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Abstract: Yangchun City, a typical polymetallic ore distribution area in Guangdong Province (China),
was selected as the research region to study the content, distribution, source, and possible impacts of
heavy metals (HMs) (Arsenic: As; Cadmium: Cd; Chromium: Cr; Copper: Cu; Mercury: Hg; Nickel:
Ni; Lead: Pb; and Zinc: Zn) on the farmland soil of this City. According to our findings, the spatial
distribution of HMs in Yangchun City shows higher concentrations in the north and southeast and
lower in the west and other regions. Metal content in some sampled sites of the agricultural land ex-
ceeded the soil pollution risk screening values, particularly As (7.5%), Cd (12%), Cu (4%), Hg (14.5%),
and Pb (3%). Additionally, the average content of As, Cu, Cd, Pb, Hg, and Zn from the studied areas
surpassed the soil background value of Guangdong Province for all metals. The absolute principal
component score-multiple linear regression (APCS-MLR) was used to identify potential sources of
HMs in the soil samples. There are three potential sources identified by the model: traffic emissions,
natural sources, and agricultural activities, accounting for 28.16%, 16.68%, and 14.42%, respectively.
Based on the ecological risk assessment, the potential ecological risk (Ei

r = 310.77), Nemero pollution
index (PN = 2.27), and multiple possible effect concentration quality (mPECQs = 0.23) indicated that
the extent of heavy metal pollution in the soil samples was moderate. Three sources were identified:
traffic emissions, natural sources, and agricultural activities. We suggest that by combining the above
results, a monitoring and early warning system focused on Cd and Hg can be established. The
system could utilize geographic information systems and remote sensing technologies to achieve
dynamic monitoring and prediction of pollution. Regular testing of soils and sustainable management
practices are also recommended to control and remediate contamination.

Keywords: heavy metal; source apportionment; APCS-MLR

1. Introduction

Rapid industrialization worldwide has led to heavy metal contamination in farmland
soil and agricultural products. Among various environmental issues, soil pollution has
become a matter of global concern [1,2]. The soil is an important environmental component
of the ecosystem on the surface of the earth. However, numerous contaminants from
industrial or agricultural activities pollute the soil [3]. Therefore, actions to control the
source of pollution and minimize the effects of heavy metal contamination are required [4].
For instance, a detailed analysis of the type, distribution, and source of heavy metals (HMs)
is critical for preventing and reducing this type of contamination [3].

Several efforts are described in the current literature to accurately assess the toxic
effects of HMs using various evaluation indices. Chen et al. used enrichment factors,
ecological risk coefficients, and the absolute principal component score-multiple linear
regression (APCS-MLR) to describe the seasonal changes in heavy metal risks in Nanchang
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City [5]. Fan et al. used enrichment factors, ground accumulation indicators, and potential
ecological risk indicators to evaluate the heavy metal pollution status of suspended particles
in the Minjiang River [6]. Dash et al. used contamination factors, enrichment factors, and
the ground accumulation index to analyze the impact of different monsoon conditions on
heavy metal pollution [7]. To analyze heavy metal pollution along the Lijiang River, Xiao
et al. used the land accumulation index, hidden ecological risk indicator, and multiple
possible effect concentration quality [8]. Ustaoğlu et al. used pollution factors, enrichment
factors, hidden ecological risk indicators, and a geo accumulation index to assess the heavy
metal pollution in a hazelnut producing area in Turkey [9]. Similarly, in this study, various
assessment methods were used to evaluate the toxicity of HMs in the soil in Yangchun.

For the sources of HMs in soil, many methods have been used to classify these
qualitatively at present. Multivariate statistical analysis, particularly principal component
analysis (PCA), has been extensively applied to determine HM sources in soil. Huang
et al. used PCA to analyze the sources of HMs in soil in eastern China and discovered that
natural sources have the highest contribution rate to Al, Mn, and Ni, whereas Hg, Pb, and
Cd are from two different human sources [4]. Lv et al. [10]. used PCA and other methods
to identify heavy metal sources in the soil around Ju State. They found that the main
sources of Pb, Cu, Cd, and Zn were related to the parent material, while Hg was related to
human activities alone. Furthermore, the distribution of five HMs in the study area has an
obvious similarity with the surrounding environment. Rodríguez Martín et al. used PCA
to investigate the sources of HMs in cultivated soil in Andalusia, Spain, and discovered
that the sources of Cu, Pb, Zn, and Cd were related to agricultural activities [11]. PCA is a
linear dimensionality reduction technique that converts various HMs from one source to a
small number of principal components. However, the quantitative contribution of PCA to
multiple sources of HMs cannot be clearly explained. Multivariate receptor models, such
as APCS-MLR, have been developed to address this limitation of PCA. As APCS-MLR is
not reliant on the prior source traits of sampling and testing, it affords greater convenience,
expediency, and efficacy than traditional approaches. APCS-MLR is currently being used
for the source analysis of different pollutants in the atmosphere, soil, and dust. Chen et al.
used APCS-MLR to identify the source of HMs in the soil around the Miyun Reservoir,
observing that mining activities, agricultural chemicals, and atmospheric sedimentation are
all potential anthropogenic sources. They also found that the APC-MLR model can achieve
similar results to those of the PMF model [12]; Zhang et al. employed the APCS-MLR and
PMF models to discern the origins of polycyclic aromatic hydrocarbons in Taihu Lake’s
sediments. Their findings evinced that vehicle emissions, coal combustion, and wood
combustion were the principal contributors to the pollution. Interestingly, the APCS-MLR
model produced results similar to those of the PMF model despite using simpler hardware
and software [13].

Therefore, the APCS-MLR model was used in this study to identify the degree of
heavy metal pollution sources in the soil of Yangchun City in Guangdong Province, along
with the contamination factor (CF), land accumulation index (Igeo), potential ecological
risk index (Ei

r), Nemero pollution index (PN), and multiple possible effect concentrations
(mPECQs). In addition to the Kaiser–Meyer–Olkin (KMO) test, other statistical analyses,
including principal component analysis (PCA) and correlation analysis (CA), were also
used to test the adequacy of sampling and the difference between the heavy metal contents.
The symbiotic relationship between the HMs in the soil was then studied using network
reasoning. Geostatistical methods were used to map out the most susceptible locations.
Then, the APCS-MLR model was used to subtract the pollution source, contribution level,
and percentage. On this basis, reference data on local soil management and recovery
were provided.



Agriculture 2024, 14, 309 3 of 16

2. Materials and Methods
2.1. Characteristics of the Study Area

Yangchun City is in the southwestern part of Guangdong Province, China (between
111◦16′27′′ to 112◦09′22′′ E and 21◦50′36′′ to 22◦41′01′′ N). The city is situated in the Yunwu
Mountain range, with a total area of approximately 4037.8 square kilometers, of which
arable land covers about 23.7% and forest covers about 60%. Yangchun City belongs to
the karst landform zone and has a subtropical maritime monsoon climate. It is one of the
cities in China with the richest mineral resources and is also a major production base for
high-quality food crops in China.

The research area includes 17 towns, such as Shiwang, Tanshui, and Bajia. It has been
discovered that the research area (Figure 1) contains various mineral resources such as
toxic sand mines, lead–zinc mines, pyrite, iron ore, tungsten mines, and limestone [14].
With the rapid development of the industry, some of the mineral deposits have already
been exploited, and others are currently under development. Yanchun City has 13 well-
connected expressways, 3 national highways, 6 provincial roads, and numerous rural
roads, making it an important transportation hub connecting to other cities. In recent years,
Yanchun City has been planned to be a mountain and water garden livable city. However,
research has found that the average levels of heavy metals such as As, Cd, Cu, Hg, Pb,
and Zn in the soil of Yanchun City exceed the background values of soil in Guangdong
Province. As an important grain production and ecologically livable city, understanding
the risks and sources of soil heavy metal pollution is crucial to maintaining the health and
sustainability of Yanchun City’s agricultural system.
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2.2. Collection and Preparation of Soil Samples

Soil samples were collected from Yangchun City, Guangdong Province, from 0 to
20 cm deep on the surface of farmland soil. The plum blossom sampling method was
used to collect 4 to 8 samples at random within a radius of 20 m; the samples were sent
to the laboratory for testing. Each point’s longitude and latitude, along with the ambient
environmental data, were documented by a GPS. Figure 1 depicts the collection of 200 soil
surface samples in their entirety. After drying, the soil sample was ground with an agate
mortar, and the part of the sample that could pass the 200-mesh nylon sieve was stored in a
plastic bag.
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2.3. Physicochemical Properties of Soil

Multiple analytical techniques were employed to ascertain the physical and chemical
attributes of the soil. The information regarding chemical reagents is featured in Table 1,
and the analytical instrument details are showcased in Table 2. Soil total nitrogen (TN) was
determined using an automated Kjeldahl nitrogen analyzer (Kjeltec 8400). The soil samples
were digested with sulfuric acid to convert organic nitrogen into ammonium sulfate. The
digested samples were distilled and titrated to quantify the nitrogen content. The pH value
was measured using a PHS-2F pH meter using the potentiometric electrode method. The
alkali diffusion method was used to test for soil alkali-hydrolyzed nitrogen (AN). Soil avail-
able phosphorus (AP) was evaluated using the molybdenum sulfate colorimetric method.
The concentration of AK was determined using flame atomic emission spectrometry (FP650)
after extraction with 1 mol/L ammonium acetate (1:10 soil:extractant ratio). The sample
was shaken at 20~25 ◦C, 150 r/min~180 r/min for 30 min. AK concentrations in the extracts
were measured using an air-acetylene flame. For testing of the soil organic matter content
(SOM), the oil bath heating potassium dichromate oxidation-volumetric approach was
employed [15].

Table 1. Primary chemical reagent information used in the experiment.

Reagents Name Producers Purity Catalogical Number

Acetic acid Tianjin Damao Chemical Reagent
Factory, China AR 631-61-8

Potassium chloride Tianjin Damao Chemical Reagent
Factory, China AR 7447-40-7

Sodium bicarbonate Tianjin Damao Chemical Reagent
Factory, China AR 144-55-8

Ammonium fluoride Tianjin Damao Chemical Reagent
Factory, China AR 12125-01-8

Ammonium
molybdate

Tianjin Damao Chemical Reagent
Factory, China AR 12054-85-2

Potassiumdichromate Tianjin Damao Chemical Reagent
Factory, China AR 7778-50-9

Hydrochloric acid
Guangzhou Chemical

Reagent Factory
Yongda chemical, China

AR 7778-50-9

Boric acid
Guangzhou Chemical

Reagent Factory
Yongda chemical, China

AR 10043-35-3

Hydrofluoric acid Guangzhou Chemical Reagent
Factory, China AR 7664-39-3

Perchloric acid Guangzhou Chemical Reagent
Factory, China AR 7601-90-3

High purity
nitric acid

Guangzhou Chemical Reagent
Factory, China AR 7697-37-2

Sulphuric acid Guangzhou Chemical Reagent
Factory, China AR 7664-93-9

Table 2. The primary analytical instrument information used in the experiment.

Instrument Name Model Producers

pH Meter PHS-2F Shanghai INESA
Flame photometer FP650 Shanghai jingke

Automatic Kjeldahl analyzer Kjeltec 8400 Danish Foss
Inductively Coupled Plasma-Optical

Emission Spectrometry ICP-OES US Agilent
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The heavy metal content analyses were conducted by digesting the samples with
HCl-HNO3 and HF-HCl-HNO3 solutions. The heavy metal cooking step was carried out
according to the national standard “HJ 832-2017” [16] method, and the microwave digestion
system (Milestone ETHOS UP) was used for digestion, and the heavy metal content was
determined using the Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-
OES) method (Agilent 5110). The concentration of Cr, Zn, Ni, and Cu were determined
using flame atomic absorption spectrometry. Utilizing graphite furnace atomic absorption
spectrometry, we assessed the concentrations of Cd and Pb, while atomic fluorescence
spectrometry was employed to measure the levels of As and Hg [17].

For each group of experiments, parallel samples were set up and analyzed in triplicate
to mitigate the errors of specific batches. Two to three blanks and two to three groups of
environmental sample reference material soil GBW07430 (GSS-16, Institute of Geophysical
and Geochemical Exploration, Chinese Academy of Geological Sciences) were used to
enclose quality control samples. The recovery rates of the various heavy metal factors
analyzed were in the range of 82.61–106.28%, and the standard deviation of the parallel
samples was within 8%.

2.4. Methods for the Evaluation of Heavy Metal Pollution in Soil
2.4.1. Methods for Evaluating the Level of Heavy Metal Pollution in Soil

The level of heavy metal pollution in soil can be evaluated using three geochemical
pollution indices: the Geoaccumulation Index (Igeo) [18], the Contamination Factor (CF) [19],
and the Nemero Pollution Index (PN) [18].

Igeo = Iog2(
Cn

1.5× Bn
) (1)

CF =
Cn
Bn

(2)

PN =

√
CF2 + CF2

max

2
(3)

where, Cn represents the concentration of elements observed in the soil, and Bn denotes the
background concentration of heavy metals. Fn stands for the evaluation standard value of
heavy metal n, and the pollution risk screening value from the Standard for Soil Pollution
Risk Control of Agricultural Land (Trial) (GB 15618-2018) serves as the evaluation standard.
CF is the average value of the CF pollution element of the investigated metal and CFmax is
the maximum value of the contamination factor in the sample. Among them, Background
values (Bn) of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in the agricultural soil of the Guangdong
Province were 8.9 mg/kg, 0.056 mg/kg, 50.5 mg/kg, 17 mg/kg, 0.078 mg/kg, 14.4 mg/kg,
36 mg/kg, and 47.3 mg/kg, respectively [20].

Igeo consists of seven distinct tiers: Igeo < 0, uncontaminated; 0 < Igeo < 2, uncontami-
nated to slightly polluted; 2 < Igeo < 3, slightly polluted to moderately polluted; 3 < Igeo < 4,
seriously polluted; 4 < Igeo < 5, seriously polluted to extremely polluted; and Igeo ≥ 5,
extremely polluted. There are four pollution levels of CF: CF < 1, no pollution; 1 ≤ CF < 3,
light pollution; 3 ≤ CF < 6, moderate pollution; and CF ≥ 6, heavy pollution. PN has
five levels: PN < 0.7 is safe; 0.7 ≤ PN < 1.0 is in a warning limit; 1.0 ≤ PN < 2.0 indicates
light pollution; 2.0 ≤ PN < 3.0 refers to medium pollution; and PN ≥ 3.0 corresponds to
heavy pollution.

2.4.2. Evaluation Methods for Ecological Risk of Heavy Metals in Soil

Two ecological risk indices, including ecological risk potential index (Ei
r) and the

multiple probable effect concentrations quality (mPECQs), are used to assess the ecological
risk of the ecosystem, using the following formulas:
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Ei
r =

Ti
r × Cn

Cre f
(4)

mPECQs =
∑n

i=1
Ci

PECi

n
(5)

where Ti
r is the toxicity response parameter of heavy metal element i, Cn is the measured

concentration of HMs, Cref stands for the background value of HMs in the soil. The Ti
r

of As, Ni, Cu, Cr, Pb, Zn, Cd and Hg are 10, 5, 5, 2, 5, 1, 30 and 40, respectively [21,22].
Ci is the metal concentration in the soil sample and PECi stands for the possible effective
concentration of each metal. The predicted effective concentrations of As, Cd, Cr, Cu,
Ni, Pb, Zn, and Hg are 33, 4.8, 111, 149, 48.6, 460, 459 and 1.06 mg/kg, respectively. The
quantity of metal is given by n. There are five levels of Ei

r: Ei
r < 40, denotes negligible risk;

40 ≤ Ei
r < 80, indicates a mild risk; 80 ≤ Ei

r < 160, implies a moderate risk; 160 ≤ Ei
r < 320,

signifies a high risk; and Ei
r ≥ 320, denotes an exceedingly grave risk. mPECQs is classified

by three levels: mPECQs < 1 denotes a non-toxic nature or a low prevalence of toxicity, with
an incidence rate of less than 25%, 1 ≤ mPECQs < 5 signifies an incidence rate between
25% and 75%, and mPECQs ≥ 5 indicates a highly toxic nature, with an incidence rate
surpassing 75%.

2.5. APCS-MLR Model

The APCS-MLR receptor model offers a means of gauging the effects of noxious
metal sources on soil, by fusing the APCS and MLR models and concentrating on the
PCA model [23–27]. First, the dimension of the data is reduced, the component is derived
from a similar variable using PCA, and the rotational factor load is measured as a starting
point for determining the metal source [28]. The data obtained by PCA cannot be used
to measure source impact, and the APCS model is then adopted as a non-standardized
APCS [25,26,29]. In MLR, the soil’s metal concentration served as the dependent variable,
while APCS validated the model’s consistency by juxtaposing the predicted value against
the observed one [5,30]. This includes the following four steps:

(Zo)i = (0− Ci)/Si = −Ci/Si (6)

P∗op =
n

∑
i=1

B∗pi(Zo)i (7)

[APCS]∗p×j = [P]∗p×j − [Po]
∗
p×j (8)

Ci = (bo)i + ∑ APCSp × bpi (9)

where, Ci represents the mean content of the factor i; Si refers to the standard deviation;
(Zo)i means the standardized matrix; P∗op represents the sample factor score when the
concentration is supposed to be 0; B∗pi represents the factor score parameter from the
rotation matrix; [P]∗p×j indicates the role of factor P in the concentration of sample j in case
of the concentration of 0; [APCS]∗p×j represents the factor mark in the transformed sample
j, and (bo)i represents the constant term in the linear regression; bpi refers to the parameter
of linear regression, and APCSp × bpi refers to the contribution rate of each source.

2.6. Statistical Analysis

The data were statistically analyzed and computed using SPSS 22.0, and the APCS-
MLR model was constructed. To test the suitability of the data for principal component
analysis, a Kaiser–Meyer–Olkin (KMO) test was conducted. Additionally, semi-variogram
fitting and kriging spatial interpolation were performed using ArcGIS 10.5. The matrix of
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Spearman’s correlation among soil physicochemical properties and heavy metal content
was created using Origin 2022.

3. Results and Discussion
3.1. Physicochemical Properties of Soil and Toxic Metals Contents

In Yangchun city, the soil pH, AP, AN, AK, SOM and TN are 3.77–7.73, 3.62–436.75 mg/kg,
31.15–255.15 mg/kg, 12.00–864.00 mg/kg, 0.65–50.53 g/kg and 0.28–11.20 g/kg, respectively
(Figure 1). In addition, the soil in the north, central, and western regions was neutral, whereas
the soil in other regions was acidic. Soil pH affects the mobility of HMs in this medium; as pH
decreases, heavy metal cations become more active and mobile [15].

The concentration range of HMs (in mg/kg) was considerably wide(Table 3) (Figure 2):
As = 0.01–123.29; Cd = 0.01–2.30; Cr = 1.78–118.83; Cu = 2.55–248.18; Hg = 0.01–1.95;
Ni = 0.64–69.74; Pb = 3.60–728.36; and Zn = 6.22–227.57. In terms of average concentra-
tion, the highest was Zn (57.17 ± 42.82 mg/kg), followed by Pb (36.66 ± 54.95 mg/kg), Cr
(36.63 ± 20.33 mg/kg), Cu (20.58 ± 26.78 mg/kg), Ni (12.93 ± 7.98 mg/kg), As (12.69 ± 14.89
mg/kg), Hg (0.30 ± 0.43 mg/kg), and Cd (0.22 ± 0.26 mg/kg). The mean levels of As, Cu, Hg,
Cd, Pb, and Zn surpassed the soil’s baseline values in Guangdong Province [20], indicating that
HMs accumulated in the soil over time. Among the six elements with average concentrations
higher than their soil background values, Cd and Hg were 3.92 and 3.84 times greater than
their background values, respectively. This indicated that these HMs are significantly enriched
in the soil; the enrichment may also be influenced by other external factors. As, Cu, Pb, and Zn
were, respectively, 1.43, 1.21, 1.02, and 1.21 times more abundant than their background values,
suggesting that the presence of these HMs was less related to human activities [15]. In addition,
a great portion of the soil samples (21.5–92.5%) surpassed the soil background values of Hg,
As, Pb, Cr, Cu, Cd, Ni, and Zn. The levels of Cu, As, Hg, Cd, and Pb found in the soil samples
surpassed their thresholds for agricultural soil pollution risk screening, which can be ascribed
to the presence of point source emissions. However, Cr and Ni content in Yangchun were not
particularly high, and these two metals seem to be the least polluting factors in all cities in
China [31]. These results indicated that HMs contaminated the areas where some samples were
collected. Therefore, these results indicate that heavy metal contamination has been found in
some of the sampling areas, and thus management of the corresponding farmland is required
according to relevant standards to reduce heavy metal accumulation in crops. The coefficient
of variation of the heavy metal concentration (Pb = 150%, Hg = 144%, Cu = 130%, As = 117%,
Cd = 116%, Zn = 75%, Ni = 62%, and Cr = 56%) showed a significant degree of variability, the
significant variability indicates that all eight heavy metal elements exhibited a high degree of
variability [32], suggesting that these heavy metals have strong spatial heterogeneity at the
regional scale, with apparent clustering phenomena in their spatial distribution. Moreover, the
elevated levels of As, Cu, and Pb surpassed their thresholds for safe agricultural soil usage,
implying that some regional soils may have been seriously polluted by point sources.

Table 3. A statistical synopsis detailing the physicochemical makeup of soil and concentrations of
hazardous HMs in Yangchun City.

Elements Mean (mg/kg) SD (mg/kg) Max (mg/kg) Min (mg/kg) CV

As 12.69 14.89 123.29 0 117%
Cd 0.22 0.26 2.3 0 118%
Cr 36.63 20.33 118.83 1.78 56%
Cu 20.58 26.78 248.18 2.55 130%
Hg 0.3 0.43 1.95 0 143%
Ni 12.93 7.98 69.74 0.64 62%
Pb 36.66 54.95 728.36 3.6 150%
Zn 57.17 42.82 227.57 6.22 75%
pH 5.36 0.73 7.73 3.77 14%
AP 63.58 46.27 436.75 3.62 73%
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Table 3. Cont.

Elements Mean (mg/kg) SD (mg/kg) Max (mg/kg) Min (mg/kg) CV

AN 121.85 40.89 255.15 31.15 34%
AK 105.11 85.48 864 12 81%
OM 21500 9100 50.53 0.65 42%
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3.2. Geostatistical Analysis of Soil Heavy Metals

The results from using ArcGIS 10.5 software for semi-variogram function fitting and
spatial structure analysis are shown in Table 4. The nugget values for soil Hg, Cd, Cu,
Cr, Ni, As, Zn, and Pb are 0.813, 0.72, 0.662, 0.59, 0.564, 0.558, 0.5, and 0.004, respectively.
Among these, the nugget for Pb is less than 0.25, indicating structural variation, with very
little variation at a small scale. The nuggets for Zn, As, Ni, Cr, Cu, and Cd are between
0.25 and 0.75, indicating moderate spatial variation. The nugget for Hg is greater than 0.75,
indicating a high level of spatial variation, suggesting that the spatial situation of the local
agricultural land has been strongly influenced by random factors [33], as the input of heavy
metals caused by various human activities has already exceeded the input caused by the
original structural factors by a large margin.

According to the semi-variogram function, kriging interpolation was used to plot and
analyze the content of eight heavy metals. As shown in Figure 3, the peak values of soil As
(Figure 3a) content in the study area are mainly concentrated in a strip from the northeast to
the southwest, similar to the distribution of roads in the area. The high-value areas of soil
Cr (Figure 3b) content are mainly in the hilly areas in the northeast. The peak values of soil
Cd (Figure 3c) content are mainly in the northern and southwestern parts. The high-value
areas of soil Cu (Figure 3d) content are mainly near the central region of the study area.
The high-value areas of soil Hg (Figure 3e) content are mainly in the northern region. The
overall spatial distribution of soil Ni (Figure 3f) content in Yangchun City does not have
large high-value areas; the high-value areas are mainly in the northern part. The high-value
areas of soil Pb (Figure 3g) are mainly concentrated near the mines in the northern region.
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The high-value areas of soil Zn (Figure 3h) are mainly concentrated near the mines in the
northern region and the southwestern part.
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Table 4. Statistical Parameters of Semi-variogram Functions for Eight Heavy Metals.

Element
Semi-

Variogram
Model

Nugget
Value
(C0)

Abutment Value
(C0 + C1) R2 Nugget

C0/(C0 + C1)

Hg Exponential 0.101 0.541 0.864 0.813
Cd Exponential 0.0486 0.173 0.729 0.72
Cu Spherical 264 780 0.709 0.662
Cr Spherical 249 607.4 0.844 0.59
Ni Exponential 46 105.62 0.857 0.564
As Spherical 94.7 214.1 0.724 0.558
Zn Exponential 1496 2993 0.771 0.5
Pb Gaussian 1 2666 0.744 0.004

3.3. Heavy Metal Pollution Level Assessment and Potential Ecological Risk Assessment
3.3.1. Evaluation of Heavy Metal Pollution Level

The ground accumulation coefficient (Igeo) can be used to determine toxic metals [34].
The Igeo values showed the following ranges: As = −23.67 to 3.21, Cd = −16.36 to 4.78,
Cr = −3.84 to 2.22, Cu = −4.89 to 1.71, Hg = −16.83 to 4.06, Ni = −5.08 to 1.69, Pb = −3.91
to 3.75, and Zn = −3.51 to 1.68. Based on the Igeo classification, Cd and Hg exhibited levels
of pollution ranging from moderate to severe, while As and Pb demonstrated moderate
pollution, and Cu, Cr, Ni, and Zn showed mild pollution.

CF demonstrated the dispersion of the trace elements and effectively mitigated the
challenge of cross-level comparison [9]. According to the CF classification, the CF values of
the eight heavy metal elements all showed the non-pollution level (CF < 1). The average
CF values were as follows: As (0.42), Cd (0.75), Cr (0.73), Cu (0.13), Hg (0.57), Ni (0.17), Pb
(0.38), and Zn (0.28). Although the mean value of the pollution factors of eight HMs is at
the non-pollution level, the maximum CF value of Cd is 7.68, which is considered a serious
pollution level (CF > 6). The highest CF magnitudes recorded for As and Pb were 4.11 and
4.28, respectively. Furthermore, 5% of the CF values of Hg were classified as a moderate
pollution level.

The Nemero Pollution Index (PN) was used to determine the total pollutants in
the soil [35], which revealed that the soil in the area was seriously polluted. Except Ni
(PN = 0.35), the PN value of all other heavy metal elements is greater than or equal to
0.7. Cd (PN = 5.46) and Pb (PN=3.04) belong to serious pollution; As (PN = 2.92) and
Hg (PN = 2.78) are moderately polluted; Cu (PN = 1.76) and Cr (PN = 1.17) are slightly
polluted; Zn (PN = 0.70) is the warning limit.

3.3.2. Evaluation of the Ecological Risk of Heavy Metals

As previously mentioned, multiple possible effect concentration quality (mPECQs)
had been used to assess the ecological risk of various pollutants using traditional methods
to assess soil quality [30]. The mPECQs for eight heavy metals are as follows: As (0.38), Cd
(0.05), Cr (0.25), Cu (0.28), Hg (0.19), Ni (0.27), Pb (0.28), and Zn (0.12). The mean mPECQs
value in soil was 0.23 (mPECQs < 1), indicating that the toxicity in soil was not strong, and
the incidence of toxicity did not exceed 25%.

Ei
r, proposed by Swedish scientist Hakanson, fully considers the heavy metal content in

soil and evaluates the ecological risk degree of heavy metal pollution in soil in combination
with the toxicity level and the sensitivity of the environment to heavy metal pollution [36].
The mean Ei

r indices for As, Cd, Cu, Cr, Hg, Ni, Pb, and Zn were 14.25, 120.18, 10.77, 0.82,
153.96, 4.49, 5.09, and 1.21, respectively. The results demonstrated that Cd and Hg exhibited
moderate risk, while the other elements showed low risk.

3.4. Correlation Matrix of Soil Physical and Chemical Properties and Heavy Metals in Soil

We used a correlation matrix to represent the Spearman correlations among the heavy
metals and physicochemical properties of the soil samples of this study. From Figure 4,
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within the heavy metals, Ni is significantly positively correlated with Cd and Cu (p < 0.01),
with correlation coefficients of 0.60 and 0.58, respectively. Pb is significantly positively
correlated with Zn (p < 0.01), with a correlation coefficient of 0.56. Regarding the physic-
ochemical properties, alkaline nitrogen is significantly positively correlated with organic
matter and total nitrogen (p < 0.01), with correlation coefficients of 0.62 and 0.78, respec-
tively, and there is also a significant correlation between organic matter and total nitrogen
(p < 0.01), with a correlation coefficient of 0.72. Between heavy metals and physicochemical
properties, Pb is strongly positively correlated with total nitrogen (p < 0.01), with a correla-
tion coefficient of 0.41. The other heavy metal elements such as Cu and Ni have a good
positive correlation with the soil physical and chemical properties, such as TN, OM, AK,
and AN.
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3.5. Identification of the Source of HMs in Soil Using the APCS-MLR Model

After standardizing the raw data, KMO and Bartlett’s tests were used to check the
correlation between the variables and the reliability of PCA. The KMO measurement value
of the sufficient sampling value was 0.59, with p < 0.001 (Table 5). PCA was used to
determine metal composition. According to Table 5, it appears that the three eigenvalues
retrieved exceeded 1, implying that a noteworthy 59.26% of the overall variance could be
explicated. The first component (PC1) in the rotation component matrix occupies 28.16% of
the total sample variance. The second principal component (PC2) occupies 16.69%, and
the third (PC3) accounts for 14.42% of the total sample variance (Table 5). In general, PCA
exhibited optimal fitting when a≥ b + 50, where a denotes the sample count and b indicates
the number of metal types [37]. This study met an exemplary standard, indicating that the
results of the principal component analysis were trustworthy and amenable to the analysis
of the impact of contamination sources. The linear regression coefficient value of HMs
was high (R2 > 0.75, p < 0.05), affirming the validity of the simulation model’s outcomes
(Table 6).
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Table 5. Results of variance and rotational components in heavy metal sources in soils of Yangchun
City using APCS-MLR model.

Feature

Initial Eigenvalue

Elements

Rotated Component Matrix

Total Variation
(%)

Cumulative
(%) PC1 PC2 PC3

1 2.253 28.159 28.159 As 0.76
2 1.335 16.686 44.845 Cd 0.71
3 1.153 14.415 59.260 Cr 0.78
4 0.924 11.555 70.815 Cu 0.57
5 0.826 10.322 81.137 Hg 0.57
6 0.675 8.436 89.573 Ni 0.80
7 0.564 7.047 96.620 Pb 0.68
8 0.270 3.380 100.000 Zn 0.80

Table 6. Soil Heavy Metal APCS-MLR Receptor Model.

Receptor Model R2

CAs = 1.963 + 0.14 × APCSF1 − 2.673 × APCSF2 + 13.712 × APCSF3 0.76
CCd = −0.198 + 0.216 × APCSF1 + 0.104 × APCSF2 − 0.038 × APCSF3 0.764

CCr = 8.982 + 15.96 × APCSF1 − 2.247 × APCSF2 + 1.717 × APCSF3 0.63
CCu = −1.647 − 15.99 × APCSF1 + 10.181 × APCSF2 + 38.9 × APCSF3 0.752
CHg = 0.191 + 0.308 × APCSF1 − 0.112 × APCSF2 − 0.399 × APCSF3 0.791
CNi = −3.561 + 6.983 × APCSF1 + 3.518 × APCSF2 + 1.629 × APCSF3 0.773

CPb = −15.255 − 7.287 × APCSF1 + 65.894 × APCSF2 + 13.079 × APCSF3 0.766
CZn = 10.572 + 10.534 × APCSF1 + 21.626 × APCSF2 + 2.618 × APCSF3 0.751

The APCS-MLR model was employed to ascertain the origins of HMs in every soil
specimen. The most influential factors were Cd, Ni, Hg, Cr, and Zn, with contribution
rates of 54.06%, 60.28%, 44.31%, 68.99%, and 37.44%, respectively (Figure 5). Cr, Ni, Zn,
Cd, and Hg were ranked 22, 24, 25, 63, and 65, respectively, in terms of element abundance.
The constituents of the earth’s crust, when subjected to exogenous geological processes,
wield a profound influence on the elemental composition of the soil [38]. The average
chromium and nickel contents are lower than the background values of heavy metals in
the soil of Guangdong Province. In addition, it has been discovered that the study area
contains various mineral resources such as toxic sand, lead–zinc, pyrite, iron, tungsten, and
limestone. Furthermore, from a spatial distribution perspective, the spatial distributions of
these three elements all show high concentration ranges around the mining areas. Therefore,
based on the above analysis, the first major factor is natural sources.

The second main factor had the greatest impact on Pb, with a contribution rate of
56.65% (Figure 4). The average Pb content was close to the background value, only 1.8%
higher; however, the Pb content exceeded the natural background value of 27.5% of the
sample points. Moreover, Pb was mostly released into the soil owing to the vehicle fuel
combustion [39]. In addition, according to previous analysis, the phenomenon of a small
block nugget coefficient and a large coefficient of variation in soil lead content characteristics
may be attributed to the emissions from road traffic, which could cause an increase in
soil lead content within a certain range on either side of the road, forming a relatively
stable marginal effect. This leads to little variation in soil lead content within a small range,
exhibiting a strong spatial autocorrelation. In fact, some sampling points are located near
the roads in the study area. Therefore, based on the above analysis, the second major factor
is traffic emissions.

As for the third primary factor, its impact is most pronounced on As and Cu, with
respective contribution rates of 75.52% and 50.34% (Figure 5). The use of fertilizers, pesti-
cides, sewage sludge, or manure increased the As and Cu content in farmland soils [40].
Furthermore, there was a history of using As- and Cu-containing pesticides, and heavy
metal-containing feed additives in poultry and livestock breeding (the resulting manure
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is subsequently used as land fertilizer), which may cause large-scale agricultural soil con-
tamination [41]. Meanwhile, according to previous analysis, the distribution area of soil
As content (Figure 3) highly overlaps with the distribution area of agricultural land in
Yangchun City (Figure 1), and there is a positive correlation between soil Cu and soil
nutrients (TN, OM, AK, and AN) (Figure 4). As a result of the preceding analysis, the third
main factor was related to agricultural activities.
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4. Conclusions and Future Prospects

The present study is based on an investigation of the agricultural soil in Yangchun City,
Guangdong Province. Eight heavy metal concentrations were determined in 200 collected
soil samples. Subsequently, the descriptive analysis results of the sampling data were
compared with the background values of soil in the Guangdong Province. Multiple
methods for pollution assessment were applied to evaluate the pollution levels of heavy
metals in the study area and to analyze the pollution risks. Correlation analysis and the
APCS-MLR model were utilized to distinguish the sources of the eight heavy metals in
the region, followed by a quantitative analysis of the main sources of soil heavy metals
obtained. Through the comprehensive use of methods such as the semi-variogram variance
function, the spatial variation characteristics and distribution of the eight heavy metals (Cr,
As, Cu, Hg, Zn, Ni, Cd, and Pb) in the agricultural soil of the study area were analyzed.
Furthermore, the uncertainty of potential soil heavy metal pollution risks was assessed.
The primary conclusions of this study are as follows:

(1) The average content of the metals studied, in descending order, is Zn (57.17 mg/kg)
> Pb (36.66 mg/kg) > Cr (36.63 mg/kg) > Cu (20.58 mg/kg), Ni (12.93 mg/kg) > As
(12.69 mg/kg) > Hg (0.30 mg/kg) > Cd (0.22 mg/kg). The soil in Guangdong Province
has been found to contain concentrations of As, Cd, Cu, Hg, Pb, and Zn that surpass
the natural background levels [20], with a notable trend of enrichment observed. The
elevated levels of heavy metals in the soil of Yangchun city, while not necessarily
indicating immediate severe risks, do warrant attention due to their potential to
influence the environment and human health over time through dietary exposure.
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(2) Among the evaluation indexes of pollution status, the calculated average Nemero
index is 2.27, indicating a medium pollution level (2.0 < PN < 3.0). Except for Ni
and Zn, the PN of a solitary metallic element remained within the realm of safety.
Of the remaining six heavy metals, Cu and Cr were deemed to cause light pollution,
while As and Hg were the culprits behind medium pollution. Cd and Pb, on the
other hand, were found to induce heavy pollution and high concentration areas are
concentrated near the northern mining area of the study area. Among the evaluation
indexes of pollution status, Ei

r of most of the eight heavy metal elements showed low
risk (Ei

r < 40); however, Cd and Hg were classified as moderate risk (80 < Ei
r < 160).

In light of the pollution assessment, monitoring Cd and Hg is recommended due to
their notable presence and associated risks. The northern mining zone merits special
attention for its elevated heavy metal levels, particularly Cd and Pb. It is suggested
that people take measures to control agricultural heavy metal pollution in order to
maintain a favorable agricultural production environment.

(3) The APCS-MLR model was used to identify three main components, and the correla-
tion value showed that R2 > 0.75 (p < 0.05), indicating that the model had a statistically
significant fit. The three sources identified by the APCS-MLR model were sorted
according to natural sources (28.16%), traffic emissions (16.68%), and agricultural
activities (14.42%). Based on the findings of this study, it is suggested that efforts to
reduce agricultural heavy metal pollution in Yangchun City should primarily focus on
minimizing emissions from transportation and agricultural activities, as the combined
contribution of these two sources accounts for a significant portion of the total pollu-
tion load. At the same time, since natural sources constitute the majority of the total
pollution load, it is also imperative to explore measures to address natural pollution.

The study suggests establishing a monitoring and early warning system for heavy
metal pollution in farmland soils, with a focus on monitoring Cd and Hg pollution. It is
proposed to build a heavy metal pollution monitoring and early warning platform based on
geographic information systems and big data technology to achieve dynamic monitoring
of the key monitoring areas. The platform database should include data such as soil
types, land use, mineral distribution, and heavy metal background values. Technologies
such as drones and satellite remote sensing can be used to obtain soil and vegetation
parameters as model inputs, and correlation models can be established to predict the
pollution status in key areas. The monitoring and early warning results output by the
platform can provide a basis for environmental management departments to formulate
prevention and control policies.
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