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Abstract: Acquiring phenotypic data from livestock constitutes a crucial yet cumbersome phase in the
breeding process. Traditionally, obtaining livestock phenotypic data primarily involves manual, on-
body measurement methods. This approach not only requires extensive labor but also induces stress
on animals, which leads to potential economic losses. Presently, the integration of next-generation
Artificial Intelligence (AI), visual processing, intelligent sensing, multimodal fusion processing,
and robotic technology is increasingly prevalent in livestock farming. The advantages of these
technologies lie in their rapidity and efficiency, coupled with their capability to acquire livestock data
in a non-contact manner. Based on this, we provide a comprehensive summary and analysis of the
primary advanced technologies employed in the non-contact acquisition of livestock phenotypic data.
This review focuses on visual and AI-related techniques, including 3D reconstruction technology, body
dimension acquisition techniques, and live animal weight estimation. We introduce the development
of livestock 3D reconstruction technology and compare the methods of obtaining 3D point cloud data
of livestock through RGB cameras, laser scanning, and 3D cameras. Subsequently, we explore body
size calculation methods and compare the advantages and disadvantages of RGB image calculation
methods and 3D point cloud body size calculation methods. Furthermore, we also compare and
analyze weight estimation methods of linear regression and neural networks. Finally, we discuss the
challenges and future trends of non-contact livestock phenotypic data acquisition. Through emerging
technologies like next-generation AI and computer vision, the acquisition, analysis, and management
of livestock phenotypic data are poised for rapid advancement.

Keywords: 3D reconstruction; stressless body dimension measurement; visual weight estimation;
precision livestock farming

1. Introduction

Livestock husbandry has long been an integral component of the agricultural sector,
significantly impacting food supply, rural economies, and environmental sustainability.
However, with the ongoing global population increase, there is a noticeable surge in de-
mand for high-quality animal protein, a trend that cannot be disregarded [1]. In 2003,
research related to Precision Livestock Farming (PLF) was first compiled during the Eu-
ropean Conference on Precision Livestock Farming. The conference primarily focused on
animal physiological identification [2–4] and monitoring [5,6]. The aim was to optimize
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individual animal contributions, achieving efficiency in livestock farming at low costs and
environmental footprints, while ensuring the quality and safety of livestock products [7].
Consequently, PLF, amid environmental changes [8], resource scarcity [9], and inadequate
agricultural labor [10], is poised to emerge as a significant trend and developmental direc-
tion in the field of livestock farming [11].

Phenotypic data of animals form a fundamental basis in PLF for various aspects
such as breeding management [12], genetic selection [13], scientific research [14], and
more. Only by accumulating extensive data throughout the livestock growth process
and establishing comprehensive databases covering the entire production process can
scientific research methods be employed effectively for optimizing and enhancing breeding
production decisions. This ensures product quality, protects genetic breeding stock, and
provides a robust foundation for sustainable development and innovation within the
livestock industry [15].

Typically, phenotypic data on growth include livestock body height, length, and
weight, among other measurements. Presently, the predominant method for collecting
livestock phenotypic data mainly involves manual acquisition. This method requires in-
dividuals to use devices such as rulers and weighing scales for data collection. However,
livestock control is challenging and often necessitates the forceful restriction of their move-
ments [16]. This approach demands substantial manual labor, consumes time and labor
resources, and can induce stress responses in livestock. For instance, Zulkifli mentioned that
human contact measurement lowers the productivity of farm animals, leading to reduced
fertility, milk production, and growth rates [17]. In the process of manually observing
and measuring key areas in livestock, different observers might have their own subjective
views, which can lead to inconsistent decisions in how they gather data. This inconsistency
might result in errors within the collected data, ultimately reducing its reliability.

In recent years, the use of intelligent sensing devices for data collection has emerged as
a promising solution to mitigate the problems associated with manual data collection. For
instance, deploying devices like infrared sensors [18–20], 3D point cloud cameras [21,22],
and RGB cameras [23,24] in farming or animal research settings facilitates the capture of
livestock images and 3D coordinate points on their surfaces. Subsequently, employing
3D reconstruction techniques generates complete 3D models of livestock. Following this,
computer vision methods automatically or semi-automatically identify key points of the an-
imals, ultimately computing phenotypic data such as body measurements and weight. The
workflow of non-contact 3D reconstruction and data estimation for animals is illustrated
in Figure 1.
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Using intelligent sensing devices to acquire animal phenotypic data eliminates the
need for direct contact with animals, reducing potential stress induced by manual collection
methods. Simultaneously, this approach allows for the collection of vast amounts of data
in a short period, proving more efficient than manual methods [25]. This is particularly
advantageous for large-scale farming operations and research projects [26]. Undoubtedly,
this method represents a potential solution capable of enhancing data collection efficiency,
accuracy, and animal welfare.

In this paper, our focus lies on non-contact intelligent sensing technology for livestock.
Specifically, we emphasize intelligent perception and analysis techniques related to three
primary tasks: (1) computer vision-based 3D reconstruction of livestock; (2) computer
vision-based livestock body dimension acquisition technology; and (3) computer vision-
based livestock weight estimation technology. Within this work, we summarize and analyze
the latest advancements in these fields and discuss future research opportunities, as well as
the associated challenges.

2. Computer Vision-Based Livestock 3D Reconstruction Technology

The significance of 3D reconstruction technology within PLF cannot be overstated.
This method facilitates the provision of comprehensive and accurate digital models of
animals, allowing for the acquisition of extensive livestock phenotypic data, thereby estab-
lishing a crucial foundation for informed decision-making. For instance, by monitoring and
analyzing animal phenotypic data, breeders can proactively devise feeding schedules [27]
and detect potential issues at an earlier stage [28], ultimately enhancing production quality
and minimizing resource wastage. The integration of 3D reconstruction technology serves
as a vital tool for intelligent management in animal husbandry, propelling the livestock
industry toward elevated levels of advancement. Thus, 3D reconstruction technology is
indispensable in PLF. Presently, three primary categories of this technology are known:
reconstruction based on laser scanning, reconstruction based on RGB images, and recon-
struction based on 3D cameras, as depicted in Figure 2, with associated research findings
outlined in Table 1.
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Figure 2. Three different 3D reconstruction methods based on RGB images, laser scanning, and
3D cameras. (a) displays a 3D reconstruction technique utilizing RGB images [29]; (b,c) shows two
different 3D reconstruction methods based on laser scanning [30,31]; (d) is reconstructed using a 3D
camera [32]. These techniques provide innovative computer vision methods for precise, non-contact
measurement of livestock body dimensions and weight.
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Table 1. Overview of main 3D reconstruction research in livestock.

Work Breed Device Method Animal Numbers Year

[29] Live pigs RGB camera Binocular stereo vision technology 32 2004

[30] Live cows LiDAR Statistical outliers and voxel grid
filtering methods 3 2018

[31] Live cows LiDAR Fusion 30 2019
[32] Live pigs 3D camera Point cloud registration 20 2018
[33] Newborn lambs RGB camera Digital image processing 158 2015
[34] Live sheep RGB camera Binocular stereo vision technology 27 2014
[35] Live cows LiDAR Image fusion 25 2023
[36] Live pigs 3D camera Point cloud registration 78 2018
[37] Live cows 3D camera Point cloud registration 101 2016

[38] Live pigs Visible image and
infrared image sensor Multi-source image fusion N/A 2020

The “N/A” in [38] we don’t find the number of pigs.

2.1. 3D Reconstruction of Livestock Based on RGB Images

The reconstruction technique based on RGB images generally involves employing a
multi-source image fusion approach to acquire the target’s geometric shape and texture
information [39]. Its procedure typically entails the following steps: (1) capture a set of
two-dimensional images containing the target object from various angles; (2) identify and
extract features such as key points, corners, edges, etc. from these images, matching the
features extracted from different images to determine their corresponding relationships
in 3D space; and (3) leverage known camera parameters and feature matching results to
achieve 3D reconstruction of the target.

For instance, Thapar et al. [40] captured images of live pigs using a smartphone
from both top and side angles to gather phenotypic information. Khojastehkey [33], on
the other hand, utilized a digital camera to capture side-view images of newborn lambs,
followed by applying digital image processing and measurement techniques to assess
the lambs’ body size. Menesatti et al. [34] captured images of sheep using two network
cameras positioned at different angles and later employed a binocular stereovision system
to gather information about the sheep. Wu et al. [29] developed a 3D reconstruction system
comprising six cameras, employing stereovision techniques to achieve 3D reconstruction
of pigs. Pezzuolo [41] proposed a Structure from Motion (SfM) photogrammetric method,
enabling the 3D reconstruction of pigs. Their results indicated that after capturing and
utilizing 50 photographs, the reconstructed area reached 60%.

However, these RGB-based reconstruction methods face significant limitations due
to the absence of a third dimension, potential distortions, the necessity for calibration
procedures, and the requirement for multiple cameras. As presented in [41], the recon-
structed area only reached 60%, which obviously does not meet the requirements for
subsequent body size and weight calculations. Consequently, their effectiveness has been
greatly constrained.

2.2. Livestock 3D Reconstruction Based on Laser Scanning

Laser scanning-based 3D reconstruction technology is an advanced method exten-
sively applied in various fields such as geographic information systems, robot navigation,
autonomous driving, and industrial manufacturing. This technique operates on the princi-
ple of utilizing laser radar equipment to emit laser beams and measure their return time to
acquire 3D spatial information about the target object. Some scholars have already begun
exploring the application of this technology in the measurement of livestock bodies.

For instance, Huang et al. [30] utilized a LiDAR (Light Detection and Ranging) sen-
sor to collect original point cloud data of live cattle. They subsequently applied fusion
conditions, statistical outlier removal, and voxel grid filtering methods to eliminate back-
ground noise and outliers. Then, employing bidirectional random K-D tree accelerated
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iterative closest point (ICP) matching and greedy projection triangulation (GPT) recon-
struction methods, they reconstructed the surface of cattle, ultimately obtaining the 3D
model. Cozler et al. [31], on the other hand, employed a gantry structure equipped with
five cameras and five laser projectors and termed their approach Morpho3D. During the
data collection process, the gantry structure passed over the cow at a speed of 0.5 m/s,
as depicted in Figure 3a. Subsequently, the corresponding cameras captured laser stripe
images projected onto the cow’s body, transmitting these data to a computer for recon-
structing the cow’s 3D information. Morpho3D successfully achieved high-precision 3D
reconstruction of cows, demonstrating experimental results with an average distance error
of less than 1 cm. Additionally, Los et al. [42] utilized a UAV (Unmanned Aerial Vehicle)
equipped with a laser scanner to collect 3D point cloud data of a herd of cattle and extract
individual beef cattle, achieving 3D reconstruction of the cattle as depicted in Figure 3b.
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However, these methods have their drawbacks. Huang et al.’s [30] approach encoun-
ters difficulties in obtaining the complete contour of the target due to the target’s mobility,
leading to erroneous registration and reconstruction. The method of Los [42] involves
expensive equipment costs, and the UAV flight process faces several uncertainties such as
the movement of cattle, adverse weather conditions like rainfall, and high wind speeds,
hindering the implementation’s certainty. Additionally, Morpho3D requires approximately
6 s for a single cattle capture and a reconstruction duration of 15 min, necessitating the cow
to remain still during data collection, thereby limiting Morpho3D’s practicality.

In summary, the methods utilizing laser scanning for 3D reconstruction face limitations
stemming from target mobility and prohibitively expensive equipment, contributing to
their diminished reliability in practical applications.

2.3. Depth-Camera-Based 3D Reconstruction

In recent years, with technological advancements, 3D cameras have garnered attention
among researchers in the field of 3D reconstruction due to their superior depth information
acquisition, high real-time capabilities, and comparatively lower cost compared with laser
scanning [35,43–45]. These cameras capture both depth and color images of a scene simul-
taneously, subsequently transforming the depth images into point clouds to accomplish
3D reconstruction.

For instance, Pezzuolo et al. [46] placed two Kinect v1 cameras in a feeding area. They
scanned pigs 5–10 times during feeding, selecting the best scan based on minimum noise
principles. This allowed for the collection of 3D information from the side and top views of
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the pigs. Subsequently, through calibration and filtering, they achieved a 3D reconstruction
of the pigs, as illustrated in Figure 4b. In another study, Pezzuolo et al. [47] utilized four
different scanning positions to reconstruct cattle in three dimensions. Spoliansky et al. [48]
employed Kinect v1 to gather depth information from cows, estimating the body condition
score based on denoised depth images. Wang et al. [49] designed a point cloud acquisition
system based on the Xtion camera, capturing point clouds of pig scenarios from two
different perspectives. They utilized Random Sample Consensus (RANSAC) to eliminate
background point clouds and employed Euclidean clustering to extract foreground point
clouds, ultimately achieving a 3D reconstruction of pigs, as shown in Figure 4a.
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2.4. Summary of 3D Reconstruction Technology

Livestock 3D reconstruction is a prerequisite for obtaining phenotypic data such as
body dimensions and weight estimation, and it plays a crucial role in aiding livestock
managers in formulating scientifically informed decisions. Traditional RGB image fusion
methods not only exhibit slower detection speeds but also demand stringent reconstruction
environments, making them less practical for actual livestock production settings. Laser
scanning reconstruction methods are better suited for extracting specific contours/parts,
necessitating precise alignment between animals and sensor sources, and are generally
accompanied by higher costs for laser scanning equipment [36].

Compared with traditional approaches, 3D camera-based reconstruction methods
have emerged as a promising research direction. This approach directly acquires depth
information, reducing feature matching complexities and making data acquisition less in-
tricate. Additionally, 3D cameras enable real-time information capture, making them more
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suitable for practical production applications, thereby mitigating the impact of livestock
movement. Pezzuolo et al. [50] discussed the impact of Structure from Motion (SfM) pho-
togrammetry methods, low-cost laser scanning, and the depth camera on 3D reconstruction.
Through comparative experiments, they concluded that utilizing the Microsoft Kinect v1
3D camera for reconstruction was the most cost-effective technology.

However, despite the evident advantages of 3D cameras in certain applications, they
also come with limitations and constraints that need consideration when selecting and em-
ploying this technology. Notably, 3D cameras are typically more expensive than traditional
RGB cameras, including the initial cost of purchasing the 3D camera itself and potential
additional equipment and software, rendering them less economically viable in certain ap-
plications. Some 3D cameras are sensitive to lighting conditions; intense light, reflections, or
shadows may result in depth discontinuities and grainy noise, affecting the reconstruction
of 3D models [50]. The reconstruction of data collected using 3D cameras might be more
intricate than RGB images due to the complexity of the livestock environment, resulting in
numerous data interference points and thereby limiting the effectiveness of existing point
cloud registration methods. A comparative analysis of these three methods is presented
in Table 2.

Table 2. Comparison of 3D reconstruction techniques with different devices.

Device Measurement Range Measure Targets Advantage Disadvantage

3D camera From several centimeters
to several meters

Acquiring spatial
coordinate information

of an object

Provide depth
information and
high-resolution

depth information

Limited measurement range,
susceptible to lighting and
environmental conditions,

higher costs, and rather
intricate 3D reconstruction

Laser scanning
Ranges from several

meters to
several kilometers

Generate
high-precision

geometric surface point
clouds of objects

Obtain highly accurate
depth information of
the measured object,
with relatively minor

susceptibility to
lighting effects

Lack of color information,
lower resolution, and
relatively higher cost

RGB camera
Between tens of
centimeters to
several meters

Using electronic
sensors to convert
optical images into

electronic data

Lower cost,
well-developed

application scenarios

Lack of depth information and
susceptible to lighting and
environmental conditions

Future research endeavors could explore the impacts of different lighting conditions
and potential remedies, such as developing advanced algorithms to identify and rectify
issues like light, reflections, and shadows. Moreover, researchers may delve into novel
point cloud registration methods coupled with neural network techniques, representing
a potential trend in the point cloud registration domain. Finally, as existing studies face
limitations due to animal movement, the future direction of 3D reconstruction should aim
to reduce scanning time and determine optimal data acquisition positions.

3. Computer Vision-Based Livestock Body Dimension Acquisition Technology

The traditional method of collecting body size parameters in livestock involves farm
personnel using tape measures, enclosures, and other tools to measure the pigs in the pigsty.
With the introduction of PLF and the rapid advancement in computer vision technology
capable of processing two-dimensional or 3D image data, researchers have progressively
embarked on exploring non-contact body measurement techniques. Compared with con-
ventional livestock surface parameter acquisition methods, non-contact body measurement
technology eliminates the influence of human factors, delivering measurement results in
a short duration, and significantly enhancing measurement efficiency and accuracy [37].
Presently, non-contact body measurement technology [51] can be categorized into two types:
image-based methods and 3D point cloud methods, as shown in Figure 5 and Table 3.
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Table 3. Main research work of body dimension acquisition.

Device Type Breed Data Type Method Error Reference Year

RGB camera
Live pigs RGB images Area method Less than 2.94% [32] 2018
Live pigs RGB images Image processing Less than 10.2% [37] 2014

3D camera

Live cows Point cloud Geometric segmentation Less than 3% [52] 2020
Live pigs Video Geometric segmentation Less than 4.5% [53] 2019
Live pigs Point cloud Geometric segmentation Less than 7.87% [54] 2019
Live pigs Point cloud Geometric segmentation Less than 4.67% [55] 2020
Live pigs Point cloud Neural network segmentation Less than 5.26% [56] 2023
Live cows Point cloud Geometric segmentation Less than 3.47% [57] 2023

3.1. RGB Image-Based Body Dimension Measurement Method

In recent decades, 2D cameras have been widely adopted in the field of computer
vision due to their cost-effectiveness and efficiency. Numerous researchers have proposed
various algorithms to extract livestock body dimensions from 2D images. Lu et al. [32]
presented an algorithm to automatically extract porcine body parameters from overhead
view images of pigs. The process involves the following steps: firstly, the parameters of
the pig’s spinal bone are extracted; secondly, the length of line segments perpendicular to
the pig’s skeletal line are calculated, and then feature points along the pig’s contour are
extracted based on the variation in these perpendicular line segment lengths; thirdly, the
pig’s head and neck are eliminated from its contour using an ellipse; and finally, four length
parameters and one area parameter are computed. The accuracy of body length reached
95.12% (SE = 2.66%). Weber et al. [52] developed software for calculating beef cattle rump
width, body length, and shoulder width based on manually labeled images, measuring the
width of the beef cattle’s rump and back area via image analysis. Shi et al. [53] developed a
mobile measurement system for estimating pig body composition, capturing back images
of growing pigs using a binocular camera, and processing the images to estimate pig body
dimensions. Chen et al. [58] designed a mobile measurement system based on the platform,
comprising control, calibration, and image processing sections. The calibration part is
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used to identify distortion coefficients and compute camera parameters. After calibration,
a binocular camera captures images of pigs during growth, and subsequent processing
estimates the pig’s body parameters. The system verified body length and height with
R2 values between 0.91 and 0.98. Sakir et al. [59] employed digital images to determine
key body measurements like height, hip height, and length of Holstein cattle, achieving an
accuracy of around 98%.

However, methods relying on 2D images face challenges including susceptibility
to variations in illumination, difficulties in background separation, and high demands
on image capture environments [60]. As shown in [61], the error reached 10.2%. Two-
dimensional image-based information cannot measure three-dimensional body parameters
such as chest circumference, abdominal circumference, and hip circumference, limiting the
precision of livestock body measurements.

3.2. 3D Point Cloud Body Dimension Measurement Method

With the emergence of 3D cameras due to their exceptional spatial information acqui-
sition capabilities and higher real-time performance, scientists have increasingly applied
them to capture and analyze the 3D point cloud structure of livestock. Using a 3D camera to
acquire a large amount of discrete point coordinate data reflects the spatial information of
the object’s surface, providing more information compared with two-dimensional images.
Following the 3D reconstruction, segmentation of the reconstructed livestock point cloud is
fundamental for obtaining body size phenotypic data. Currently, there are two segmenta-
tion methods: one relies on geometric segmentation algorithms, while the other utilizes
segmentation models based on neural network networks [62,63]. It is worth noting that
regardless of the method employed, the objective remains consistent—to segment points,
lines, and surfaces from the complete point cloud of livestock and localize key regions.
After segmenting points, lines, and surfaces from the livestock point cloud, relevant knowl-
edge in animal science can be used to fit or train models to obtain the body dimension
phenotypic data of the livestock.

3.2.1. Geometry-Based 3D Point Cloud Segmentation

Currently, the main method for segmentation involves cutting the complete point
cloud based on the morphological features of livestock. These key points and regions
are usually determined by geometric segmentation methods such as identifying fitted
curve features and extracting edge morphology features. This category of methods has
been studied for many years, and the technology has become relatively mature, as shown
in Figure 6.

For instance, Yongshen et al. [54] used the minimum bounding rectangle to adjust the
posture of pigs and employed projection and background difference methods to detect
targets. They combined skeletonization algorithms with Hough transform algorithms to
determine the tilt degree, achieving ideal posture detection and body measurements of pigs.
Experimental results showed average accuracies of 95.5%, 96.3%, and 97.3% for body width,
height, and length, respectively. Ruchay et al. [64] utilized the ICP algorithm to perform
non-rigid 3D reconstruction of point cloud data captured by three Kinect V2 cameras on
live cattle. This led to the calculation of nine body measurement parameters, including
shoulder height, hip height, and oblique length, with measurement errors below 3%.

Wang et al. [65] used cross-sectional features of point clouds to detect the measurement
position of the pig’s heart circumference. Slicing the point cloud at the measurement posi-
tion resulted in a heart circumference point cloud. Finally, the perimeter of the fitted heart
circumference point cloud curve provided the heart circumference length, demonstrating
an average relative error of 7.87% for the pig’s heart circumference measurement position.
Shuai et al. [55] obtained point clouds of freely walking pigs using a Kinect depth camera
from three different perspectives (top view, left view, and right view). Through the curve
of the difference in point cloud point distribution, they identified key positions of the pig’s
body point cloud. Additionally, they improved the accuracy of abdominal circumference
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measurements using polar coordinate transformation methods. Guo et al. [66] identified
key points for pig body measurements using features such as the position of pig hooves and
arc length curvature, employing methods like peak detection and pole value positioning.
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Although algorithms based on geometric segmentation can precisely segment the key
areas and points in livestock point clouds, most experiments are conducted under strict
fixed conditions and environments. In different production environments, variations in the
posture of livestock targeted by 3D cameras may result in incorrect localization of livestock,
leading to inaccurate body size measurements. Additionally, individual differences among
captured livestock can cause different key points to be located differently. Employing a
uniform segmentation algorithm for diverse individuals will reduce the accuracy of the
algorithm and result in significant errors.

3.2.2. Neural Network-Based 3D Point Cloud Segmentation

To achieve precise segmentation of livestock point clouds and identify accurate key
areas, researchers have explored the application of neural network methods in livestock
point cloud segmentation. Specifically, researchers manually label various key areas of the
livestock to form a dataset. This dataset is then used to train a 3D convolutional neural
network to learn features of different key areas in the livestock. With a sufficient amount
of data, the trained neural network model can achieve accurate region segmentation for
different individuals.

Hao et al. [56] proposed an improved point cloud segmentation model that subdivides
the overall pig point cloud into various parts, such as the pig’s head, ears, torso, limbs,
and tail, and localizes body measurement key points in segmented areas, as shown in
Figure 7. Subsequently, Hao et al. combined algorithms like least squares, point cloud slic-
ing, edge extraction, and polynomial fitting to achieve pig body dimension measurement.
The relative error in experimental results ranged between 2.18% to 5.26%. Du et al. [67]
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introduced a deep learning network-based plant segmentation network (PST) that achieved
semantic segmentation of high-resolution rapeseed plant point clouds. This model com-
prises a Dynamic Voxel Feature Encoder (DVFE), dual attention blocks, and a dense feature
propagation module, enhancing automatic segmentation capabilities for rapeseed plant
point clouds. Experimental results indicated an overall semantic segmentation accuracy of
97.07%, demonstrating the significant potential of deep learning-based point cloud segmen-
tation methods in handling dense plant point clouds with complex morphological features.
Guo et al. [68] proposed a segmentation method for cabbage point cloud data by combining
deep learning and clustering algorithms. This approach optimized the workflow of the
DBSCAN algorithm and exhibited strong performance in organ-level plant point cloud
segmentation experiments, achieving an accuracy of 95% and an IoU of 0.86. Li et al. [69]
developed a deep learning-based plant point cloud segmentation technique using PointNet
for stem and leaf instance segmentation, extracting six phenotypes. The results showed an
average precision of 0.91 for stem–leaf segmentation, offering a systematic reference for
automated analysis of 3D phenotypic features at the individual plant level.
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planar projection. Subfigure (c) presents the results after segmenting the pig’s body.

However, using neural network networks for point cloud segmentation currently has
limitations. This is because deep convolutional networks require a large volume of point
cloud data to learn features of key areas in the point cloud. However, there is currently
a scarcity of publicly available livestock point cloud datasets, making it challenging to
establish datasets with sufficient data volume. Consequently, neural networks are prone to
overfitting during the training process, resulting in limited practicality of the models.

3.3. Summary of Body Dimension Acquisition Technology

The introduction of PLF has accelerated the development of non-contact body mea-
surement technologies. Over the past decade, researchers have conducted extensive studies
in this field. While methods based on two-dimensional images have enabled the acquisition
of livestock body measurements, they lack essential depth information, resulting in insuffi-
cient accuracy. Consequently, researchers have begun exploring methods based on 3D point
clouds to obtain body measurement information. This is because point cloud data contain
abundant spatial information, compensating for the shortcomings of two-dimensional
image information.

Segmenting livestock point clouds to identify crucial areas for body measurement
involves two approaches: geometric segmentation and neural network methods. Geometric



Agriculture 2024, 14, 306 12 of 20

segmentation accurately segments the key areas of individual livestock, but its robustness
is affected by differences between animal individuals, making it less practical for real-
world applications. Although neural network methods reduce the impact of individual
differences, their development might be constrained by insufficient data currently available.
A comparative analysis of methods is shown in Table 4.

Table 4. Comparison of body dimensions calculated with different methods.

Methods Advantage Disadvantage

RGB Image
Lower cost, more mature image

processing techniques, and
simpler algorithms

Lack of depth information, restricted by
viewing angle

Geometric segmentation methods in
3D imaging

Requires minimal annotated data, high
computational efficiency, and superior

segmentation precision

Highly dependent on geometric accuracy,
susceptible to individual

animal variations

Neural network methods in 3D imaging Adapts to intricate information and
structures, learns crucial insights

Large data requirements, limited public
datasets, and relatively high computing

resource demands exist

In the future, researchers could explore capturing and sharing more livestock point
cloud data. Additionally, improving existing neural network structures to better suit the
segmentation of key areas in livestock point clouds is a direction for future development.

4. Computer Vision-Based Livestock Weight Estimation Technology

Currently, the majority of farms and research institutions acquire livestock weight
information primarily using electronic devices such as weigh crates and floor scales. While
this method provides the most accurate weight measurements, it is time-consuming and
may cause stress or harm to the livestock. In recent years, several scholars have con-
ducted numerous studies on non-contact weight estimation, as shown in Table 5. These
studies mainly fall into two categories: weight estimation based on mapping the relation-
ship between 3D reconstructions and body weight, and weight estimation using deep
convolutional neural networks.

Table 5. Main research work on livestock weight estimation.

Breed Device Data Type Method Error Reference Time

Live pigs 3D camera Point cloud Linear regression 4.87% [21] 2021
Live pigs 3D camera Point cloud Linear regression 0.48 kg [41] 2018
Live pigs 3D camera Point cloud Linear regression 2.961 kg [51] 2022

Live pigs 3D camera 3D images and
2D images Neural network MAE = 6.366 [61] 2021

Live cows 3D scanning device 3D images Linear regression 20–30 kg [70] 2019
Live cows 3D scanning device 3D images Linear regression 9.7% [71] 2022

Live cows RGB camera,
infrared rangefinder RGB images Linear regression LBW = 86.3–97.2% [72] 2019

Live pigs 3D camera 3D images and
2D images Neural network 1.16 kg [73] 2021

Live pigs 3D camera Point cloud Neural network MAE = 9.25,
RMSE = 12.3 kg [74] 2023

4.1. Linear Regression Weight Estimation-Based Body Weight Measurement

Linear regression-based weight estimation from body measurements involves obtain-
ing target body dimensions through 3D reconstruction of point cloud data and establishing
a linear regression model based on the relationship between these dimensions and the
weight of the animal [75].
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Cozler et al. [70] developed a regression model utilizing parameters like volume
and area obtained through 3D reconstruction of point clouds to estimate cow weights.
Experimental results indicated prediction errors of 0.3% (20 kg). In a subsequent study by
Cozler et al. [71], they adopted a different approach by estimating weight based on volume.
Initially, they used Morpho3D with five cameras to generate 3D reconstructions of cattle.
Then, employing the Poisson surface reconstruction method from the point cloud, they
constructed a triangular mesh to determine volume and subsequently computed heart
girth (HG), chest depth (CD), hip width (HW), and hip width (KW) using the software.
Finally, they estimated weight using regression models, confirming a strong correlation
between volume and weight. Yan et al. [72] established a multiple regression equation for
estimating yak weight based on wither height (WH), body diagonal length (BDL), and
body side area (BSA). Okayama et al. [21] estimated pig weight using a simple regression
model based on “adjusted volume”, achieving MAPE and RMSPE of 4.87% and 6.13%,
respectively. Li et al. [76] used three regression analysis models—stepwise regression, ridge
regression, and partial least squares regression—to estimate pig body measurements. They
established a stepwise regression model with body length, body height, and shoulder
width as independent variables and weight measured on a scale as the dependent variable,
achieving an MAE of 2.961 kg.

The aforementioned studies have achieved the estimation of livestock weight. How-
ever, their accuracy is relatively low. For instance, the study referenced as [71] indicates
an error margin of 9.7%. Given this rate, the weight estimation error for an adult cow
(presuming its actual weight to be 350 kg), would amount to approximately 33.95 kg. There
remains a substantial scope for enhancement to align with the practical production de-
mands. Similar to the challenges faced in body dimension measurements, weight regression
models established based on body measurements obtained after 3D reconstruction might be
affected by individual differences, leading to inaccuracies in body measurement data and
subsequently affecting the accuracy of weight estimation. Furthermore, estimating weights
using regression equations without considering all body measurement data of the livestock
and solely relying on selected major body measurements for weight prediction can be a
factor contributing to reduced accuracy in weight estimation results. As summarized in the
conclusion of [55], the study extracted a relatively small variety of body measurement data
from the surface point clouds of pigs.

4.2. Neural Network-Based Visual Weight Estimation

Neural network methods are a novel approach for weight estimation, where CNNs
(convolutional neural networks) handle real-time processing of point cloud data. Multi-
output regression CNN models are capable of rapidly and accurately extracting the body
shape features of pigs and estimating their weight, as depicted in Figure 8.

Kwon et al. [77] reconstructed body measurements from pig point clouds through
grid reconstruction to develop a deep neural network (DNN) for weight estimation. They
identified 48 measurement types in the grid model and utilized a fully connected deep
neural network to estimate weights. The results showed high accuracy in the test dataset
with an error of 4.89 kg (relative to the pig’s weight error of 2.11%), as shown in Figure 9.
He et al. [78] introduced a sheep live weight estimation model based on LiteHRNet (a
lightweight high-resolution network). This study used RGB-D images of 726 sheep, and
comparative experimental outcomes revealed that the lightweight convolutional neural
network (CNN) model trained on RGB-D images achieved acceptable weight estimation
results, with an average percentage error (MAPE) of 14.605%. Okinda et al. [79] proposed
an image processing feature extraction and adaptive weight estimation neural system, indi-
cating that the system had an average relative error of approximately 3%, with a standard
deviation of 0.7%. Dang et al. [80] explored the correlation between body measurements
(features) and weight (target values) in cattle using machine learning algorithms. The
data analysis results showed high correlations between ten body measurement values and
weight. Buayai et al. [81] utilized an artificial neural network to estimate weight. The
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experimental evaluation demonstrated the effectiveness and practicality of the method,
with an absolute mean error as low as 2.84%. Zhang et al. [73] employed a multi-output
regression convolutional neural network (CNN) for pig weight estimation. They modified
DenseNet201, ResNet152 V2, Xception, and MobileNet V2 into multi-output regression
CNNs, training them on 3D point cloud data, resulting in mean absolute errors (MAEs) for
body weight (BW) of 1.16 kg.
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In conclusion, weight estimation methods based on deep neural networks offer rela-
tively accurate estimations of livestock weight, showcasing robustness, and have become
the prevailing research direction presently.
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4.3. Summary of Weight Estimation Technology

Non-contact livestock weight estimation is a crucial aspect of PLF and is primarily
categorized into weight estimation based on the mapping relationship between 3D recon-
struction and body measurements and weight estimation utilizing deep convolutional
neural networks, as shown in Table 6.

Table 6. Comparison of weight estimation with different methods.

Methods Advantage Disadvantage

Estimation of weight based on
body dimension

Simple, convenient, and rapid approach,
supported by existing research foundations

Relatively lower precision; heavily reliant
on the accuracy of 3D reconstruction

Weight estimation based on
neural network

Strong generalization for diverse livestock
batches and types, more accurate precision

Larger data requirements; higher
computational resource

Weight estimation methods based on the mapping relationship between body measure-
ments and weight have successfully achieved non-contact livestock weight estimation with
relatively high accuracy as presented in various studies. However, most of these methods
rely on a limited set of body measurements such as body width and length, failing to
encompass all body measurement information, potentially affecting the model’s robustness.
Additionally, these methods heavily depend on the accuracy of 3D reconstruction and are
susceptible to variations due to individual differences.

To address these issues, recent advancements in neural networks have shown increased
accuracy in various neural networks. Researchers have started focusing on applying neural
network algorithms to livestock weight estimation, achieving promising progress. This
method typically exhibits good generalization capabilities across different batches and
breeds of livestock. However, challenges persist. Firstly, training neural network models
often necessitates a large volume of labeled data, which could be challenging for livestock
weight estimation, especially in scenarios with limited data. Models may tend to overfit,
performing well on training data but poorly on new data, necessitating techniques like
regularization and data augmentation to mitigate this issue [82]. Secondly, training and
deploying neural network models require substantial computational resources, including
high-performance hardware and substantial memory, which may not be economically
viable for agricultural settings.

5. Challenges and Trends

In this paper, we summarized the primary challenges and future research directions in
the acquisition of non-contact phenotypic data in livestock based on an extensive literature
review and practical research efforts.

5.1. The Main Challenges

Currently, there exist the following challenges regarding the non-contact acquisition
of phenotypic data in livestock:

(1) Lack of sufficiently accurate 3D reconstruction models: Despite the success of using
3D cameras for point cloud acquisition in recent research, it is crucial to note that
non-contact point cloud acquisition of livestock mostly occurs in ideal laboratory
settings. However, actual production environments are more complex, with more
interference and noise in the point cloud data. Common point cloud registration
algorithms may not perform optimally in these conditions. Moreover, variations
in lighting conditions in farm environments can result in incomplete point cloud
information, limiting accuracy.

(2) Absence of high-quality publicly available livestock point cloud datasets: Massive
datasets are crucial for training machine learning or deep learning models in methods
related to phenotypic data acquisition and weight estimation. However, due to
ownership and confidentiality issues, farms and commercial entities seldom release
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their collected data into the public domain. Existing datasets might also exhibit
differences in format, structure, or type, necessitating standardization and consistency
to ensure data comparability and usability.

(3) Inefficient point cloud acquisition methods: In many existing studies, the commonly
employed channel, suspended, or handheld point cloud acquisition devices result
in a single point cloud capture per livestock. Additionally, when using 3D cameras,
livestock must remain still for extended periods during data capture. Otherwise,
non-rigid deformation could severely affect the reconstruction process, leading to
issues like “ghosting”. These inefficiencies limit the scalability of these methods in
large-scale farming applications.

(4) Low cost-effectiveness: While acquisition equipment continues to evolve, high-quality
3D cameras still tend to be relatively expensive, which could pose a barrier for some
farms and breeding facilities. Furthermore, processing non-contact data often requires
complex deep learning models, whose training and fine-tuning might necessitate
expensive hardware, potentially reducing cost-effectiveness.

5.2. Future Development

With the development of smart sensors, big data, and deep learning, PLF will continue
to advance toward non-contact, automated, real-time, and continuous detection while
fully considering the survival conditions of livestock and practical production needs.
Drawing from the literature review, the following promising future research directions and
opportunities are anticipated:

(1) Enhancement of the accuracy of neural network models: Future developments will in-
volve more machine learning and neural network technologies to handle and analyze
large volumes of non-contact data. Improving the accuracy and usability of models
can significantly enhance efficiency and make scientifically informed decisions.

(2) Data integration and standardization: To achieve the sharing and comparison of
livestock point cloud data across different breeds and batches, more efforts are needed
in data integration and standardization. This will aid in establishing a global livestock
phenotypic database, fostering collaboration and development in PLF.

(3) Efficient data collection: In the future, there will be the use of smaller, lighter, lower-
power, and high-resolution 3D cameras for data collection. Additionally, simultaneous
data collection from multiple livestock heads could be a direction for improving data
collection efficiency.

6. Conclusions

Livestock phenotypic data play a crucial role in various aspects of livestock manage-
ment, breeding, nutrition management, and health monitoring. The acquisition of livestock
phenotypic data directly impacts the production efficiency and economic benefits of ani-
mal husbandry. However, traditional methods of obtaining phenotypic data are not only
time-consuming and labor-intensive but also tend to cause stress to animals, affecting their
productivity and welfare. Therefore, these methods are considered inefficient and uneco-
nomical in most farms. This has led to a current lack of livestock phenotypic data. There is a
significant amount of literature focusing on researching non-contact methods for acquiring
livestock phenotypic data. This article investigated computer vision-based phenotypic
data acquisition technologies in precision animal husbandry. Through an extensive review
of over 70 relevant studies, we comprehensively analyzed the current research status of
livestock 3D reconstruction technology, computer vision-based livestock body dimension
acquisition technology, computer vision-based livestock weight estimation technology, and
other related aspects. Simultaneously, this discussion delved into the research surrounding
these technologies, examining their respective advantages and limitations.

Lastly, we discussed existing challenges, potential future research trends, and oppor-
tunities in this field. In the future, we anticipate that automated, real-time neural network
models will become the primary direction for acquiring non-contact phenotypic data in
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livestock. Network architectures capable of higher precision and utilization of extensive
datasets of livestock phenotypic data are expected to become mainstream.
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