-way analysis of variance
(ANOVA), with different lowercase letters showing key differences between treatments
(p < 0.05). Adsorption kinetic and thermodynamic models were simulated using Origin
2018 (Origin Lab Corp., Northampton, MA, USA).

3. Results
3.1. SEM

The surface morphology of PG, RM, PR, and L-PR is shown in Figure 1a–d. These
SEM images clearly show the surface morphology features of the four materials. PG is
dominated by oblique crystals, the crystal structure is mainly rhombic, and the surface is
relatively smooth with some irregular concave and convex structures and a small number
of particles attached. RM consists of particles of different sizes with gaps between the
particles, and the surface is somewhat rough and relatively disordered. After PG and RM
were fully mixed, some fine particles can be seen attached onto the crystals with an irregular
morphology interspersed with numerous flaky particles, and the surface is relatively rough
(Figure 1a PR). After La modification, the surface of L-PR is obviously rough and fluffy,
many flocculent materials appear, the particles are more loosely packed, and the pore space
increases. Based on the results of energy-dispersive X-ray spectroscopy (EDS) (Figure S1),
the main elements of the original PG are C, O, Ca, and S, and the contents of Al, Si, and
P are relatively small, in addition to the presence of a very small amount of F, which was
not detected after modification. The primary constituents of the original RM include C,
O, Fe, Al, Si, and Ca, and the contents of Mg, Na, K, and S are relatively low. L-PR is
predominantly composed of O, Ca, Fe, Al, Si, and La. It is evident that the successful
loading of La onto the surface of PR has occurred.

3.2. N2 Adsorption/Desorption Isotherm

The N2 adsorption/desorption curves of each adsorbent are shown in Figure 1e. The
adsorption of N2 on RM, PR, and L-PR increases with increasing relative pressure, with the
curve transitioning from a flat to a sharp increase and then a plateau, while the adsorption
of PG remains essentially flat. The BET method was utilized for the determination of the
specific surface area, pore volume, and pore size of the materials. The specific surface area
and pore volume of PR and L-PR are significantly higher than those of PG and RM, as
demonstrated in Table S3. Furthermore, a substantial increase in both the specific surface
area and pore volume is observed after compositing. This behavior contradicts that of
the average pore diameter; the specific surface area of the materials is dependent on the
pore diameter, whereby smaller pore diameters result in larger specific surface areas. The
decrease in the specific surface area and pore diameter of L-PR compared to PR is likely
attributed to the increased particle size of PR caused by La loading onto its surface, which
subsequently obstructed the pores. Moreover, the pore size distributions of the porous
media were plotted (Figure 1f), and the pore types were analyzed; the pore size distribution
is almost uniform, falling primarily in the range of 2~50 nm.
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Figure 1. (a–d) SEM images of PG, RM, PR, and L-PR; (e) N2 adsorption/desorption isotherms;
(f) pore size distribution curves; (g) XRD patterns; and (h) FTIR spectra. Note: PG, phosphogypsum;
RM, red mud; PR, phosphogypsum red mud; L-PR, lanthanum-modified phosphogypsum red mud.
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3.3. XRD

The XRD pattern of PG, as depicted in Figure 1g, shows prominent diffraction
peaks corresponding to CaSO4·2H2O, indicating that the primary constituent of PG is
CaSO4·2H2O with a minor presence of SiO2. RM mainly consists of bauxite residue, and
the characterization results show that a variety of minerals coexist. The diffraction peaks
of Ca3Al2SiO4(OH)8, Fe6Si4O10(OH)8 and Mg5Al3(OH)16(OH)3(H2O)4 can be identified in
the diffraction pattern of RM, and the diffraction peaks of CaCO3 and Fe2O3 also appear in
the diffraction pattern of RM. The composition of the physical phases is basically the same
as the chemical composition in Table S1. Compared with those of the original material,
no new peaks appear in the spectrum of the composite PR. After modification by La, the
composition of the physical phase does not change significantly, but the characteristic peaks
are significantly weakened, indicating that the crystallinity of the material decreases by the
incorporation of La into the composite of RM and PG, and the diffraction peaks, especially
the diffraction peaks of CaSO4·2H2O, significantly change. Moreover, the diffraction peaks,
XRF results, and EDS results of the composite PR indicate that La exists as amorphous
lanthanum oxides or lanthanum hydroxides.

3.4. FTIR

The FTIR spectrum in Figure 1h exhibits two peaks at 3437.73 cm−1 and 1629.25 cm−1,
which can be attributed to the stretching vibration and bending vibration of hydroxyl
groups (-OH) on the surface of the sample, respectively [36]. The intensity of the -OH
peaks for PG is greater than that for RM, indicating that PG contains more crystalline water,
while the crystalline water content decreases after the combination of PG with RM and
modification with La. This decrease is not obvious after La modification, which may be
mainly due to the loss of bound water in the structural framework during the compositing
and modification process, which decreases the adsorption resistance of the raw materials
and increases the diffusion of adsorbate molecules, thus increasing the adsorption capacity
of PG and RM. The infrared sensitivity of SO4

2− results in the prominent observation of
a peak at 1131.24 cm−1 in PG, which corresponds to CaSO4. Additionally, the peaks at
610.62 cm−1 and 670.48 cm−1 can also be ascribed to SO4

2− in the tetrahedral configura-
tion [37]. Moreover, the response of these characteristic peaks is significantly weakened
after complexation with RM, but the weakening is not obvious after modification by La.
For RM, the C-H stretching vibration peak of alkoxy groups, observed at 2924.86 cm−1 [38],
exhibits a weak sharp peak, which is further intensified through modification. The presence
of carbonate compounds is indicated by the peak at 1449.87 cm−1, which corresponds to the
CO3

2− stretching vibration [39,40]. However, this peak is weakened in PR and L-PR. The
fingerprint regions of PR and L-PR have more characteristic peaks than that of PG, and the
peaks in this region are more complicated. The peaks near 570 cm−1 and 690 cm−1 may be
Fe-O, whereas the peaks around 622.88 cm−1 and 465.05 cm−1 may be Al-O; additionally, a
strong and distinct peak at 1003.24 cm−1 could be ascribed to SiO3

2− or SiO4
2− [41]. The

intensity of this peak is weakened by La modification. Due to the large covalent radius of
La, when La replaces Si in the silica–aluminum tetrahedral skeleton of RM, it leads to an
increase in the flexural vibration of Si-O bonds and a decrease in the bending vibration of
Si-O-Si, suggesting the incorporation of La into the silica–oxygen tetrahedral skeleton [42].
These findings are corroborated by the crystalline peaks, such as those of calcium sulfate
and silica aluminates, detected in the XRD analysis of PG and RM. The peaks present in
both PG and RM are also present in L-PR, and these changes further confirm the complete
fusion of PG and RM and the successful loading of La onto the composite.
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3.5. Removal Rate of Cd(II)/As(V) before and after Adsorbent Modification

The removal rates of single Cd(II)/As(V) and binary Cd(II)/As(V) for each material
are presented in Figure 2a and b, respectively. In the single system, L-PR exhibits removal
rates greater than 97.57% for Cd(II) and 99.00% for As(V), while the removal rates of As(V)
are significantly higher compared to PG, RM, and PR. Similarly, the removal rates of Cd(II)
by L-PR are significantly higher than those of PG and RM, with no significant difference
from PR. In the binary system, L-PR achieves removal rates of 98.37% for Cd(II) and 99.81%
for As(V). Furthermore, As(V) is removed significantly more effectively than PG, RM, and
PR; whereas Cd(II) shows a significant increase compared to PG and RM but not PR. In
addition, the presence of As(V) enhances the removal efficiency of Cd(II) by PG and RM.
These findings demonstrate that combining PG and RM substantially improves the removal
efficacy of Cd(II), while La modification maintains high adsorption capacity for Cd(II) and
significantly enhances As(V)’s elimination by PR. Therefore, considering their respective
performance in removing both Cd(II) and As(V), L-PR was chosen as the test material in
subsequent experiments.
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Figure 2. (a) Removal efficiency of Cd(II)/As(V) by PG, RM, PR, and L-PR in single system;
(b) removal efficiency of Cd(II)/As(V) in binary system. Note: PG, phosphogypsum; RM, red
mud; PR, phosphogypsum red mud; L-PR, lanthanum-modified phosphogypsum red mud; the
different letters denote values are significantly different at p < 0.05.

3.6. Factors Affecting the Adsorption of Cd(II)/As(V)
3.6.1. Dosage of L-PR

The impact of the adsorbent dosage on the removal efficiency of Cd(II)/As(V) was
investigated through an optimization process to determine the optimal adsorbent dosage.
The experimental conditions were adjusted to include an initial Cd(II) concentration of
1 mg/L, an initial As(V) concentration of 40 mg/L, a temperature maintained at 25 ◦C, and
an adsorption duration of 24 h. By varying the dosage of L-PR adsorbent (ranging from
0.1 g/L to 12.0 g/L), the effects on Cd(II)/As(V) removal were examined in detail. The
obtained results are presented in Figure 3a–c. The figures demonstrate that an increase in
L-PR dosage leads to the gradual augmentation of adsorption active sites, resulting in the
enhanced removal of Cd(II) and As(V). However, due to the constant initial concentration
of Cd(II) and As(V), the adsorption capacity gradually diminishes with higher L-PR dosage.
Notably, as the L-PR dosage increases, there is a progressive rise in the quantity of active
adsorption sites on its surface, leading to improved efficiency and reaching a saturation
point when the amount of L-PR exceeds the critical value required for the complete ad-
sorption of heavy metal ions. For instance, at a dosage of 1.0 g/L, the removal rates are
62.76% (single Cd), 52.79% (single As), 44.88% (binary As), and 99.42% (binary Cd). The
impact of increasing the adsorbent dosage beyond a certain threshold on the removal rate
and adsorption capacity of Cd(II) from the binary system is not significant, likely attributed
to the presence of As(V), which enhances Cd(II) adsorption. At an adsorbent dosage of
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4.0 g/L, high removal rates are achieved for single Cd, single As, and binary As at 97.87%,
99.45%, and 99.84%, respectively; further increases in L-PR dosage have minimal effect on
the removal rate at this point. In conclusion, considering economic benefits, the optimal
dosage of adsorbent is determined to be 4 g/L.
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Figure 3. (a) Effect of L-PR dosage on single Cd adsorption; (b) effect of L-PR dosage on single
As adsorption; (c) effect of L-PR dosage on binary Cd/As adsorption; (d) effect of pH on removal
efficiency of single and binary Cd; (e) effect of pH on removal efficiency of single and binary As;
(f) zeta potential of L-PR.

3.6.2. pH

The initial pH serves as a crucial indicator for determining the quantity of metal ad-
sorbed by a material. The initial pH has no impact on the removal efficiency of Cd(II)/As(V)
by L-PR. Remarkably, both Cd(II) and As(V) removals exhibit high efficiency, reaching up
to 99% within a wider pH range of 3.0~9.0 (Figure 3d,e). Figure 3f illustrates the variation
in the zeta potential of L-PR under different pH conditions. The isoelectric point (pHpzc) of
L-PR is 7.55, leading to the generation of a cationic surface when the pH value falls below
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this threshold due to protonation by H+ ions. This facilitates electrostatic attraction between
L-PR and arsenite or arsenate, while the adsorption of As(V) by L-PR is primarily regulated
by electrostatic adsorption. However, in theory, the protonation on the L-PR surface at
a lower pH would theoretically hinder the binding of cationic Cd(II) to the L-PR surface
due to charge repulsion. Nevertheless, experimental results demonstrate that the removal
efficiency of Cd(II) by L-PR still reaches 99%. Therefore, it can be concluded that electro-
static attraction does not play a dominant role in the adsorption of immobilized Cd(II)
by L-PR within this pH range. Furthermore, L-PR maintains a high removal efficiency of
Cd(II)/As(V) at a pH > 7.55 due to the deprotonation and negative charge on its surface.
Hence, within this pH range, the adsorption of Cd(II) occurs through electrostatic attraction,
while the adsorption of As(V) is less influenced by electrostatic attraction. In conclusion,
L-PR exhibits suitability across a wide pH range which enhances its practical applicability.

3.6.3. Adsorption Isotherm

The adsorption behavior of Cd(II)/As(V) on L-PR was examined at 25 ◦C, and the
collected data were analyzed using the Langmuir and Freundlich models. The results
are illustrated in Figure 4, along with the fitting parameters provided in Table 1. The
Freundlich equation is commonly considered as an empirical model that assumes multilayer
adsorption on a nonhomogeneous surface. The Langmuir model, in contrast, assumes
monolayer adsorption on a homogeneous surface without any intermolecular interactions
between the adsorbed molecules at adjacent positions. In other words, adsorption takes
place exclusively on the outer surface of the adsorbent. The correlation coefficients (R2)
indicated distinct L-PR adsorption mechanisms for Cd(II) and As(V). The adsorption of
Cd(II) was found to be more consistent with the Freundlich model, as evidenced by R2

values of 0.955 (single) and 0.951 (binary), while the adsorption of As(V) was better fit
with the Langmuir model, supported by R2 values of 0.969 (single) and 0.985 (binary).
The results indicated that the adsorption of Cd(II) by L-PR is likely to occur through
non-homogeneous multilayer adsorption, while As(V) adsorption predominantly takes
place via homogeneous monolayer adsorption. The saturation adsorption capacities (Qmax
values) for single system Cd(II) and binary system As(V) were determined as 12.508 mg/g
and 10.654 mg/g, respectively. The Langmuir adsorption constant, KL, quantifies the
affinity between the adsorbent and the adsorbate; a higher value signifies a stronger affinity.
The Freundlich adsorption constant, KF, quantifies the adsorption capacity of the adsorbent.
The affinity and adsorption capacity of L-PR for As(V) were found to be superior to those
for Cd(II) in all systems. However, in the binary system, the affinity and adsorption capacity
of L-PR for As(V) decreased, while there was a slight increase in its affinity and adsorption
capacity for Cd(II). This observed phenomenon can be ascribed to co-adsorption where the
components mutually interfere with each other. In addition, the value of 0 < 1/n < 1 in the
Freundlich model indicated that the inhomogeneous surface of L-PR favors the adsorption
of Cd(II) and As(V).

Table 1. Parameters of Cd(II)/As(V) adsorption calculated based on the Freundlich and Lang-
muir models.

Metal Types Systems
Langmuir Model Freundlich Model

Qmax (mg/g) KL (L/mg) R2 KF (mg/g) 1/n R2

Cd(II) Single 18.904 6.19 × 10−3 0.740 0.888 0.141 0.955
Binary 14.925 0.205 0.859 1.944 0.631 0.951

As(V) Single 12.508 2.288 0.969 5.777 0.330 0.728
Binary 10.654 1.191 0.985 4.163 0.356 0.731
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Figure 4. Langmuir and Freundlich isotherms for the adsorption of (a) Cd(II) and (b) As(V) by L-PR.

3.6.4. Adsorption Kinetics

The adsorption kinetics of Cd(II)/As(V) by L-PR were modeled using the pseudo-
first-order and pseudo-second-order kinetic models (Figure 5), and the relevant fitting
parameters are shown in Table 2. The fitting results revealed that the adsorption processes
of Cd(II) and As(V) by L-PR were consistent with the pseudo-first-order and pseudo-second-
order kinetic models (R2 > 0.99) in two systems. The calculated equilibrium adsorption
capacities Qe were 0.336 (single Cd), 0.373 (binary Cd), 7.851 (single As), and 8.174 (binary
As) mg/g, which are very close to the experimental values of 0.333 (single Cd), 0.373 (binary
Cd), 7.198 (single As), and 8.163 (binary As) mg/g. The adsorption rates of both Cd(II)
and As(V) by L-PR exhibited an initial rapid phase, as depicted in Figure 5, followed by a
gradual decrease until reaching adsorption equilibrium. Furthermore, a decreased K2 value
signifies a prolonged duration for adsorption to achieve equilibrium. Compared to single
adsorption, the adsorption rates of both Cd(II) and As(V) were significantly enhanced
in the binary system; equilibrium was achieved within approximately 180 min for both
systems, with the rapid adsorption of As(V) occurring within just 20 min and exhibiting
a remarkable removal rate of 93.21%. In contrast, in the single system, As(V) adsorption
reached equilibrium in approximately 6 h, and Cd(II) adsorption reached equilibrium in a
relatively long time of approximately 18 h. This indicates that the presence of both Cd(II)
and As(V) results in a shorter time to achieve removal equilibrium compared to their single
systems, with chemical adsorption being the dominant mechanism.
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Figure 5. Adsorption kinetics of (a) Cd(II) and (b) As(V) by L-PR.
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Table 2. Pseudo-first-order and pseudo-second-order kinetics fitting results of Cd(II) and As(V).

Metal Types Systems
Pseudo-First-Order Kinetic Pseudo-Second-Order Kinetic

Qe (mg/g) K1 (1/h) R2 Qe (mg/g) K2 (g/mg/h) R2

Cd(II) Single 0.152 0.0027 0.993 0.336 0.0737 0.996
Binary 0.035 0.0387 0.584 0.373 0.6961 0.999

As(V) Single 3.270 0.0029 0.879 7.851 0.0048 0.996
Binary 0.370 0.0037 0.646 8.174 0.0576 0.999

3.7. Possible Mechanism of Adsorption of Cd(II)/As(V) by L-PR

The SEM images in Figure 6a–d show the surface morphology of L-PR before and
after the adsorption of Cd(II) and As(V). Following the adsorption process, the previously
evacuated and flocculated surface of L-PR becomes more compact and dense, particularly
in the single systems. Notably, the adsorption of As(V) by L-PR is more pronounced
compared to that of Cd(II) in the single system. Additionally, it is worth highlighting that
the presence of ribbon-like materials observed after Cd(II)/As(V) adsorption by L-PR may
be due to complex formation between Cd(II) and As(V) on its surface.
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Figure 6. (a–d) SEM images of L-PR before and after Cd(II)/As(V) adsorption.

A comparison of the XRD patterns of L-PR before and after Cd(II)/As(V) adsorp-
tion is presented in Figure 7. The CaSO4·2H2O peak is observed at 11.75◦, while the
Mg5Al3(OH)16(OH)3(H2O)4 peak appears at 23.47◦ following the mono-adsorption of
Cd(II). However, the peaks corresponding to mono-adsorbed As(V) and Cd(II)/As(V)
disappear completely after co-adsorption. On the basis of these results, Ca2+, Mg2+, and
Al3+ may be involved in ion exchange with Cd(II)/As(V).
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Figure 7. XRD patterns of L-PR before and after Cd(II)/As(V) adsorption.

According to the FTIR spectra before and after adsorption, as illustrated in Figure 8,
the peaks at 3437.73 cm−1 reveal a reduction in intensity following the adsorption of
Cd(II)/As(V) by L-PR. Furthermore, these peaks undergo a shift towards 3460.54 cm−1

upon the adsorption of Cd(II) alone by L-PR, 3458.43 cm−1 upon the adsorption of As(V)
alone, and they finally settle at 3456.45 cm−1 following the simultaneous adsorption of
Cd(II)/As(V). This phenomenon can be attributed to the broadening effect caused by the
O-H stretching vibration on the overlapping flat peaks observed at 3437.73 cm−1. After
the adsorption of Cd(II) and As(V) alone, the peak associated with the C-H stretching
vibration of alkoxyl groups at 2924.86 cm−1 weakens and shifts, eventually disappearing
completely upon the adsorption of Cd(II)/As(V), indicating the involvement of surface
L-PR alkoxylates in both Cd(II) and As(V) adsorption. The CO3

2− stretching vibration
peak near 1449.87 cm−1 shifts to near 1428 cm−1 after the mono-adsorption of Cd(II) and
co-adsorption of Cd(II)/As(V) and becomes sharp after co-adsorption, indicating that Cd(II)
exchanges with carbonate cations to further form a precipitate. Moreover, the absorption
peak at 1003.24 cm−1 for L-PR shows no significant change after the mono-adsorption of
Cd(II), while the peak becomes narrower after mono-adsorbing As(V) and co-adsorbing
Cd(II)/As(V), suggesting that La enters the silica–oxygen tetrahedron to participate in the
adsorption of As(V), with which it may form complexes.
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To gain a deeper understanding of the Cd(II)/As(V) adsorption mechanism on L-PR,
a further XPS analysis was conducted to investigate the changes in functional groups on
L-PR (Figure 9a–c). The presence of La 3d in the full XPS spectrum of L-PR further confirms
that La was loaded onto the surface of PR. The adsorption of Cd(II)/As(V) was followed
by the appearance of new characteristic peaks: the presence of Cd 3d (400.11 eV) and As
3d (44.12 eV) peaks confirms the successful adsorption of Cd(II) and As(V); moreover, the
Ca 2p peak was significantly weakened, suggesting that the adsorption was related to ion
exchange, which was also confirmed by the XRD and FTIR results.

Figure 9b shows the high-resolution spectra of O 1s prior to and subsequent to the ad-
sorption process involving Cd(II)/As(V) on L-PR. PR is impregnated with elemental La, and
the surface of L-PR exhibits characteristic peaks corresponding to metal oxides (Figure S2).
This observation suggests that La is loaded onto PR in the form of metal oxides, which
aligns with the XRF results. Moreover, the relative content of metal oxides decreases from
9.59% to 2.87% and 4.15%, while that of H-O increases from 90.41% to 97.13% and 95.85%,
after adsorbing Cd(II) and As(V), respectively, on L-PR, suggesting that metal oxides,
i.e., La-O, were involved in adsorbing Cd(II) and As(V). Notably, three peaks observed at
529.75, 530.99, and 532.75 eV after the co-adsorption of Cd(II)/As(V) can be attributed to
As-O, H-O, and O in Cd-O, respectively. The involvement of L-PR in the adsorption process
during Cd(II)/As(V) co-adsorption is worth mentioning, as evidenced by the decrease in
the relative proportion of H-O from 90.41% to 65.69%. Cd(II) and As(V) can interact with
H-O, leading to the substitution of H-O by Cd-O and As-O, respectively. This suggests the
formation of ternary complexes during co-adsorption, which accord with the SEM results.

The C 1s spectra (Figure 9c) demonstrate significant changes in the binding energies
of C=O/C-O, O-C=O, and CO3

2− after the adsorption of Cd(II)/As(V); specifically, there is
a shift towards higher binding energy for CO3

2− following Cd(II) adsorption, resulting in a
decrease in relative content from 4.50% to 2.49% (single) and 1.07% (binary), respectively.
This indicates that CO3

2− sites are occupied during adsorption, probably forming CdCO3
with Cd(II) and contributing less to As(V) adsorption.
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Figure 9. (a) XPS spectra of L-PR before and after Cd(II)/As(V) adsorption; (b) O 1s spectra of L-PR before
and after Cd(II)/As(V) adsorption; (c) C 1s spectra of L-PR before and after Cd(II)/As(V) adsorption.

The split-peak fit of the Cd 3d orbitals (Figure S3) shows that Cd2+ accounts for 32.80%
and Cd-O for 67.20% in the single system, while Cd2+ accounts for only 7.14% in the binary
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system. Additionally, the As 3d spectra (Figure S4) reveal that approximately 70% of arsenic
exists as As(V), while approximately 30% is present as As(III) in two systems. This suggests
that ion exchange and complexation mechanisms enhance the adsorption of individual
Cd(II) by L-PR, whereas the introduction of As(V) promotes the formation of Cd(II)/As(V)
complexes. Moreover, As(V) adsorption may involve electron transfer, and the effect of
Cd(II) addition on As(V) adsorption is not significant.

3.8. Effects of Various Treatments on As and Cd Availability and Fractions in Soil
3.8.1. Availability of Cd and As

The impacts of the various treatments on the soil availability of Cd and As are il-
lustrated in Figure 10. In comparison to CK, the impact of PG on available Cd in soil is
negligible. However, RM, PR, and L-PR significantly decrease the concentration of avail-
able Cd. The stabilizing effect of L-PR on Cd is notably superior to that of RM and PR,
resulting in an 86.01% reduction in available Cd concentration in soil. Similarly, while the
effect of PG on available As concentration remains almost unchanged, it is significantly
higher in the RM and PR treatments. The application of L-PR reduces the available As
concentration by 27.80%. Similarly, the impact of PG on available As concentration remains
nearly unchanged in the PG treatment, while it is significantly elevated in the RM and PR
treatments. Moreover, a reduction of 27.80% in available As concentration is observed in
the L-PR treatment compared to CK. In conclusion, L-PR shows pronounced efficacy in
reducing the toxicity caused by Cd and As, concurrently reducing their bioavailability.
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Figure 10. Available Cd and As concentrations in soil under different treatments. Note: CK, control;
PG, phosphogypsum; RM, red mud; PR, phosphogypsum red mud; L-PR, lanthanum-modified
phosphogypsum red mud; the different letters denote values are significantly different at p < 0.05.

3.8.2. Fractions of Cd and As

The morphology and fractions of heavy metals in soil are critical factors influencing
their bioavailability. In order to gain a comprehensive understanding of the impact of L-PR
on the changes in the morphological distribution of metals in soil and evaluate their levels
of stabilization, the BCR sequential extraction of As and Cd in soil was carried out. As
shown in Figure 11, the results of BCR continuous extraction indicated that the fraction
of Cd in Cd-As complex-contaminated soil was mainly dominated by the residual (F4),
which accounted for 51.67% of the total fractions concentrations, followed by the acid-
soluble (F1) and reducible (F2), and the oxidizable (F3) accounted for a smaller proportion.
Compared with CK, the application of L-PR reduces Cd acid-soluble F1 in soil, reducible
F2, and oxidizable F3 concentrations, especially acid-soluble F1 and reducible F2, which
decreased by 8.53% and 5.71%, respectively, while increasing the concentrations of residual
F4 by 29.31%; for As, the highest proportion of the total fractions concentration is residual
F4, which is as high as 85.75%, followed by reducible F2 and oxidizable F3, and the
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lowest is acid-soluble F1, which is only 0.52%, which was hardly extracted by the BCR
sequential extraction, indicating that most of the As in this Cd-As complex-contaminated
soil existed in the form of immobilized fractions, and the Cd and As mobility is weak,
and the concentrations of reducible and oxidizable As were reduced by 2.55% and 4.08%,
respectively, and residual As was elevated by 6.56% under the L-PR treatment compared
with that of CK, and the effect on the weakly acid-soluble As is not obvious. In conclusion,
the addition of L-PR to soil can reduce the bioavailability of Cd and As in soil and induce
the transformation of non-stable Cd/As to the more stable residual.
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4. Discussion
4.1. Properties of L-PR

The SEM–EDS, BET, XRD, XRF, FTIR, and XPS characterization results showed that the
combination of PG with RM and subsequent modification with La not only neutralized the
pH of the raw material but also improved both its structure and composition. Structurally,
the concave and convex bulk crystal structure of PG provided attachment points for the
granular RM, which made its surface rougher. After La loading, the surface of L-PR was
rough and fluffy, many flocculent materials appeared, and the particles were more loosely
stacked (Figure 1 L-PR). Moreover, the specific surface area and pore volume obviously
increased, the pore diameter became smaller (Table S3), and the diameters of almost all
the pores were uniformly distributed in the range of 2 nm to 50 nm (Figure 1b). These
results suggest that L-PR is a mesoporous material with a mineral surface and adsorption
capacity [43], thereby contributing to the enhanced adsorption of heavy metals. In terms
of composition, the combination of CaSO3, the main component of PG, and Al2O3, Fe2O3,
SiO2, and MgO in RM was observed (Table S1); relevant studies have confirmed that Ca,
Al, Mg, and Fe ions can adsorb Cd(II) and As(III) via ion exchange [44,45]. Moreover, Li
et al. demonstrated the presence of oxygenated functional groups associated with La and
provided evidence for the involvement of La-O in the adsorption process of As(V) [26]; in
addition, functional groups such as H-O and Si-O were modified. Furthermore, Wu et al.
indicated that the activation of more oxygenated functional groups on adsorbent materials
was favorable for the adsorption of Cd and Pb [46].

4.2. Adsorption Behavior of Cd(II)/As(V) on L-PR

The removal efficiency of Cd(II) by L-PR exceeded 97.57%, while the removal efficiency
of As(V) surpassed 99.00% (Figure 2). In contrast, the removal of Cd(II) and As(III) by pyrite-
modified biochar (PMB) only achieved a removal range of 70.00–80.00% for Cd(II) and
As(III) [47]. Nitrogen-doped biochar (NBC), however, demonstrated the highest removal
rates for Cd(II) and total arsenic As(T), reaching 89.00% and 94.00%, respectively [48]. On
the other hand, natural ferromanganese nodules removed approximately 83.60% of total



Agriculture 2024, 14, 464 18 of 23

arsenic As(III, V) [49]. Notably, L-PR exhibited superior adsorption performance for Cd(II)
and As(V), with its adsorption capacity remaining unaffected by pH. The surface of L-PR
was protonated and positively charged at pH < 7.55, thereby enhancing the electrostatic
attraction between the adsorbent surface and As(V). This observation is consistent with
previous experimental findings on the adsorption of As(V) by other La-modified materials.
The surface of Fe-Mn-La-impregnated biochar composites also displayed a positively
charged surface due to protonation at a low pH, and this material was used to adsorb As(V)
by electrostatic action in reactions with arsenite or arsenate [50]. Furthermore, in acidic
and neutral conditions, La3+ ions leached from Fe-La composite oxides could react with
As(V) to form the insoluble precipitate LaAsO4 [51]. At pH > 7.55, L-PR maintained a high
removal efficiency of Cd(II)/As(V). Although the solution conditions were unfavorable for
the electrostatic adsorption of As(V), other chemical interactions occurred, and when the
pH of the initial solution was higher than the pHpzc, arsenate was released into the solution
by replacing -OH on the surface, and ligand exchange occurred during the adsorption
process [50,52] due to the deprotonation of -OH and -COOH groups at higher pH values,
which promotes complexation with metal ions [53]. The removal of Cd(II) by modified
biochar also increased with rising solution pH, and Cd(II) readily generated Cd(OH)2
precipitates [54]. The results from fitting the kinetic and adsorption isotherm models
for Cd(II)/As(V) showed that the adsorption of Cd(II) by L-PR exhibited characteristics
of nonhomogeneous adsorption in multimolecular layers. The adsorption process of
Cd(II)/As(V) was dominated by chemisorption, and the time required to reach removal
equilibrium for co-adsorption was shorter than that for mono-adsorption. The disparity
in the initial adsorption rate can be ascribed to the discrepancy in the affinities of the
adsorbents towards the metal ions [55]. Therefore, when Cd(II)/As(V) coexisted, they
mutually promoted the affinity of L-PR for each other, and synergistic adsorption occurred.

4.3. Main Mechanism of Cd(II)/As(V) Adsorption by L-PR

The mechanism of adsorption of heavy metals by adsorbents involves a combination of
electrostatic attraction, ion exchange, complexation, and precipitation/coprecipitation [56,57].
The SEM and XRD results revealed that after adsorbing Cd(II)/As(V), although no new
distinctive peaks were generated, changes in surface structure and physical phase can be
observed. Additionally, the CaSO4·2H2O and Mg5Al3(OH)16 (OH)3(H2O)4 peaks were
significantly weakened, which is similar to the results for adsorbing Cd(II) and As(V) by
other mineral-based adsorbents [6,58]. Consequently, it can be inferred that ion exchange
occurred between Ca2+, Mg2+, Al3+, and Cd(II)/As(V). The FTIR, O 1s, and C 1s spectral
results showed that -OH, La-O, and CO3

2− were engaged in adsorbing Cd(II)/As(V). The
appearance of hydroxyl groups in As-OH or Cd-OH indicates that the oxygen atom on -OH
may coordinate with Cd(II)/As(V) [13]. Additionally, La-involved silica–oxygen tetrahedra
are involved in the adsorption of As(V), forming complexes [42,51]. Furthermore, La-O
is transformed into La-OH, leading to the precipitation of Cd(OH)2 with Cd(II) and the
formation of complexes with As(V). Zhang et al. found that Fe-La composite oxides and
As(V) formed bidentate binuclear (BB) or monodentate mononuclear (MM) complexes [51].
CO3

2− changed after the adsorption of Cd(II), suggesting that Cd(II) exchanged with
cations in carbonates to further form precipitates. This mechanism is consistent with the
findings reported by Cai et al., who studied the removal of Cd(II) by NaOH-EtOH modified
biochar [54]. After the co-adsorption of Cd(II)/As(V), Cd(II) and As(V) interacted with
H-O, and substitution occurred to form Cd-O and As-O. It was deduced that ternary
complexes were formed upon co-adsorption. Liu et al. showed that Fe-P-Cd ternary
complexes were formed in the P and Cd co-adsorption system [59]. Wu et al. found that
Fe-As-Cd ternary complexes formed upon the co-adsorption of Cd(II)/As(V) on magnetic
biochar [60]. Su et al. found that As(V) and Cd(II) can promote each other’s adsorption
at the interface of acicular ferrite by forming a ternary complex (Fe-As-Cd) when they
coexist [58]. We can summarize the mechanism of adsorption of L-PR for Cd(II)/As(V) as
illustrated in Figure 12: (1) Electrostatic attraction: There is an attractive force between the



Agriculture 2024, 14, 464 19 of 23

protonated and positively charged L-PR surface and As(V) when pH < pHpzc, and there
is an attractive force between the deprotonated and negatively charged L-PR surface and
Cd(II) when pH > pHpzc. FTIR analysis confirmed that Cd(II)/As(V) adsorption involves
alkoxy C=H groups on L-PR, which implies the existence of electrostatic attraction in these
adsorption processes. (2) Ion exchange: The XRD, FTIR, and XPS results revealed that the
Ca2+ content decreased after the L-PR adsorption of Cd(II)/As(V), and the XRD results also
showed that Mg2+ and Al3+ ions were involved in the adsorption process after modification.
(3) Complexation: The FTIR and XPS analyses verified the presence of functional groups,
specifically -OH and La-O, in the adsorption process. These functional groups formed
complexes with Cd(II)/As(V) in the mono-adsorption systems and ternary complexes with
Cd(II)/As(V) in the co-adsorption system. (4) Precipitation: The FTIR and XPS results
confirmed the involvement of CO3

2− and La-O in the adsorption of Cd(II), implying the
formation of insoluble precipitates such as CdCO3 and Cd(OH)2.
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4.4. Applicability of L-PR in Cd-As Complex-Contaminated Soil

In this study, L-PR significantly reduced the concentrations of available Cd and As
in soil by 86.01% and 27.80%, respectively, compared to CK. The removal of Cd and As in
soil by L-PR was lower than in aqueous solution, which may be due to the more complex
soil environment and the low ionic mobility in soil [61], especially the removal of As in
soil that was much lower than the results of adsorption tests in aqueous solution, but the
removal rate of As in soil by L-PR was higher compared to other modified materials. For
example, Li et al. found that the addition of 3% zeolite-modified nano-zero-valent iron
reduced the effective As of Cd-As complex-contaminated soil by 17.10% [62]; Wu showed
that the addition of calcium-based magnetic biochar (Ca-MBC) to Cd-As-contaminated
soils reduced the effective As concentration by 12% [63]. Combined with BCR sequential
extraction fractions analysis, we concluded that L-PR treatment had the effect of reducing
the bioavailability and transport of Cd and As in soil. The addition of L-PR resulted in a
significant reduction in the percentage of acid-soluble Cd and reducible Cd and an increase
in residual Cd; Li et al. pointed out the weak acid dissolved state F1 and reducible state F2
in the effectiveness of Cd in soil [63–65]. Meanwhile, it is evident that the concentrations
of reduced and oxidizable As decreased while the residual As increased, aligning with
the findings reported by Ainiwaer et al. in their study on immobilizing As in Cd-As
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complex-contaminated soil using seafoam-modified nano-zero-valent iron (SEP-nZVI) [66],
which is attributed to the fact that it is L-PR that can promote the conversion of Cd/As
in an unstable state to Cd/As in a stable state in the soil through electrostatic attraction,
ion exchange, complexation, precipitation, and so on. Sun et al. found that seafoam in
modified materials can fix Cd through electrostatic adsorption [67]. In addition, several
studies indicated that the surface reaction of passivated materials for fixing Cd/As in soils
is similar to the adsorption mechanism in aqueous solution [62,66,68].

5. Conclusions

In this paper, industrial by-products PG and RM were utilized as raw materials to
improve their adsorption properties for Cd and As by lanthanide modification. La-O was
successfully attached onto the PR structure through XRF and XPS analyses. The results of
adsorption experiments demonstrated that the removal efficiency of L-PR for Cd(II) was
more than 97.57%, and the removal efficiency of As(V) was more than 99.00%. The analysis
of various models revealed a favorable correspondence between the pseudo-second-order
kinetic model and the adsorption data of Cd(II) and As(V). Moreover, Cd(II) exhibited
conformity to the Freundlich model, while As(V) adhered to the Langmuir model. The
adsorption mechanism of Cd by L-PR was mainly found to involve a combination of ion
exchange, precipitation, and complexation, while the adsorption of As mainly involved a
combination of ion exchange and complexation based on XRD, FTIR, and XPS analyses.
Soil cultivation experiments further confirmed that L-PR significantly reduced the available
Cd and As concentrations in soil and could induce the transformation of unstable Cd/As to
the more stable residual. Overall, L-PR not only effectively removed Cd(II) and As(V) from
aqueous solutions but also simultaneously immobilized Cd and As in contaminated soil,
which provides a good prospect for the management of Cd and As composite contamination
in farmland soils that merits further investigation and evaluation.
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