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Abstract: Aboveground biomass (AGB) is an important indicator for characterizing crop growth
conditions. A rapid and accurate estimation of AGB is critical for guiding the management of
farmland and achieving production potential, and it can also provide vital data for ensuring food
security. In this study, by applying different water and nitrogen treatments, an unmanned aerial
vehicle (UAV) equipped with a multispectral imaging spectrometer was used to acquire images
of winter wheat during critical growth stages. Then, the plant height (Hdsm) extracted from the
digital surface model (DSM) information was used to establish and improve the estimation model
of AGB, using the backpropagation (BP) neural network, a machine learning method. The results
show that (1) the R2, root-mean-square error (RMSE), and relative predictive deviation (RPD) of
the AGB estimation model, constructed directly using the Hdsm, are 0.58, 4528.23 kg/hm2, and 1.25,
respectively. The estimated mean AGB (16,198.27 kg/hm2) is slightly smaller than the measured
mean AGB (16,960.23 kg/hm2). (2) The R2, RMSE, and RPD of the improved AGB estimation model,
based on AGB/Hdsm, are 0.88, 2291.90 kg/hm2, and 2.75, respectively, and the estimated mean AGB
(17,478.21 kg/hm2) is more similar to the measured mean AGB (17,222.59 kg/hm2). The improved
AGB estimation model boosts the accuracy by 51.72% compared with the AGB directly estimated
using the Hdsm. Moreover, the improved AGB estimation model shows strong transferability in
regard to different water treatments and different year scenarios, but there are differences in the
transferability for different N-level scenarios. (3) Differences in the characteristics of the data are
the key factors that lead to the different transferability of the AGB estimation model. This study
provides an antecedent in regard to model construction and transferability estimation of AGB for
winter wheat. We confirm that, when different datasets have similar histogram characteristics, the
model is applicable to new scenarios.

Keywords: aboveground biomass; UAV; height; transferability; BP neural network; machine learning

1. Introduction

Aboveground biomass (AGB) has an important impact on light energy utilization
and yield formation, and its accurate estimation is one of the key issues in terrestrial
ecology research [1,2]. On the one hand, AGB plays an important role in the global carbon
cycle [3,4], and an accurate estimation of AGB could help us grasp the feedback between
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climate change and agroecosystem interactions [5]. On the other hand, AGB is closely
related to crop yield and production [1,6–8]. Therefore, a timely and accurate estimation of
AGB is extremely important for guiding the scientific management and rational utilization
of farmland, protecting and enhancing the carbon sink function, and providing important
data on food security issues [8–10].

In recent years, there have been an increasing number of studies that use remote sens-
ing technology to estimate AGB [11–14]. However, satellite remote sensing images, which
are usually used as data for AGB estimation and retrieval, suffer from low spatio-temporal
resolution and interference from atmospheric conditions [15,16]. Proximal hyperspectral im-
agery has a high spectral resolution, but the process is time-consuming and labor-intensive,
which limits its application in large-spatial-scale surveys [17]. Compared to satellite remote
sensing and proximal hyperspectral remote sensing, low-altitude UAVs can carry different
types of sensors, such as RGB cameras, hyperspectral imagers, and multispectral imagers,
according to the specific purpose of the survey being conducted [10,11,15]. UAVs have
various advantages, such as simplicity in regard to their operation, strong maneuverabil-
ity, and the ability to acquire high-resolution images below the clouds. They are better
suited to field-scale monitoring and serve as a crucial technique in modern agriculture’s
move toward quantitative and refined approaches [11,18–20]. At present, AGB estimation
with UAV remote sensing in agriculture mainly utilizes RGB and multispectral digital
orthophoto maps (DOMs) to extract spectral parameters, which are then used to calculate
vegetation indices for model construction. For example, Ma et al. [21] and Lu et al. [22]
estimated wheat AGB using UAV digital imagery and found that a combination of image
color index and texture features can improve the accuracy of wheat biomass estimation,
with the highest R2 being 0.91. Previous studies have focused on utilizing spectral, textural,
and vegetation indices extracted from UAV images to estimate crop AGB through linear
modeling or machine learning methods [7,12,23,24]. However, due to the interaction of
various factors, such as the crop planting area, crop type, and crop growth stages, during
the acquisition of canopy information by UAVs, a saturation phenomenon occurs in the
vegetation index, which negatively affects the accuracy of the biomass estimation model,
as well as the transferability of the model.

In parallel to DOMs, a digital surface model (DSM) is another key piece of information
involving ultra-high-resolution UAV images, which is directly related to crop height [25–27].
For example, Chang et al. [28], Watanabe et al. [29], and Luo et al. [30] used UAVs to acquire
digital remote sensing images of maize, sorghum, and other crops, and then adopted a
digital terrain model (DTM) and a DSM to estimate the plant height of these crops. Their
results indicated that the estimated plant height and the measured plant height had an
RMSE that varied between 0.33 and 0.88 m. The rise of real-time kinematic (RTK) and
post-processing kinematic (PPK) technologies, in particular, provide UAVs with a more
prominent advantage in obtaining plant heights quickly and accurately. Wang et al. [31]
showed that their crop surface model (CSM), obtained by correcting the DSM using PPK
and RTK technologies, can essentially improve plant height estimation accuracy. Therefore,
an increasing number of scholars are utilizing UAV images to extract plant heights for
biomass estimation [31–33]. For example, Niu et al. [32] extracted the height of maize
directly from point cloud data using the Phantom 4 wizard; the R2 was 0.90 and 0.82 for
the plant height estimation and maize biomass estimation, respectively. Bendig et al. [15],
Bareth et al. [34], and Wang et al. [31] reported that combining DSM-extracted plant height
information with the vegetation index could improve the estimation accuracy of AGB.

However, the extent of the contribution of DSM information to biomass estimation
models and the transferability of such models remain largely unclear. Therefore, in this
study, we employed a UAV equipped with a multispectral camera, coupled with RTK
technology and ground control points, to obtain remote sensing images and elevation
information at different key growth stages of winter wheat. Then, we extracted wheat
heights from the data obtained by the UAV during these key growth stages and constructed
an AGB estimation model using machine learning regression methods. After that, we
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analyzed the transferability of the model under different water treatments, across different
years, and at various N levels. Our results are expected to provide critical technical support
and a theoretical basis for rapid AGB estimation of winter wheat and phenotype research,
as well as crop water and fertilizer decision making.

2. Materials and Methods
2.1. Study Area and Experimental Design

The experiments were conducted on a state-owned farm in Shangshui County, Zhoukou
City, Henan Province, central China (33◦33′ N, 114◦37′ E), from 2020 to 2022, with a plot
area of approximately 42 m2. The region is located in the southern part of a warm temper-
ate zone, with a monsoon semi-humid climate and suitable temperatures for crop growth
throughout the year. The test soil is sand ginger black soil. Before sowing, the pH is 7.3 in
the surface (0–20 cm) layer, and the soil organic matter, total nitrogen content, available
phosphorus content, and available potassium content are 25.0 g/kg, 1.69 g/kg, 22.6 mg/kg,
and 139.6 mg/kg, respectively. Using a randomized block experimental design, 5 nitrogen
application levels (N0 (0 kg/hm2), N6 (90 kg/hm2), N12 (180 kg/hm2), N18 (270 kg/hm2),
and N24 (360 kg/hm2)) and 2 water treatments (rainfed and irrigated) were set. Each N
treatment was repeated 3 times, and the two water treatments were named W0 (rainfed)
and W1 (irrigated); the total number of plots was 30 (Figure 1). About 50% of each fertilizer
was applied as a base fertilizer, and the remaining 50% of the fertilizer was applied as top-
dressing during the jointing stage; the amount of the phosphorus fertilizer was 120 kg/hm2

and the amount of the potassium fertilizer was 90 kg/hm2, both of which were applied at
once before sowing.
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Figure 1. Design of the experiment.

2.2. Study Framework of AGB Estimation

A general framework of our study is presented in Figure 2. Firstly, a DJ M600 pro UAV
was used to acquire UAV remote sensing images during the jointing, flowering, and filling
stages of winter wheat, and the images were preprocessed using the Agisoft PhotoScan
Professional 12.0 software. During the process of establishing a 3D point cloud, DSM data
of the study area were obtained. Then, the height of winter wheat plants in each plot was
extracted based on the DSM data. Through an analysis of the relationship between the
extracted plant height (Hdsm), the measured plant height (H), and aboveground biomass
(AGB), a winter wheat AGB estimation model was established using the BP neural network
method. To improve the estimation accuracy, the ratio of AGB to Hdsm was determined
to establish the AGB model, and the transferability of the improved model was analyzed
across different water treatments, years, and nitrogen treatment scenarios.
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2.3. Data Acquisition
2.3.1. UAV Platform and Image Acquisition

From 2020 to 2022, during the key growth periods of two winter wheat growth cycles,
images were obtained using a DJI M600 Pro UAV equipped with an Anzhou Technology
K6 multispectral imager during clear weather from 10:00 to 14:00. The sensor mainly
included five bands: a blue band (center wavelength of 450 nm, B), a green band (center
wavelength of 550 nm, G), a red band (center wavelength of 685 nm, R), a red-edge band
(center wavelength of 725 nm, Rededge), and a near-infrared band (center wavelength of
780 nm, Nir). Four radiometric calibration plates with standard reflectance of 5%, 20%,
40%, and 70% were laid on the ground before the flight. The ground control points (GCPs)
of the four vertices and the middle points in the experimental area were measured using a
real-time kinematic (RTK) receiver for precise correction of flight position and altitude. The
flight altitude was 50 m, and the obtained images had a spatial resolution of 0.02 m.

2.3.2. UAV Image Processing

The preprocessing of UAV data mainly included five steps, namely image format con-
version, image filtering, image stitching, orthophoto correction, and radiometric calibration.
The details were as follows: (1) The raw MAPIR-format data acquired by K6 was batch
converted into TIFF-format data that could be recognized by the Agisoft PhotoScan Profes-
sional 12.0 software through the MAPIR Camera Control software. (2) To save time during
image stitching, images outside the study area were deleted according to the geographic
coordinate information before image stitching. (3) The Agisoft PhotoScan Professional 12.0
software was used for image stitching based on the 3D model mode, which simultaneously
obtained orthophoto images and a digital surface model (DSM) of the study area. (4) Based
on the RTK geographic information coordinates, the geographic position of the UAV images
was accurately corrected. This step could eliminate the positional deviation caused by the
fast flight speed. (5) Using the Digital Number (DN) values of the radiometric calibration
plates, linear conversion formulas were established to convert the DN values to reflectance
values (Table 1). This was performed by assuming that there is a linear relationship be-
tween a reflectance value and a DN value: y = gain × DN + bias, where y is the surface
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reflectance of a particular band, and gain and bias are the corresponding gain and offset
values, respectively. Based on the standard reflectance of the radiometric calibration plates
used to establish the relationship with the corresponding pixel DN value, the gain and bias
of each band were obtained, and then the DN value was converted to reflectance.

Table 1. Reflectance conversion formulas.

Center Wavelength (nm) Conversion Formulas R2

450 y = 6.683 × 10−6DN − 0.0433 0.995
550 y = 7.207 × 10−6DN − 0.0728 0.995
685 y = 7.261 × 10−6DN − 0.0263 0.999
725 y = 8.511 × 10−6DN − 0.0384 0.999
780 y = 8.812 × 10−6DN − 0.0506 0.999

2.3.3. UAV Winter Wheat Plant Height Extraction

The steps of extracting winter wheat plant height (Hdsm) from UAV images are shown
in Figure 3. The process included the following steps: (1) generating point-cloud and
aligned photos based on the UAV images; (2) importing ground control points for geometric
correction; (3) reconstructing height and output of the crop surface model (CSM); and
(4) performing raster calculation to output the winter wheat plant height. Steps (1) to
(3) were completed using the Agisoft PhotoScan Professional 12.0 software, and step (4)
was completed using the ArcGIS software (version 10.6.1, ESRI). Specifically, bare-ground
images were collected on 5 October 2020 for the establishment of a Digital Elevation Model
(DEM) of the topography of the study area. During the image stitching process, which
aimed to establish the CSM (steps 1 to 4), if the elevation of the ortho-rectified CSM at
the control points deviated greatly from the elevation of the measured control points, it
was necessary to re-adjust the parameters and re-locate the projection point of the control
points on each image before modeling. Therefore, the maximum deviation of the CSM
from the measured elevation at the control points was set to be less than 0.01 m, and the
CSM could be outputted after achieving this accuracy. The DSM was imported into ArcGIS
10.6 in step (4), and the raster images of the DSM in each growth stage were subtracted
from the raster images of the study area’s DEM to obtain a standardized winter wheat
CSM. Meanwhile, according to the plot range, a rectangular region of interest (ROI) was
drawn. When drawing the ROI, each edge was reserved 1 m from the plot edge to exclude
boundary interference. Finally, the plant height of each plot of winter wheat was obtained
by partitioning and calculating the statistics of the standardized CSM.
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2.3.4. Measurement of AGB and Height of Winter Wheat

The acquisition of ground data was synchronized with the acquisition of UAV images.
The field samples were collected using a Beidou intelligent handheld terminal (UG908)
to obtain the geographic location information of the sampling points. Ten plants with a
uniform growth were selected from each plot to measure plant height (H), and the stem
samples were packed into sealed bags. The samples were heated for 30 min at 105 ◦C to
halt the metabolic processes, dried at 80 ◦C in a forced-draft oven, and then weighed to
obtain the AGB. A total of 180 samples were obtained.

2.4. Methodology
2.4.1. AGB Estimation with Backpropagation Neural Network Method

A backpropagation (BP) neural network is a multi-layer feed-forward network that
uses error backpropagation for algorithm training; it is one of the most widely used neural
network models [35–37]. Currently, there are more than 20 commonly used activation
functions for BP neural networks, including identity, sigmoid, and ReLU. When the function
identity is active, the input of the node is equal to the output, and it is most suitable for
tasks in which the potential behavior is linear [38]. For this reason, we used identity as the
activation function of the training model for the nitrogen content of plants. Meanwhile, to
prevent overfitting, parameters such as learning rate and regularization were introduced
to optimize the model [39]. In this study, a three-layer network structure was designed
using a quasi-Newton method family optimizer (lbfgs) to improve the operation speed.
Assuming that the output of the hidden layer is set as Fj, the m-quantity of the output layer
is set as Ok, the excitation function of the system is set as G, and the learning rate is set as β,
the following mathematical relationships can be obtained:

Fj = G(
m
∑

i=1
ωijxi + aj)

Ok =
l

∑
j=1

Fjωjk + bk

(1)

If the expected output of the system is set to Tk, the error E of the system can be
expressed by the variance between the actual output value and the expected target value,
and the specific relationship is as follows:

E =
1
2

n

∑
k=1

(Tk − Ok)
2 (2)

Let ek = Tk − Ok; using the principle of gradient descent, the updated formulas of
system weights and bias are as follows: ωij = ωij + βFj(1 − Fj)xi

n
∑

k=1
wjkek

ωjk = ωjk + βFjek

(3)

 aj = aj + βFj(1 − Fj)xi
n
∑

k=1
wjkek

bk = bk + βek

(4)

2.4.2. Model Metric Evaluation

In this study, three widely used indices—the coefficient of determination (R2), the
root-mean-square error (RMSE), and the relative predictive deviation (RPD)—were used to
evaluate the model performance. The larger the values of R2 and PRD and the smaller the
RMSE, the better the model performs. When the estimated value matches the measured
value perfectly, R2 = 1 and RMSE = 0, which indicates strong estimation and transferability
of the constructed model. When RPD ≥ 2, it indicates that the model has excellent robust-
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ness; when 1.4 ≤ RPD < 2, it indicates that the model has moderate robustness; and when
RPD < 1.4, it indicates that the robustness of the model is slightly weak [20,40,41]. The
formulas are as follows:

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

(5)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (6)

RPD =

√√√√√√√
n
∑

i=1
(yi − y)2

n
∑

i=1
(yi − ŷi)

2
(7)

where yi and ŷi are the measured and predicted biomass of the ith sample, respectively; y
denotes the mean AGB; and n is the number of samples.

3. Results
3.1. Statistical Analysis of Plant Height (H) and Aboveground Biomass (AGB) of Winter Wheat

The changes in H and AGB of winter wheat at different water–N treatments are shown
in Figure 4. The W0 and W1 treatments show a gradual increase in both H and AGB with an
increase in the N level, but there are variations in the magnitude of the increase. H increases
rapidly with an increase in the N level from N0 to N12, while the increase in H from N12
to N24 is smaller. AGB increases quickly with an increase in the N level from N0 to N18;
however, a clear difference was detected for the increase in AGB with an increase in the N
level from N18 and N24 under different water treatments. Specifically, the AGB of the W0
treatment remains unchanged, while the AGB of the W1 treatment still increases rapidly.
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where yi and îy  are the measured and predicted biomass of the ith sample, respectively; 
y denotes the mean AGB; and n is the number of samples. 
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Figure 4. H (the left plot) and AGB (the right plot) of winter wheat at different water and nitrogen
levels (note: the lowercase letters a, b, c, and d in the figure indicate significant differences at the
0.05 level).

In addition, N treatments can largely affect H and AGB (Figure 1). With an increase
in N application, H and AGB increase significantly, but the magnitude of the increase is
different. H increases sharply at N levels below N12 and then tends to be stabilized in both
W0 and W1 treatments, while AGB continues to sharply increase at N levels above N12
in the W1 treatment. The one-way ANOVA reveals significant differences (p < 0.05) for
H and AGB with different N levels. The t-test results also reveal that there are significant
differences (p < 0.05) for H and AGB under different water treatments. In conclusion, this
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study shows that the effect of stress induced by water on H during water–nitrogen coupling
is greater than the effect on AGB.

3.2. Relationship between Hdsm and H under Different Water–N Treatments

The relationship between H estimated by means of DSM (Hdsm) and the measured H
of winter wheat is shown in Figure 5. The correlation between the Hdsm and measured H
values declines from 0.59 to 0.07 with an increase in the N level. This is mainly because the
change in H tends to become stabilized after N has been applied to a study plot to a certain
extent under the same irrigation condition, after which H no longer increases with a further
increase in N. Moreover, as presented in Figure 5, the distribution of the Hdsm values is
more consistent when the N level increases from N12 to N24, whereas the distribution of H
at the N levels of N0 and N6 is relatively dispersed. As the canopy cover of winter wheat
increases, winter wheat plants become luxuriant, and three-dimensional structural spatial
information of winter wheat may be lacking. Therefore, the errors of the lower boundary
and upper boundary of plants caused by the advancement of the growth stage lead to the
increase in estimation errors of plant height.
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Figure 5. Relationship between Hdsm and H under different water–N treatments.

The relationship between Hdsm and H under different water treatments shows that
the W0 treatment is superior to the W1 treatment, with R2 of 0.81 and 0.79, respectively.
Combined with Figure 4, this indicates that under the rainfed condition of water–N cou-
pling, the change in H of winter wheat is small, while under the condition of sufficient N,
irrigation can increase H. Overall, the linear relationship between Hdsm and H has an R2 of
0.81, which means that Hdsm can explain more than 80% of the variation in plant height.

3.3. Relationship between Hdsm and AGB under Different Water–N Treatments

The relationship between the Hdsm and measured AGB values is shown in Figure 6.
The correlation between the Hdsm and measured AGB values is not significant as the N
level increases. The correlation efficient between the Hdsm and measured AGB values in
the W0 treatment (R2 = 0.69) is higher than in the W1 treatment (R2 = 0.50). Combined
with Figure 1, it can be concluded that there are differences in the effects of water on AGB
and H of winter wheat. This is mainly because when the changes in plant height become
stabilized, irrigation causes the increase in biomass to be more likely to manifest as an
increase in leaf and stem biomass. Overall, the simple linear relationship model established
between Hdsm and AGB has an R2 of 0.57, which means that Hdsm can explain 57% of the
variation in AGB.
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3.4. AGB Estimation Model Construction and Improvement

In the present study, we used the BP method to estimate AGB based on the Hdsm
values. The R2, RMSE, and RPD of the constructed BP model are 0.58, 4528.23 kg/hm2, and
1.25, respectively (Figure 7). The estimated average value of AGB (16,198.27 kg/hm2) is
smaller than the measured average value (16,960.23 kg/hm2), and the estimated values are
more dispersed. Generally speaking, the predicted values of AGB are dispersed, with large
95% confidence intervals. The values of R2, RMSE, and RPD indicate that the robustness of
the model is slightly weak.
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Can the estimation ability and robustness of the model be improved by means of data
transformation? In this study, we found that the AGB per unit plant height of winter wheat
shows an approximately parallel increasing trend with increasing N levels (Figure 8). Based
on this relationship, we propose a rapid estimation method of AGB based on the ratio of
AGB to Hdsm (AGB/Hdsm) to improve the estimation accuracy (Figure 9). The AGB was
estimated by constructing a model using the same method as described above. The R2,
RMSE, and RPD of the model based on AGB/Hdsm are 0.88, 2291.90 kg/hm2, and 2.75,
respectively. The improved model based on AGB/Hdsm could estimate the AGB well, and
the estimated mean AGB (17,478.21 kg/hm2) is very close to the measured mean AGB
(17,222.59 kg/hm2). The improved model based on AGB/Hdsm (Figure 9) outperforms
the model described in Section 3.4 (Figure 7), with a higher R2, a higher RPD, and a lower
RMSE. Specifically, the R2 is improved by 51.72%.
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The improved model assuming a relationship between AGB (y) and ratio (x) is denoted
as y = f (x). After the data were substituted into the formula, the model was obtained as
y = kx − 4004.8. Considering the gradually increased AGB across the jointing, flowering,
and filling stages, the AGB dataset was intercepted several times to form 10 datasets. The
BP method was used for the construction of the AGB estimation model. The relationship
between k and Hdsm is denoted as k ≈ Hmax, with Hmax being the maximum value of
Hdsm for each dataset. So, the improved model was transformed for AGB estimation,
and the final AGB estimation model can be expressed by the following formula: AGB =
(4004.80 × Hdsm)/(Hmax − Hdsm).

4. Discussion
4.1. Transferability Estimation Ability of the Improved AGB Estimation Model under Different
Water Treatments

Based on the W0 and W1 treatment datasets, an AGB estimation model was con-
structed to validate the transferability estimation of AGB under the W1 treatment and W0
treatment scenarios. The relationships between the measured and estimated AGB under
the W1 treatment and the W0 treatment are shown in Figure 10. The model constructed
from the W0 treatment dataset was transformed to fit the W1 treatment dataset, with R2,
RMSE, and RPD of 0.90, 2407.44 kg/hm2, and 2.72, respectively. Similarly, the model
constructed from the W1 treatment dataset was transformed to fit the W0 treatment dataset,
with R2, RMSE, and RPD of 0.88, 2496.97 kg/hm2, and 2.54, respectively. Overall, the AGB
estimation model proposed in this study has high accuracy and robustness, and the models
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show improved transferability under different water treatment scenarios in the same study
area, which can achieve an accurate and fast estimation of AGB.
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4.2. Transferability Estimation Ability of the Improved AGB Estimation Model across
Different Years

In this study, the growing season of winter wheat in 2020–2021 was set as n, and
that of 2021–2022 was set as n + 1. An AGB estimation model was constructed based on
the datasets of year n and n + 1 to validate the transferability estimation of AGB in the
context of year n + 1 and year n. The estimation accuracy of the model for AGB is shown in
Figure 11. The model constructed on the data of year n was transformed to estimate the
AGB in year n + 1, with R2, RMSE, and RPD of 0.88, 2257.36 kg/hm2 and 2.75, respectively.
The model constructed from the year n + 1 dataset was transformed to estimate the AGB in
year n, with R2, RMSE, and RPD of 0.86, 2239.37 kg/hm2 and 2.93, respectively. Generally
speaking, the AGB estimation model shows good transferability estimation performance
between years.
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(n + 1)th year, and (b) the transferability ability of the (n + 1)th-year model to estimate AGB for the
nth year.
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4.3. Transferability Estimation Ability of the Improved AGB Estimation Model across Different
N Levels

In this part of the study, an AGB estimation model was first constructed based on
the N0 dataset, and then it was used to validate the transferability estimation of AGB in
the N6, N12, N18, and N24 scenarios. The R2, RMSE, and RPD of the model, which was
trained using the N0 dataset, are 0.49, 466.91 kg/hm2, and 1.49, respectively. When the
model was transformed to fit the N6, N12, N18, and N24 scenarios, the model showed bad
performance with a large RMSE and a low RPD (Table 2). But the model trained on the
N24 dataset had a good performance, with R2, RMSE, and RPD of 0.88, 1304.16 kg/hm2,
and 3.04, respectively. Moreover, the model trained on the N24 dataset also performed well
when it was transformed to fit the N12 and N18 scenarios, with a high R2, a high RPD, and
a low RMSE, which means it has great predictive transferability (Table 2).

Table 2. Transferability of the AGB model at different N levels.

Model Dataset R2 RMSE RPD Model Datasheet R2 RMSE RPD

N0_Traning dataset 0.49 466.91 1.95 N24_Traning dataset 0.88 1304.16 3.04
N6_Test dataset / 5339.59 0.61 N0_test dataset / 4922.29 0.57

N12_Test dataset / 9370.43 0.53 N6_Test dataset / 4400.67 0.92
N18_Test dataset / 12,755.63 0.53 N12_Tset dataset 0.70 1402.77 1.97
N24_Test dataset / 13,917.14 0.53 N18_Test dataset 0.90 1053.85 3.06

4.4. Factors Affecting the Transferability of Models

In summary, a clear difference was detected regarding the transferability of models
trained on datasets for different water treatments, years, and N levels. The models show
better transferability across different water treatment and year scenarios, while the trans-
ferability of the AGB estimation model across different N levels is not satisfactory. The
statistical characteristics of the datasets may play an important role in the transferability of
the AGB estimation model. As shown in Figures 12 and 13, the statistical characteristics of
the measured AGB and AGB/Hdsm data are more similar under different water treatments
and across different years, with similar values of the means, standard deviations, and other
indicators, and the fitted curves basically overlap. But the statistical characteristics of the
measured AGB and AGB/Hdsm are significantly different at different N levels (Figure 14).
The datasets of the measured AGB and AGB/Hdsm at different N levels present different
mean values, standard deviations, and other indicators. Combined with Table 2, we can
conclude that the statistical characteristics of the employed dataset play an important
role in affecting the model’s transferability. In this regard, Wang et al. [42] reported that
marginal and conditional distributions usually have different contributions to the domain
discrepancy. Zhou [39] and Li et al. [43] also argued that transferability is the application of
knowledge from one environment to another, and to obtain an ideal transferable prediction
model, it requires that the original training dataset not only has a larger amount of data but
also a higher data quality so that the model would contain more feature information when
transformed to the target model.
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In this study, the transferability of the proposed AGB estimation model was validated
under different water treatments, across different years, and at different N levels. The
training dataset synthesized information on winter wheat biomass in the study area during
several key growth periods. And the results of the statistical analysis of the training dataset
and the test dataset were well fitted. Thus, the AGB estimation model has high accuracy and
robustness. Our model also shows better transferability across different water treatments
and different year scenarios than across different N levels. In practical applications, a
targeted selection of pre-trained models for transferability based on the basic characteristics
of the data is more helpful in improving model estimation [44].
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4.5. Factors Affecting the Accuracy of Models

In this study, the improved winter wheat AGB estimation model based on plant
height has an R2 of 0.88; although its accuracy is lower than the model accuracy of AGB
estimation in cases using a combination of vegetation indices, texture features, and other
data [23], this model only requires Hdsm information from UAV remote sensing images,
which saves index calculation, texture feature extraction, and other steps, thus presenting
the characteristics of simplicity and speed. In addition, Steduto et al. [45] and Han et al. [46]
concluded that crop water and other resource utilization is constant during most of the
growth period of field crops, and the extraction of a single index based on UAV remote
sensing images can be used to estimate AGB; in this regard, this study promotes the
efficiency and accuracy of crop biomass estimation based on UAV remote sensing images.
However, the use of different methods also has some effects on the estimation results of a
model [47]. In this study, the BP neural network method was used to construct the AGB
estimation model, and the time taken to train the model was 0.044 s. The parameter settings
of the model are shown in Table A1. The R2 and RMSE of the model for the training dataset
are 0.89 and 2099.19 kg/hm2, respectively, while the R2 and RMSE of the model for the test
dataset are 0.88 and 2291.90 kg/hm2, respectively. Compared with the models developed
by Wang et al. [31], the accuracy of the proposed model is better than that of the linear
model and the PLSR model, but lower than that of the RF model. This is mainly due to
the fact that RF is an ensemble machine learning algorithm wherein multiple indicators
are involved and constantly selected when performing model construction, resulting in
the improved accuracy of the constructed AGB estimation model, but this method takes
more time and increases the complexity of the process when performing the extraction of
multiple indicators.

5. Conclusions

In this study, the AGB estimation model of winter wheat was improved by applying
different water–N treatments and utilizing plant height information extracted from UAV
images. The prediction model for AGB was enhanced by introducing data transforma-
tion, and the improved AGB model’s R2, RMSE, and RPD were 0.88, 2291.90 kg/hm2,
and 2.75, respectively. Specifically, R2 was improved by 51.72% compared to that for the
model constructed with Hdsm. Our model shows strong estimation and transferability
across different nitrogen levels and different year scenarios, but there are variations in
transferability under different nitrogen level scenarios. Differences in the statistical charac-
teristics of the employed datasets are the key factor that leads to different transferability
of AGB estimation models. This study provides an antecedent for model construction
and transferability estimation, and we found that when different datasets have similar
histogram characteristics, the constructed model is applicable to new scenarios. However,
we should also note that the AGB is affected by many factors and, thus, the accuracy of
its estimation model is also related to many factors such as the representativeness of the
samples, the vegetation coverage, and the planting density. In this study, we analyzed the
effects of factors such as water, year, and N levels on the accuracy of the AGB estimation
model, but when building the estimation model, the methods used also influenced the
estimation results of the model. Therefore, expanding the training dataset and considering
the influencing factors of the constructed AGB model from multiple perspectives will help
to further improve the generalization ability and robustness of the AGB model and increase
the practical value of the model.
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Appendix A

In this study, BP was performed using a computer with an Intel Core i7-9700K CPU
and 64 GB RAM, and the parameter settings are shown in Table A1.

Table A1. Parameters for BP neural network.

Parameters Parameter Value

Training time 0.044 s
Data slicing 0.5

Data shuffling No
Cross-validation 30% of dataset

Activation function identity
Solver lbfgs

Learning rate 0.1
L2 regular term 1

Number of iterations 1000
Number of neurons in 1st hidden layer 100
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