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Abstract: Current image feature extraction methods fail to adapt to the fine features of apple image
texture, resulting in image matching errors and degraded image processing accuracy. A multi-view
orthogonal image acquisition system was constructed with apples as the research object. The system
consists of four industrial cameras placed around the apple at different angles and one camera placed
on top. Following the image acquisition through the system, synthetic image pairs—both before
and after transformation—were generated as the input dataset. This generation process involved
each image being subjected to random transformations. Through learning to extract more distinctive
and descriptive features, the deep learning-based keypoint detection method surpasses traditional
techniques by broadening the application range and enhancing detection accuracy. Therefore, a
lightweight network called ALIKE-APPLE was proposed for surface feature point detection. The
baseline model for ALIKE-APPLE is ALIKE, upon which improvements have been made to the
image feature encoder and feature aggregation modules. It comprises an Improved Convolutional
Attention Module (ICBAM) and a Boosting Resolution Sampling Module (BRSM). The proposed
ICBAM replaced max pooling in the original image feature encoder for downsampling. It enhanced
the feature fusion capability of the model by utilizing spatial contextual information and learning
region associations in the image. The proposed BRSM replaced the bilinear interpolation in the
original feature aggregator for upsampling, overcoming the apple side image’s geometric distortion
and effectively preserving the texture details and edge information. The model size was shrunk
by optimizing the number of downsampling operations from the image encoder of the original
model. The experimental results showed that the average number of observed keypoints and the
average matching accuracy were improved by 166.41% and 37.07%, respectively, compared with the
baseline model. The feature detection model of ALIKE-APPLE was found to perform better than
the optimal SuperPoint. The feature point distribution of ALIKE-APPLE showed an improvement
of 10.29% in average standard deviation (Std), 8.62% in average coefficient of variation (CV), and
156.12% in average feature point density (AFPD). Moreover, the mean matching accuracy (MMA) of
ALIKE-APPLE improved by 125.97%. Thus, ALIKE-APPLE boasts a more consistent allocation of
feature points and greater precision in matching.

Keywords: local feature; apple; deep learning; feature detection; image matching

1. Introduction

The appearance of fruit is crucial in attracting consumers. With the help of machine
vision technology, the quality of fruit can be ensured. Existing machine vision technology
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uses multi-view imaging and image stitching to acquire fruit surface information compre-
hensively. Furthermore, indicators [1–3] such as color, texture, and defects are accurately
extracted to assess fruit appearance quality.

The image feature extraction method is the key to image stitching [4]. Image feature
extraction techniques extract keypoints from an image and create appropriate descriptors
based on the keypoints’ attributes. Traditional hand-crafted local feature extraction meth-
ods, including algorithms such as SIFT [5], SURF [6], BRISK [7], ORB [8], and KAZE [9],
generally use a two-stage pipeline. During the keypoint detection phase, various algorithms
are employed to extract keypoints from an image. These algorithms use different strategies
and mathematical models. For instance, the SIFT algorithm searches for local extremes
in the DoG pyramid, and the SURF algorithm approximates Hessian matrix-based [10]
detection using a Haar [11] wavelet. The ORB algorithm selects the FAST corners using the
Harris response, and the KAZE algorithm employs different scaling spaces and nonlinear
diffusion for feature extraction. After identifying the keypoints, the next step is to compute
local descriptors for each one. These descriptors, such as the Hessian matrix of local in-
tensity values for SIFT, the integral image strategy for SURF, the grayscale center-of-mass
vector for ORB, and the nonlinear diffusion for KAZE, define the criteria for extracting the
keypoints. However, these methods are unsuitable for large-angle image rotations, texture
similarity, or tiny keypoints. Therefore, a more advanced and discriminative approach is
required to describe image features.

The method for detecting keypoints based on deep learning [12] can achieve better
results than traditional methods by learning to extract more distinctive and descriptive
features, which has expanded the range of applications and improved the accuracy of
keypoint detection. SuperPoint [13] introduced a fully convolutional model that jointly
computed pixel-level keypoint locations and descriptors by feeding a full-size image in
a single forward pass. Other approaches, such as R2D2 [14], integrated feature detection
into the entire matching pipeline by training jointly with feature description and match-
ing. R2D2 introduced the Siamese decoding structure [15], which obtains high matching
performance through the discriminability of the extracted points. DISK [16] utilized rein-
forcement learning principles to optimize end-to-end for numerous correct feature matches.
In contrast to methods that rely on fixed acceptance fields, ALIKE [17] introduced a de-
formable descriptor detection head that learns the deformable position of each keypoint,
enabling the extraction of descriptors with intense expressiveness and high accuracy. How-
ever, current deep learning-based feature extraction methods are still deficient in dealing
with the similarity of feature structures and feature minutiae on apple surfaces and fail to
consider these essential feature channels and spatial domains sufficiently. Therefore, these
existing methods may not accurately identify the surface features of apples, which could
lead to the loss of critical information and affect the detection results.

To solve the problems mentioned above, a deep learning-based algorithm (ALIKE-
APPLE) for extracting the keypoints of an apple image was proposed. ALIKE-APPLE is a
convolutional neural network that combines an Improved Convolutional Attention Module
(ICBAM) and a Boosting Resolution Sampling Module (BRSM). This combination allows the
network to generate uniformly distributed keypoints and their corresponding descriptors.
This is particularly useful for finding reliable correspondences between image pairs, even
when the texture in the images is sparse. Combining the proposed feature extraction
method with the state-of-the-art feature matching algorithm improved the accuracy and
reliability of image matching. It provides a credible reference for subsequent external
quality detection and the grading of spherical-like fruit.

2. Materials and Methods
2.1. Experimental Materials

The experiment was conducted in Hangzhou City, Zhejiang Province, China. The
experimental samples were 96 fresh apples purchased in May 2023 at the Hangzhou apple
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trading market. The apples were stored at room temperature and left for 24 h before the
experiment was conducted.

2.2. Multi-View Orthogonal Image Acquisition System

The apple multi-view orthogonal image acquisition system mainly consisted of a color
industrial camera (Hikvision, MV-CA023-10GC, with a resolution of 1920 × 1200 pixels,
Hangzhou, China), an 8 mm lens, an LED light source, a fruit tray, and a computer. The
overall schematic diagram of the apple multi-view orthogonal image acquisition system
is shown in Figure 1. To gather comprehensive information about the surface of an apple,
a layout system comprising four circumferential cameras and one top-view camera was
used. The cameras were positioned at 90-degree angles to each other to form an orthogonal
system. LED light sources were arranged on both sides of each camera in a symmetrical
distribution to create a uniform and bright light environment in the lightbox.
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Figure 1. The apple multi-view orthogonal image acquisition system schematic diagram.

All models were trained on a deep learning platform with an Intel© Core i9-10900F
CPU @ 2.80 GHz, 32 GB RAM, and an NVIDIA GeForce RTX 3060 GPU (BUYNOW
CORPORATION, Hangzhou, China). The PyCharm integrated development environment
was used to implement image processing algorithms. The Anaconda package manager
and environment manager were employed to control the system runtime environment.
PyTorch1.12.0+cu116 deep learning framework and OpenCV computer vision library were
utilized to develop these algorithms.

2.3. Apple Dataset Construction

A total of 96 sets of apple images were captured by five cameras simultaneously,
resulting in 480 images. Data augmentation methods [17] were employed to increase
data diversity, including rotation, flipping, brightness, and contrast adjustments. Through
this process, data augmentation was successfully performed on the apple dataset, and
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480 images were generated. The images before and after data augmentation were integrated,
totaling 960 images.

The 960 synthetic image pairs before and after the transformation were obtained by
manipulating each image by applying random transformations [13,18], such as translating,
rotating, scaling, or distorting. The training, validation, and test sets were divided according
to 8:1:1, where the validation set was applied in advance with transformation to construct
the synthetic image pairs.

2.4. A Lightweight Algorithm for Tiny and Similar Apple Feature Extraction

A lightweight apple feature extraction method (ALIKE-APPLE) based on improved
ALIKE [19] is proposed. ALIKE-APPLE aims to solve the problem of difficult detection
caused by the similarity of apple features and minor features and improve the model’s
ability to perceive image details. The overall structure of the model is shown in Figure 2a.
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(c) BRSM block.

The model consists of three main parts: (1) The image feature encoder encodes the in-
put image as a feature map with three blocks. The first block is a two-layer 3 × 3 convolution
with “ReLU” activation [20]. The last two blocks contain an ICBAM and a 3 × 3 basic
ResNet block [21]. The downsample rate of the ICBAM in block 2 is 1/2 and 1/4 in block 3.
(2) The feature aggregation module aggregates multi-level features from the encoder. A
1 × 1 convolution and the BRSM upsampling are first used to adapt the channels and then
concatenated. (3) The feature extraction head [19] outputs an H × W × (dim + 1) feature
map in which the first dim channels are L2 normalized as the descriptor map D and the last
channel is normalized by “Sigmoid” activation as score map S. The differentiable keypoint
detection and descriptor sampling first detects the sub-pixel keypoints from the score map
S, and then samples their descriptors from the dense descriptor map D. The improvements
of the proposed ALIKE-APPLE model over the ALIKE baseline model are specified below:

(1) The ICBAM replaces the max pooling in the image feature encoder for down-
sampling. Max pooling [22] is often used to reduce the dimensionality of the data in the
traditional image encoding process. Still, this method may result in the loss of information
in specific categories. The Convolutional Block Attention Module (CBAM) [23], on the other
hand, fully captures the channel and spatial relationships between the feature mappings
in a layer, enabling richer and more detailed feature information to be obtained in the
downsampling process. However, the original design of the CBAM may not be able to
adequately focus on minor texture differences and color variations in the apple image.
In order to improve the model’s ability to distinguish subtle differences, an ICBAM was
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created. This was achieved by removing the average pooling layer from the channel and
spatial attention modules of the CBAM and keeping only the max pooling layer. The image
feature encoder part for downsampling now includes an ICBAM, which is designed to
identify image changes caused by geometric distortion after fruit surface imaging. The
ICBAM does this by utilizing spatial contextual information and learning region associ-
ations in the image, which helps to improve accuracy even with limited parameters and
computational power. As shown in Figure 2b, the ICBAM mainly consists of a Channel
Attention Module (CAM) and a spatial attention module (SAM). The ICBAM formulas are
shown in (1)–(5). The adaptive max pooling layer [24] is first initialized in the CAM to
integrate the spatial dimensions of the input feature map RC∗H∗W to a size of 1 × 1 to obtain
the spatial context descriptor F ∈ RC∗1∗1. The descriptors are then fed into a multilayer
perceptron [25] (MLP) to generate the channel attention map MC ∈ RC×1×1. The MLP
consists of two convolutional layers and a ReLU activation function. Finally, by applying
the Sigmoid activation function, the attention weight of each channel is made to fall in the
range of 0 to 1, ultimately resulting in a one-dimensional convolution MC ∈ RC∗1∗1. The
CAM utilizes adaptive max pooling [26] and MLP for feature channel adaptive weighting,
allowing for the efficient extraction of essential features in the global context and improving
the model’s performance. The channel information of the feature maps is integrated into
the SAM by a max pooling operation to generate a cross-channel feature map F ∈ R1∗H∗W ,
which is concatenated and convolved through a standard convolutional layer [27]. This
feature map then generates a 2D spatial attention map Ms ∈ R1∗H∗W . The output of the
spatial attention module is passed through an average pooling layer [28] to obtain the
final output.

MC(F) = σ(MLP(AdaMaxPool(F))) (1)

MS(F) = σ( f 7×7(MaxPool(F))) (2)

F′ = MC(F)⊗ F (3)

F′′ = MS
(

F′)⊗ F′ (4)

F′′′ = AvgPool(F′′ ) (5)

where AvgPool stands for average pooling layer; AdaMaxPool stands for adaptive max
pooling layer; MaxPool stands for max pooling layer; MLP stands for multilayer perceptron;
σ stands for sigmoid operation; and f 7×7 denotes the convolutional kernel with a size of
7 × 7 convolutional operation.

(2) The proposed BRSM replaces the bilinear interpolation in the feature aggregation
module for upsampling. In image processing or image restructuring tasks, common upsam-
pling methods, including nearest-neighbor interpolation [29], bilinear interpolation [30],
and bicubic interpolation [31], are typically employed. However, these methods suffer
from edge blurring and loss of texture details. The PixelShuffle [32] method is a super-
resolution model that reorganizes pixels for efficient sub-pixel convolution. It can improve
accuracy and efficiency in feature aggregation by learning complex patterns from input
data. However, PixelShuffle focuses only on pixel-level changes and does not consider the
global or higher-level information of the image for model upsampling. A new solution
called a BRSM has been developed to rectify the limitation inherent in the PixelShuffle
method. It incorporates a convolutional layer along with the PixelShuffle technique to
maintain intricate details at the pixel level while simultaneously capturing a more com-
prehensive view of the image. Additionally, a BRSM is used in the feature aggregation
module to combine different levels of encoded features. This technique enables the model
to learn complex pixel relationships, reduce information loss, and better preserve the orig-
inal image’s details and structure. The designed BRSM is shown in Figure 2c, and the
computational equations are shown in (6)–(8). A convolution operation is first performed
to extract features from the input data. The output of the convolutional layer is directly fed
into the PreLU activation function [33]. PixelShuffle is used to transform high-dimensional
feature maps into low-dimensional, high-resolution feature maps, achieving upsampling of
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the feature maps. PixelShuffle has a step size of 1/r and organizes tensor element of shape(
∗, C × r2, H, W

)
by rearranging them into the shape (∗, C, H × r, W × r). This method

divides a low-resolution pixel into [r × r] parts, and a high-resolution pixel is formed from
the feature pixels at the corresponding pixel positions of the feature map.

x′ = Conv(c, c ∗ f actor ∗ f actor)(x) (6)

x′′ = PReLU
(
x′
)

(7)

x′′′ = PixelShu f f le( f actor)
(
x′′

)
(8)

where the input feature map is x; the number of channels is c; the upsampling factors
f actor, Conv(c, c ∗ f actor ∗ f actor) represent a convolutional layer with c input channels
and c ∗ f actor ∗ f actor output channels (this operation enlarges the number of channels
while keeping the spatial dimensionality of the feature map unchanged); x′ is the output of
the convolutional layer; x′′ is the output of the convolutional layer; x′′ is outputted by the
PreLU activation function; the output x′′ is passed to a PixelShuffle layer for processing;
and x′′′ is the output feature map.

(3) Optimizing the number of feature encoder downsamples. In the task of detecting
apple features, it is essential to maintain detailed information and capture global details.
However, the resolution of the apple region in the training image is only 352 × 352 pixels.
The feature encoder module in the original model performs downsampling three times.
This downsampling process reduces the image resolution to 11 × 11 pixels, resulting in a
significant loss of information in input feature maps, particularly in detailed information.
In addition, a reduced sensory field can prevent the model from effectively capturing global
or larger-scale contextual details. Therefore, downsampling operations must be performed
carefully. The downsampling reduction strategy preserves detailed and global informa-
tion while reducing computational loss. The image feature encoder was restructured by
adjusting the number of downsamples from three to two, i.e., removing the last block. The
purpose of this adjustment is to balance computational efficiency and information retention
to better fit the training data’s resolution.

2.5. Evaluation Indicators

The leading indicators used to evaluate the feature detection effect are standard
deviation (Std), coefficient of variation (CV), and average feature point density (AFPD). For
the Std, a more significant value indicates that keypoints are more widely spread out and
evenly distributed. The CV measures the relative degree of variability of keypoints and the
uniformity of their distribution. The AFPD measures the number of feature points detected
in a unit area. In this study, the standard deviation (std) and the coefficient of dispersion
(CV) of the keypoints were calculated in both horizontal and vertical coordinates using
Equations (9)–(12). This analysis was conducted to evaluate the distribution of keypoints.

CV = std/MN (9)

stdaxis =

√√√√ 1
N

N

∑
i=1

(axis_vali − µ)2 (10)

MN =
∑n

i=1 axis_vali

n
(11)

AFPD =
∑n

i=1 Pi

n
(12)

where axis denotes the x direction or the y direction, axis_val indicates the coordinate value
in the x direction or the y direction, MN is the mean value, P is the number of points in the
unit area, and n denotes the number of areas.
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The ALIKE-APPLE method used Nearest Neighbor Matching (NN-matching) [34]
and Optimal Transport Matching (OT-matching) [35] for feature extraction of apple images
to obtain metrics for image matching. NN-matching determines the similarity between
two feature vectors based on matching feature descriptor distances. The nearest neighbor
is found for a given query point by calculating its distance from all other data points. A
smaller distance indicates that the two feature vectors are more similar. OT-matching is
a mathematical method to measure the similarity between two probability distributions.
This method aims to find the optimal mapping for moving masses from one distribution
to another to minimize the total transportation cost. Mean co-visible keypoint number
(MCKN) and mean matching accuracy (MMA) are the primary metrics used to evaluate
feature matching. A higher MCKN indicates more observed keypoints in the corresponding
scenario. This means that the coverage of feature points is increased. A higher MCKN
value indicates a broader coverage of feature points in the scene, meaning that more keys
are observed. The higher the MMA, the more accurately the feature points are matched,
resulting in higher accuracy. Regarding image matching, the evaluation benchmarks will
be thoroughly illustrated in the subsequent discourse: Image A and Image B have N′

A
and N′

B extracted keypoints, respectively, which can be extracted as Nconv =
(

N′
A + N′

B
)
/2.

Assumed matches Nputative are obtained by mutual matching of descriptors, and finer inner
matches Ninlier are obtained by evaluating the reprojection distances within different pixel
thresholds. Referring to previous work [19], the following metrics are used:

(1) Mean co-visible keypoint number, MCKN:

MCKN =
1
N

N

∑
k=1

(
N′

Ak + N′
Bk
)
/2 (13)

(2) Mean matching accuracy, MMA:

MMA = Ninlier/Nputative (14)

To evaluate the structural size and speed of the model, the following metrics were
used: floating-point operations (FLOPs), number of parameters (Params), CPU image
processing time per frame (Inference Speed-CPU), and GPU image processing time per
frame (Inference Speed-GPU). FLOPs is a metric quantifying an algorithm’s computational
complexity involving floating-point units. Params refer to the total count of parameters
that need to be trained. In addition, the CPU is a more versatile and economical hardware
device than the GPU. It can better match the economic level of applying AI in agriculture.
Therefore, the GPU and CPU performance were tested separately on the PC, and the
inference speed was used as an evaluation metric. The inference speed can be calculated
using the following steps. First, the model loads and processes 100 images. The total
processing time is recorded and then divided by 100 to obtain the average processing time
per image.

3. Results
3.1. ALIKE-APPLE Algorithm Structure Ablation Study

To evaluate and validate the performance and effectiveness of the ALIKE-APPLE
algorithm, a series of ablation experiments were designed to analyze the effect of different
algorithm components on its performance. First, ablation tests were performed with fewer
downsamples from the feature encoder to evaluate the two modules, ICBAM and BRSM,
respectively. The following four sets of experimental configurations were designed using
the dataset constructed in Section 2.3 for image feature detection and matching for training
as well as testing:

(1) ALIKE: Baseline configuration.
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(2) ALIKE-BRSM-ICBAM-SLIM (in this paper: ALIKE-APPLE): Based on ALIKE, both an
ICBAM and a BRSM were introduced, and the number of downsamples were reduced
to form an improved model.

(3) ALIKE-BRSM-SLIM: Based on ALIKE-BRSM-ICBAM-SLIM, the ICBAM in the down-
sampled header portion of the image feature extraction was ablated and the BRSM
was retained as part of the feature integration.

(4) ALIKE-ICBAM-SLIM: Based on ALIKE-BRSM-ICBAM-SLIM, the BRSM of the upsam-
pling part of the image feature aggregation was ablated, and the ICBAM was retained
as a part of the downsampling for feature detection.

During the testing process, the performance metrics of each experimental configuration
were recorded and analyzed. This allowed for a comprehensive evaluation of the impact
of different model combinations on image-matching performance, ultimately leading to
the determination of the best model configuration. The training process of each model
is shown in Figure 3. The slight difference in training iteration performance for model
validation accuracy is worth mentioning. Accessing the ICBAM in the model structure
decreased training loss.
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The test results of each model on the test set after training are shown in Table 1.
The experimental results were compared with ALIKE, ALIKE-BRSM-SLIM, and ALIKE-
ICBAM-SLIM. The MCKN of ALIKE-APPLE improved by 166.41%, 124.76%, and 50.87%,
respectively. The MMA was improved by 9.50%, 1.15%, and 3.46%, respectively. The
inference speed of the three models after pruning SLIM was improved by 11.15%, 9.01%,
and 7.06% on the CPU and 15.09%, 6.82%, and 3.50% on the GPU, respectively, over the
original ALIKE baseline model. ALIKE-APPLE outperformed ALIKE on MCKN and MMA
metrics. Additionally, ALIKE-APPLE reduced FLOPs and Params by 10.88G and 0.335MB,
respectively, resulting in a lighter-weight model. This suggested that the ALIKE-APPLE
model maintained high performance while requiring less computation and storage.

The model’s performance was slightly degraded upon the removal of both the BRSM
and the ICBAM, compared to the ALIKE-BRSM-ICBAM-SLIM model. This indicated that
applying an ICBAM to downsampled locations and adding a BRSM to the upsampled
network can enhance the model’s MCKN and MMA.

After comparing the results of ALIKE, it was discovered that the ALIKE-APPLE
algorithm reduced both FLOPs and Params metrics while increasing Inference Speed-
CPU and Inference Speed-GPU metrics through downsampling. The optimization session
revealed that adjusting the number of times the feature encoder was downsampled can
improve the model’s performance.
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Table 1. Experimental results of model structure ablation.

Model (352 × 352 Pixels)

Performance Lightweight

MCKN
(Individual)

MMA
(%)

FLOPs
(G)

Params
(MB)

Inference
Speed-CPU

(fps)

Inference
Speed-GPU

(fps)

(1) ALIKE 207.58 25.63 12.88 0.704 10.76 80.69
(2) ALIKE-BRSM-SLIM 246.05 33.98 10.82 0.324 11.96 95.03

(3) ALIKE-ICBAM-SLIM 366.56 31.67 10.20 0.178 11.73 86.60
(4) ALIKE-BRSM-ICBAM-SLIM

(Ours: ALIKE-APPLE) 553.01 35.13 10.88 0.335 11.52 83.62

The ALIKE-APPLE model’s performance was assessed across different hardware
sessions. The model was able to achieve an inference speed of 11.52 frames per second on
the CPU. In comparison, it reached an inference speed of 83.62 frames per second on the
GPU. This suggested that ALIKE-APPLE had high real-time performance and could meet
the demand for fast image matching in practical applications [36,37].

3.2. Comparative Study of Feature Detection Performance

The ALIKE-APPLE method was compared with five methods for feature detection
and description, such as SuperPoint [13], DISK [16], R2D2 [14], and ALIKE [19]. All five
methods were able to extract feature points from the apple image dataset. However,
accurate extraction and assignment of features between images could become challenging
when the points were too close together or when the texture was weak [18]. By contrast,
when keypoints are distributed uniformly, it helps improve the accuracy and stability of
matching and reconstruction.

The keypoint frequencies of different methods were counted, and the statistical results
are shown in Table 2. Based on the statistical results, DISK had poor performance, and the
range of detected feature points did not cover the entire apple, indicating poor uniformity.
In contrast, SuperPoint, R2D2, and ALIKE-APPLE exhibited a more uniform distribution
of keypoints, with a higher standard deviation and coefficient of variation. The keypoints
identified by the ALIKE-APPLE algorithm had the highest standard deviation, coefficient
of variation, and mean feature point density, and displayed the best overall performance.
ALIKE-APPLE could extract features from both texture-rich regions and weakly textured
regions. In summary, the ALIKE-APPLE algorithm performed best regarding uniformity of
keypoint distribution and achieved robust feature extraction in the different areas. Thus,
ALIKE-APPLE outperformed other methods in terms of comprehensive performance.

Table 2. The statistical indexes of keypoints of different methods.

Methods/Indicators stdw stdh CVw CVh AFPD

SurperPoint 0.2756 0.2716 0.5615 0.5436 915.08
DISK 0.2196 0.2454 0.4487 0.5076 816.39
R2D2 0.2861 0.2853 0.5812 0.5658 430.32

ALIKE 0.2559 0.2534 0.5344 0.5525 382.83
Ours: ALIKE-APPLE 0.3039 0.2996 0.6065 0.5938 2343.74

3.3. Reliability Test Methods for Feature Detection

After the keypoints were extracted, the feature detection reliability test was performed
by combining NN-matching and OT-matching. It was tested using a matching method
called SuperGlue [38], which is based on deep learning. SuperGlue is an attention-based
graph neural network that uses readily available local features to establish high-quality
correspondences. It is worth noting that SuperGlue had two available pre-trained weight
models that you could choose from. The first model was trained on the ScanNet dataset [39]
for indoor scenes, while the second model was trained on the MegaDepth dataset [40] for
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outdoor scenes. These models are referred to as “SG (in)” and “SG (out)”, respectively.
Furthermore, SuperGlue employs SuperPoint for data augmentation while training and
has been proven to work exceptionally well alongside SuperGlue and SuperPoint [38]. As
a result, the effectiveness of combining SuperPoint and SuperGlue as a method for feature
extraction and matching is compared. The results of the feature detection reliability test
matching are shown in Figure 4.
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Figure 4. Qualitative comparison of apple image matching. (a) SuperPoint; (b) DISK; (c) R2D2;
(d) SuperPoint + SuperGlue; (e) ALIKE; (f) ALIKE-APPLE (Ours). Green lines indicate correct
matches, while yellow lines indicate mismatches.

By observing Figure 4a–c,e,f, it is evident that using NN-matching of keypoints re-
sulted in a significant number of mismatches, indicated by the yellow lines. On the other
hand, OT-matching improved the accuracy of matched pairs of points, leading to a decrease
in the yellow line and an increase in the green line. After comparing five local feature ex-
traction methods based on deep learning, it was observed that the ALIKE-APPLE algorithm
showed an increased percentage of correctly matched green lines compared to the other
algorithms. This indicates that the ALIKE-APPLE algorithm has improved the accuracy
of matching. Additionally, it was observed that ALIKE-APPLE provided more correspon-
dences in the untextured region, which is beneficial for incremental reconstruction. As a
learned matching method, SuperGlue’s (Figure 4d) performance was heavily influenced
by its weights. According to experiments conducted on SuperPoint localized features, the
indoor model produced almost no accurate matches, whereas the outdoor model only
produced a few scattered correct matches. These results suggest that the performance of
SuperGlue was significantly influenced by the training dataset used.

The NN-matching algorithm and the OT-matching algorithm were compared side-
by-side to calculate the MMA of the different methods. The results of the experiments
are presented in Table 3, while the visualization results can be found in Figure 4. When
using the NN-matching method, ALIKE-APPLE outperformed the SuperPoint, DISK,
R2D2, and ALIKE models with 7.68%, 0.67%, 2.82%, and 0.30% higher average matching
accuracies, respectively. The MMA of the proposed ALIKE-APPLE model was improved
by 22.91%, 7.30%, 13.20%, and 15.00% when using the OT-matching method. The proposed
ALIKE-APPLE model showed the highest matching rate, both operating NN-matching and
OT-matching. According to the research, the proposed ALIKE-APPLE model showed a
significant improvement in inference speed compared to other models such as SurperPoint,
DISK, R2D2, and ALIKE. It resulted in 836.59%, 121.11%, 1103.63%, and 7.06% faster
inference speed on the CPU, respectively, and 342.43%, 81.98%, 170.97%, and 3.63% faster
inference speed on the GPU, respectively. Additionally, the ALIKE-APPLE model is lighter
in weight compared to the other models. This showed that the proposed ALIKE-APPLE
algorithm maintained high performance while having more efficient computation and
storage requirements.

Table 3. The performance of different methods.

Feature Detector
(352 × 352 Pixels)

NN-Matching OT-Matching Lightweight

MMA Inference
Speed-CPU (fps)

Inference
Speed-GPU (fps)

SurperPoint 10.67 12.73 1.23 18.90
DISK 17.68 28.34 5.21 45.95
R2D2 15.53 22.44 0.9571 30.86

ALIKE 18.05 20.64 10.76 80.69
Ours: ALIKE-APPLE 18.35 35.64 11.52 83.62
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4. Conclusions

The ALIKE-APPLE algorithm for detecting and describing feature points of apple
images was established. Adding an ICBAM to the image feature encoder part for down-
sampling enhances the model’s attention to the keypoints region. This allows the model
to effectively recognize image changes caused by geometrical distortions after imaging
apple surfaces. As a result, the model’s detection performance and adaptability to complex
scenes are improved. The added BRSM for feature aggregation helps the model learn more
complex pixel relationships and better preserve the detail and structure of the original
image. Reducing the number of downsampling times from three to two can increase the
accuracy and richness of features by reducing the loss of information. The size of the model
and the computational requirements can be reduced so that the model has a lighter feature.
The ALIKE-APPLE model has been found to outperform other deep learning-based models
such as SuperPoint, DISK, R2D2, and ALIKE when it comes to detecting image features
in apples. The model detects the most uniform feature points with the best dispersion,
highest density, and highest accuracy in matching. Additionally, it is the most lightweight
among the models tested. Hence, it is the most suitable model for apple image match-
ing. To further enhance the performance of the apple feature detection algorithm, it is
necessary to construct a larger-scale and more diverse dataset. Hardware and software
integration can be intensified by tailoring the PyTorch platform-based algorithm to the
online system’s hardware requirements, enhancing model detection efficiency via hard-
ware acceleration. The study-proposed algorithm, instrumental in apple 3D reconstruction,
enables a more accurate characterization of apple phenotypes and promotes the accuracy
and standardization of apple classification, thereby augmenting commercial apple quality
and market stability.
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