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Abstract: To address the problem of a lack of accurate parameters in the discrete element simulation
study of the machine-picked fresh tea leaf mechanized-sorting process, this study used machine-
picked fresh tea leaves as the research object, established discrete element models of different fresh
tea leaf components in EDEM software version 7.0.0. based on the bonded particle model using
three-dimensional scanning inverse-modeling technology, and calibrated the simulation parameters
through physical tests and virtual simulation tests. Firstly, the intrinsic parameters of machine-picked
tea leaves were measured using physical tests; the physical-stacking tea leaf test was conducted using
the cylinder lifting method, the tea leaf repose angle being 32.62◦ as measured from the stacking
images using CAD. With the physical repose angle as the target value, the Plackeet–Burman test,
the steepest-ascent test and the Box–Behnken optimization test were conducted in turn, and the
results showed that the static friction coefficient between tea leaves, the rolling friction coefficient
between tea leaves and the static friction coefficient between tea leaves and PVC have a major effect
on the repose angle, and the optimal combination of the three significant parameters was determined.
Finally, five simulations were conducted using the optimal combination of parameters, the relative
error between the repose angle measured by the simulation test and the physical repose angle being
just 0.28%. Moreover, the t-test obtained p > 0.05, indicating that there was no significant difference
between the simulation test results and the physical test results. The results showed that the calibrated
discrete element simulation parameters obtained could provide a reference for the discrete element
simulation study of fresh tea leaves.

Keywords: fresh tea leaves; parameter calibration; repose angle; discrete element method; three-
dimensional scanning

1. Introduction

Tea is rich in polyphenols, proteins, amino acids, vitamins, and other nutrients, offers
good health benefits and is one of the most important cash crops in China. By the end
of 2022, the area under tea plantations in China had increased to nearly 50 million mu,
and tea production has continued to increase steadily [1]. With the increasing scale of
the tea industry and its increasing labor costs, the picking of fresh tea leaves has become
an important factor limiting the industry’s development. Consequently, mechanized
picking has become an inevitable trend, with the current mechanized picking process
being primarily a rigid, non-selective picking method, resulting in problems such as the
uneven length, uneven age, and low uniformity of machine-picked fresh tea leaves [2];
this affects both the quality of finished tea and its economic benefits, making it necessary
to sort the tea leaves to obtain different grades of tea leaves. In recent years, the discrete
element method (DEM) has been widely used to study the kinematic behavior of bulk
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materials in agriculture in terms of the interaction between the bulk material and the
relevant machinery [3,4].

To improve the accuracy of discrete element simulation, it is necessary to accurately
establish the discrete element model of the material and accurately define its intrinsic and
contact parameters [5,6]. The intrinsic parameters are usually measured directly, using
physical bench tests; the contact parameters of materials may be difficult to measure, result-
ing in inconsistent simulation and physical test results [7]. Consequently, the calibration
of the intrinsic and contact parameters is required for the simulation tests of agricultural
material models.

To date, many studies on the calibration of discrete element parameters have been
conducted for different agricultural materials, including soil [8,9], grain seeds [10–12], crop
straws [11,13–16], and fruit and vegetables [17,18], amongst others. Qiu et al. [9] used the
Plackett–Burman design and response surface method to calibrate the discrete element
simulation parameters of cinnamon soil based on the Hertz–Mindlin model with the JKR
contact model. Hou et al. [10] established a discrete element model for Agropyron seed
and calibrated the contact parameters using a combination of physical and simulation
tests. Bart et al. [16] developed a bendable straw–stalk model to study the grain–straw
separation process and conducted a sensitivity study on the mechanism influencing the
crop characteristics and separation rate. Du et al. [17] used reverse engineering technology
to build a discrete element model of pod pepper and calibrated its contact parameters
using the response surface method. Ren et al. [19] constructed a discrete element model of
sugarcane leaves using the multi-sphere aggregation method, and the contact parameters
of sugarcane leaves were optimized and calibrated using the response surface method.
Zhu et al. [20] used the DEM to calibrate the lunar soil simulant parameters to accurately
simulate the interaction between the lunar rover wheels and the lunar soil simulant. Zhang
et al. [21] established a single-root model of maize of different diameters and a maize-root–
soil mixture model, the discrete element parameters of the maize-root–soil mixture being
calibrated using the response surface method. Yu et al. [22] established a discrete element
model of fresh Goji berries using the multi-spherical particle method, and calibrated the
discrete element contact parameters using a combination of physical and simulation tests,
the physical repose angle being the target value.

In this study, the intrinsic parameters of different components of fresh tea leaves are
measured using physical tests, combined with three-dimensional scanning technology. A
discrete element model of different components of fresh tea leaves based on the bonded
particle model was developed; using a combination of physical and simulation tests, the
physical repose angle of fresh tea leaves was used as the response value, and the DEM
contact parameters of fresh tea leaves were calibrated using the design of the experimental
method, to conduct simulation tests for verification purposes, and to provide reliable
discrete element simulation parameters for the simulation of tea mechanization operations
and equipment development—such as fresh tea leaf sorting.

2. Materials and Methods
2.1. Geometric Measurement of Fresh Tea Leaves

To accurately develop the fresh tea leaf discrete element model, this study selected
“tea 108” from the Hangzhou Institute of Agricultural Science of Tea, with one hundred
single buds, one bud and one leaf, and one bud and two leaves without insect damage or
pathological characteristics being randomly selected from the tea garden. The leaf length (L)
and width (W) were measured using digital display vernier calipers (accuracy of 0.1 mm),
separately (as shown in Figure 1), and the leaf thickness was measured using a micrometer
(as shown in Figure 2); the test was repeated 3 times, the measurements of which are shown
in Table 1.
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Table 1. Shape parameters of fresh tea leaves.

Leaf Type Leaf Length/mm Leaf Width/mm Leaf
Thickness/mm

Single bud 15~25 3~6 0.15~0.17
One bud and one leaf 25~35 10~20 0.18~0.23

One bud and two leaves 35~60 20~40 0.24~0.30

According to the measured data, the average leaf length and leaf spreading of a single
bud were 19.6 and 3.8 mm, respectively; the average leaf length and leaf spreading of
one bud and one leaf were 29.5 and 13.8 mm, respectively; and the average leaf length and
leaf spreading of one bud and two leaves were 45.2 and 29.3 mm, respectively. Among
them, the thickness of the tea leaves is generally in the range of 0.15~0.3 mm.

2.2. Density Measurement of Fresh Tea Leaves

Fresh machine-picked tea leaves belong to bulk materials, and the density measured in
this paper is the true density, the measurement standard being based on the measurement
method of solid density in the GB/T4472-2011 standard [23]. First, an electronic balance
with an accuracy of 0.01 g was used to weigh the fresh tea leaf mass (M) of 2~5 g, after
which a measuring cylinder with an accuracy of 0.1 mL was used to measure the pure water
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volume (V0). The fresh tea leaves were completely immersed in the measuring cylinder
using a glass rod, and the total volume (V1) of water and fresh tea leaves in the measuring
cylinder was recorded (as shown in Figure 2). The difference between the two values was
the volume of fresh tea leaves. Based on the principle of solid density measurement, we
could calculate the fresh tea leaf density using Equation (1), repeated 10 times to obtain an
average value, the density of fresh tea leaves being 851.4 kg m−3. The calculation as shown
in Equation (1) is the following:

ρ =
M

V1 − V0
(1)

where M denotes the mass of fresh tea leaves (kg), V0 denotes the volume of water in
the measuring cylinder without the addition of fresh tea leaves (m3), V1 denotes the total
volume in the measuring cylinder after adding the fresh tea leaves, and ρ denotes the
density of the fresh tea leaves (kg m−3).

2.3. Modulus of Elasticity and Shear Modulus

The modulus of elasticity is one of the important parameters in discrete element
simulation [24]. Since tea leaves are thin and soft materials, it is impossible to conduct
compression tests on them, so their stems were cut into small circular segments of length
3 mm using a utility knife, and uniaxial compression tests were conducted using a TMS-
PRO mass spectrometer (Zhuohao Laboratory Equipment Co., Ltd, Shanghai, China), as
shown in Figure 3 [25]. During the test, the diameter of the stem segment was measured
using a vernier caliper, after which the stem segment was placed vertically on the loading
table of the mass spectrometer, and a 38.1 mm-diameter circular probe was used to set the
compression speed to 10 mm/min and the loading displacement to 1 mm, the probe being
automatically returned to its original position at the end of the test. The test was repeated
10 times, the average value of the elastic modulus of tea leaves being 9.24 MPa, the shear
modulus being 3.3 MPa, and Poisson’s ratio being 0.4 using Equation (2), Equation (3), and
Equation (4), respectively. The calculation as shown in Equations (2)–(4) is the following:

E =
F

A · ε
(2)

G =
E

2(1 + µ)
(3)

µ =
|ε2|
|ε1|

=
∆dl0
∆ld0

µ =
|ε2|
|ε1|

=
∆dl0
∆ld0

(4)

where E is the modulus of elasticity (MPa), F is the axial load applied to the fresh leaf stem
(N), A is the contact area (mm2), ε is the strain, G is the shear modulus (MPa), µ is Poisson’s
ratio, l0 is the pre-test length of the fresh leaf stem (mm), d0 is the pre-test diameter of the
fresh leaf stem (mm), ∆l is the change in the length of the fresh leaf stem after the test, ∆d is
the change in diameter of the fresh leaf stem after the test (mm), ε2 is the transverse strain,
and ε1 is the longitudinal strain.

2.4. Measurement of Physical Angle of Repose

The repose angle of fresh tea leaves is one of the more important indicators for
characterizing the macroscopic properties of tea materials—including the flow properties
and internal friction characteristics [26]. In this study, a bulk material stacking-angle
measurement method was used to determine the actual repose angle of fresh tea leaves
based on the JB/T9014.7-1999 standard [23], using the cylinder lifting method (Figure 4).
The test sample was machine-picked fresh tea leaves; using a PVC hollow cylinder of inner
diameter 100 mm and height 200 mm, after filling the cylinder with fresh tea leaves and
then lifting the cylinder at a constant speed of 0.2 m/s, so that the tea leaves fall out of
the cylinder naturally, a pile of tea fresh leaf materials forms on the horizontal bottom
plate, and the angle between the bus bar and the horizontal plane of the accumulation is



Agriculture 2024, 14, 148 5 of 14

measured. We repeated the above test 10 times to obtain an average value of the repose
angle of fresh tea leaves, which was 32.62◦.
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2.5. Discrete Element Model of Machine-Picked Fresh Tea Leaves Based on 3D Scanning
2.5.1. Contour Model

Owing to the irregular appearance of fresh tea leaves, conventional modeling methods
cannot accurately restore their real characteristics. The aim is to establish more accurate
3D models of fresh tea leaves and improve the accuracy of simulation tests while also con-
sidering the limitations of non-spherical particle modeling using EDEM software version
7.0.0., to reduce the simulation time and calculation of overheads, as shown in Figure 5.
Fresh tea leaves—namely, a single bud, one bud and one leaf, and one bud and two leaves—
whose leaf length and leaf spreading were close to the average values were selected as the
research object.
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As is evident from Figure 5, the Tianyuan 3D OKIO scanner is used to scan the outer
contour of the fresh tea leaves using blue light non-contact photography, to accurately
obtain the three-dimensional coordinates of the outer surface of the tea leaves, and obtain
their point cloud data. The point cloud data were then imported into Geomagic Wrap
software version 2017 for inverse modeling, and the operations of coloring, noise reduction,
point cloud triangulation, merging, smoothing and model correction were conducted in
turn to obtain a 3D solid model. Finally, the solid model was imported into Hypermesh
software version 2021 for meshing to obtain the tea mesh model.

2.5.2. Discrete Element Model

The tea leaf discrete element model adopts a multi-sphere bonded particle model
comprising several spherical particles of equal diameter bonded by “Bond” to simulate the
characteristics similar to those of real tea leaves. The smaller the radius of the spherical
particles used, the larger the number of bonded spherical particles, and the smaller the
radius of the spherical particles used, the closer they are to the tea leaves’ profile model;
however, the time cost of simulation greatly increases. The fresh tea leaf 3D contour
model is imported into EDEM 2021 software as a geometry, and the spherical particle
material is added, a spherical particle of radius 0.25 mm being used for filling, using the
pre-filling test. After the filling is completed, the fresh tea leaf discrete element model can
be obtained, as shown in Figure 6. In the EDEM post-processing interface, the radius size,
ID number, and spherical center coordinate parameters of spherical particles are exported.
According to statis, the number of filled particles of discrete element models of different
components of fresh tea leaves—that is, the single bud, one bud and one leaf, and one bud
and two leaves—are 284, 2286 and 4608, respectively.

Since tea leaves belong to flexible materials, they easily produce a certain degree of
bending after collision in the process of movement. To improve the realism of fresh tea
leaf simulations, it is necessary to build a flexible discrete element model and adopt the
meta-particle model of Bonding V2. The contact radius of the discrete element multi-sphere
model can be set to detect whether the particles are bonded, and when the contact radius of
the spheres detects contact a “Bond” key is generated to bond the two spheres together. If
the contact radius is too small, the bonding model is brittle, and if the contact radius is too
large, a bond will be generated between non-contacting particles in the bonding model. To
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reduce the effect of the contact radius on the simulation results, the contact radius should
be 20–30% larger than the physical radius [23].
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and two leaves.

Based on the coordinate information of spherical particles filled with fresh tea leaves
mentioned above, the physical radius of particles was set to 0.25 mm and the contact radius
was set to 0.3 mm. Combined with the discrete element simulation parameters of fresh tea
leaves and PVC in the literature [27,28], the range of discrete element simulation parameters
in this study are as shown in Table 2. Based on the data obtained from the compression
test, after calculation and multiple simulation adjustments, the Bonding parameters of the
discrete elements of fresh tea leaves as set in Table 3 could be obtained, and a flexible bond
model of discrete elements established (as shown in Figure 7).

Table 2. Parameters required in DEM simulation.

Parameter Value

Poisson’s ratio of tea leaves 0.4
Density of tea leaves (kg·m−3) 851.4

Shear modulus of tea leaves (Pa) 3.3 × 106

Poisson’s ratio of PVC 0.45
Density of PVC (kg·m−3) 1200

Shear modulus of PVC (Pa) 1.8 × 1010

Tea leaves–tea leaves restitution coefficient 0.01~0.09
Tea leaves–tea leaves static friction coefficient 0.8~1.0

Tea leaves–tea leaves rolling friction coefficient 0.01~0.2
Tea leaves–PVC restitution coefficient 0.01~0.2

Tea leaves–PVC static friction coefficient 0.6~0.8
Tea leaves–PVC rolling friction coefficient 0.01~0.05

Table 3. Bonding parameters of tea granules.

Bonded Parameter Value

Normal stiffness coefficient (N·m−1) 5 × 109

Tangential stiffness coefficient (N·m−1) 3 × 109

Normal critical stress (MPa) 1.6 × 103

Shear critical stress (MPa) 1.2 × 103
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2.6. DEM Simulation Test

In the EDEM 2021 software, a hollow cylinder (of inner diameter 100 mm and height
200 mm) was added, and a virtual plane created above the cylinder as a particle plant. The
fresh tea leaf simulation stacking test is shown in Figure 8.
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Figure 8. Simulation test of the repose angle.

The particle generation method is dynamic; the generation rates of the single bud,
one bud and one leaf, and one bud and two leaves are set to 0.002, 0.018, and 0.035 kg s−1,
respectively, and the total generated fresh tea leaf mass is 55 g. The total simulation time
is 3 s, and when the fresh tea leaf particles are stabilized, the hollow cylinder is lifted at
a speed of 0.2 m s−1, and the particles form a material pile when they are stationary on
the plane.

Using Protractor, a built-in angle measurement tool in the software, the repose angle is
measured in both the +X and +Y directions using the center of the stacked body as the mea-
surement origin, and the results are averaged. The simulated repose-angle measurement
diagram is shown in Figure 9.
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3. Results and Discussion
3.1. Analysis of the Simulation Results of the Plackett–Burman Test

The Plackett–Burman test was used to determine the significance of each factor by
comparing the differences between the two levels of each factor based on the relationship
between the target response and each factor, to quickly screen out the factors that had a
significant effect on the response values [29]. In this study, the Plackett–Burman test design
was conducted using Design-Expert software 10.0, and the physical repose angle of fresh
tea leaves was used as the response value to screen out the factors that had significant
effects on the repose angle of machine-harvested fresh tea leaves. Each test parameter was
set at two levels—that is, high (+1) and low (−1), denoted by X1 to X6. Based on the existing
literature and a large number of simulation pre-tests, the value range of each simulation
parameter was determined, as shown in Table 4, and a group of central point tests was
added, totaling 13 test groups. The Plackett–Burman test protocol and results are shown in
Table 5, and the analysis of variance (ANOVA) of the test results is shown in Table 6.

Table 4. Parameters of Plackett–Burman test.

Parameters Symbol Low Level
(−1)

High Level
(+1)

Tea leaves–tea leaves restitution coefficient X1 0.01 0.09
Tea leaves–tea leaves static friction coefficient X2 0.8 1.0
Tea leaves–tea leaves rolling friction coefficient X3 0.01 0.2
Tea leaves–PVC restitution coefficient X4 0.01 0.2
Tea leaves–PVC static friction coefficient X5 0.6 0.8
Tea leaves–PVC rolling friction coefficient X6 0.01 0.05

Table 5. Design and results of Plackett–Burman test.

Tests X1 X2 X3 X4 X5 X6 Repose Angle (◦)

1 1 1 −1 1 1 1 31.95
2 −1 1 1 −1 1 1 32.07
3 1 −1 1 1 −1 1 30.08
4 −1 1 −1 1 1 −1 30.96
5 −1 −1 1 −1 1 1 30.12
6 −1 −1 −1 1 −1 1 28.26
7 1 −1 −1 −1 1 −1 28.82
8 1 1 −1 −1 −1 1 29.74
9 1 1 1 −1 −1 −1 32.47

10 −1 1 1 1 −1 −1 31.51
11 1 −1 1 1 1 −1 31.48
12 −1 −1 −1 −1 −1 −1 28.45
13 0 0 0 0 0 0 31.76
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Table 6. Analysis of significance of parameters in Plackett–Burman test.

Parameters Standardization
Effects

Sum of
Squares

Contribution
Rate/% F Values p Values

Model — 22.16 — 13.02 0.0064 **
X1 0.53 0.84 3.45 2.95 0.1464
X2 1.92 11.00 45.33 38.79 0.0016 **
X3 1.59 7.60 31.32 26.80 0.0035 **
X4 0.43 0.55 2.27 1.94 0.2224
X5 0.82 1.99 8.21 7.03 0.0454 *
X6 −0.24 0.18 0.74 0.63 0.4617

Note: ** indicates extremely significant impact (p < 0.01), * indicates significant impact (p < 0.05). R2 = 0.8842.

As is evident from Table 6, the model shows p < 0.05 and the coefficient of determi-
nation R2 = 0.8842, indicating that the regression model is significant and can predict the
trends of each parameter well. Moreover, p < 0.01 for X2 (tea–tea static friction coefficient)
and X3 (tea–tea rolling friction coefficient), indicating that X2 and X3 have an extremely
significant effect on the formation of the repose angle; p < 0.05 for X5 (tea–PVC static friction
coefficient), indicating that X5 has a significant effect on the formation of the repose angle.
By comparing the magnitude of the contribution of each parameter, the order of the effect
of each parameter on the repose angle was X2, X3, X5, X1, X4, and X6.

In the subsequent steepest-ascent test and Box–Behnken test, only the three most
significant parameters were considered. The standardized effects of X2, X3, and X5 were
all greater than 0, so their effects on the repose angle were positive. Consequently, in the
subsequent steepest-ascent test, the factors that showed positive effects were gradually
increased in fixed increments.

3.2. Analysis of the Steepest-Ascent Test Simulation Results

According to the significant parameters screened using the Plackett–Burman test, the
parameters are increased or decreased in certain steps based on the degree of parameter
influence: the parameters with less influence are taken up to the middle level of the values
in Table 4 for the steepest-ascent test, and the relative error Y between the repose angle θ
of the physical test and the repose angle θ′ of the steepest-ascent test is calculated using
Equation (5), so that the nearby area of the optimal value can be determined quickly. The
calculation is as shown in Equation (5):

Y =
|θ′ − θ|

θ
× 100% (5)

The design and results of the steepest-ascent test program are shown in Table 7, with
the repose-angle relative error tending to decrease first before increasing, and the repose-
angle relative error being the smallest under Test No. 3. Consequently, the parameters of
Test No. 3 were used as the center point in the subsequent tests, and the parameters of
Tests No. 2 and No. 4 were used as the low and high levels for response surface design,
respectively.

Table 7. Design and results of steepest-ascent test.

Tests X2 X3 X5 Repose Angle (◦) Relative Error Y/%

1 0.80 0.01 0.60 31.21 4.32
2 0.85 0.05 0.65 32.26 1.10
3 0.90 0.10 0.70 32.87 0.77
4 0.95 0.15 0.75 33.32 2.15
5 1.00 0.20 0.80 35.42 8.58
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3.3. Analysis of the Calibration Results of Fresh Tea Leaf Contact Parameters

Based on the results of the steepest-ascent test, the screened significant parameters
were ranked, and three levels of low, medium, and high significant parameters were
selected for the experimental design. The experimental parameter levels and codes were
as shown in Table 8, and the experimental design scheme and results were as shown in
Table 9, with the non-significant parameters all being taken up to the middle level.

Table 8. Significant parameter-level coding.

Level X2 X3 X5

−1 0.85 0.05 0.65
0 0.90 0.10 0.70
1 0.95 0.15 0.75

Table 9. Design and results of Box–Behnken test.

Tests X2 X3 X5 Repose Angle (◦)

1 −1 −1 0 32.35
2 1 −1 0 32.98
3 −1 1 0 32.56
4 1 1 0 34.56
5 −1 0 −1 32.25
6 1 0 −1 33.25
7 −1 0 1 32.72
8 1 0 1 33.38
9 0 −1 −1 32.28

10 0 1 −1 32.45
11 0 −1 1 32.38
12 0 1 1 33.78
13 0 0 0 33.51
14 0 0 0 33.13
15 0 0 0 33.62
16 0 0 0 33.21
17 0 0 0 33.69

A multiple regression analysis of the experimental data using Design-Expert 10.0
software yielded a quadratic polynomial equation for the three significance parameters
and the repose angle (θ), as shown in Equation (6):

θ = 33.43 + 0.54X2 + 0.42X3 + 0.25X5 + 0.34X2X3−
0.085X2X5 + 0.31X3X5 − 0.071X2

2 − 0.25X2
3 − 0.46X2

5
(6)

The results of the Box–Behnken test ANOVA are shown in Table 10. It is evident from
the regression model that p = 0.0024, the lack of fit p = 0.4384 > 0.05, and the coefficient
of determination R2 = 0.9328; the regression model is highly significant, the lack of fit is
not significant, the coefficient of determination is close to 1, and the coefficient of variation
is 0.77%, indicating that the model is good and can predict the repose angle of fresh tea
leaves well. As is evident from Table 10, X2 (the tea–tea static friction coefficient), X3
(the tea–tea rolling friction coefficient) and X2

5 (the quadratic term of the static friction
coefficient between tea and PVC) all have highly significant effects on the repose angle,
and X5 (the static friction coefficient between tea and PVC), X2X3 (the interaction term of
the static friction coefficient between tea and the tea rolling friction coefficient) and X3X5
(the interaction term of the rolling friction coefficient between tea and the tea–PVC static
friction coefficient) have significant effects on the repose angle. Among them, the response
surfaces of the interaction terms between X2, X3 and X5 for the repose angle are shown
in Figure 10. As shown in Figure 10, the interaction effect between the two factors can be



Agriculture 2024, 14, 148 12 of 14

visualized, and the graphs display a non-linear relationship between the repose angle and
the factors. It can be seen that the effective surface curve of X2 has a greater slope than
X3, which indicates that the contribution of X2 to the repose angle is more significant than
the X3. Figure 10b shows the slope of X3 surface curve is steeper than the X5 direction,
indicating that it has a more significant influence on the repose angle.

Table 10. Analysis of variance of Box–Behnken-test quadratic model.

Source of
Variation

Sum of
Squares Freedom Mean Square F Value p Value

Model 6.36 9 0.71 10.80 0.0024
X2 2.30 1 2.30 35.14 0.0006
X3 1.41 1 1.41 21.56 0.0024
X5 0.52 1 0.52 7.87 0.0263

X2X3 0.47 1 0.47 7.17 0.0317
X2X5 0.029 1 0.029 0.44 0.5277
X3X5 0.38 1 0.38 5.78 0.0472
X2

2 0.021 1 0.021 0.32 0.5869
X3

2 0.26 1 0.26 3.97 0.0865
X5

2 0.89 1 0.89 13.67 0.0077
Residual 0.46 7 0.065

Lack of fit 0.21 3 0.070 1.13 0.4384
Pure error 0.25 4 0.062

Sum 6.82 16

R2 = 0.9328; R2
adj = 0.8465; CV = 0.77%; Adeq Precision = 12.160.
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3.4. Determination of Optimal Parameter Combinations and Experimental Verification

Using the optimization module in Design-Expert 10.0 software, the second-order
regression equation (Equation (6)) could be optimally solved, using the physical test repose
angle as the target value, and X2, X3, and X5 as the optimization objects. According to
Table 8, the values of X2, X3, and X5 are 0.85–0.95, 0.05–0.15 and 0.65–0.75, respectively.
Consequently, the objective function and constraint function of the optimization problem
can be expressed, as shown in Equation (7):

AOR(X2, X3, X5) = 32.62◦

s.t.


0.85 ≤ X2 ≤ 0.95
0.05 ≤ X3 ≤ 0.15
0.65 ≤ X5 ≤ 0.75

(7)
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The optimal values of the three parameters are X2 = 0.865, X3 = 0.067, and X3 = 0.737. To
verify the accuracy of the optimal parameter combination, five repose-angle simulation tests
were conducted with the above optimized parameter combinations as EDEM simulation
parameters, the simulated repose angle measurements being 32.21◦, 32.74◦, 32.83◦, 32.56◦,
and 32.33◦, with an average value of 32.53◦ and a relative error of 0.28% with respect to the
physical repose angle. The t-test was applied to analyze the simulated repose angle and
the physical repose angle, and p = 0.506 > 0.05 was obtained, indicating that there was no
significant difference between the simulated repose angle and the physical repose angle.

4. Conclusions

Using a 3D scanner and reverse engineering technology, a discrete element model of
representative fresh tea leaves with different components was developed, which could
provide a reference for DEM modeling of irregularly shaped crops. The intrinsic parameters
of fresh tea leaves were measured using physical tests, and the Plackett–Burman test
was conducted based on the simulation parameters obtained from physical tests and the
related literature. The results were analyzed using ANOVA, and the parameters with a
significant effect on the repose angle were obtained as the tea–tea static friction coefficient,
the tea–tea rolling friction coefficient, and the static friction coefficient between tea and
PVC, with the steepest-climb test being conducted to determine the range of significant
parameters. Based on the Box–Behnken test results, a quadratic polynomial regression
model of three significance parameters and a repose angle was determined, the repose
angle of fresh tea leaves being used as the target value for the regression equation to
find the optimal combination of the significance parameters; the best combination of the
significance parameters was 0.865 for the static friction coefficient of tea leaves, 0.067 for the
rolling friction coefficient of tea leaves, and 0.737 for the static friction coefficient between
tea leaves and PVC. A t-test was then conducted and p > 0.05 was obtained, indicating that
the simulation results were not significantly different from the physical test results, further
verifying the reliability of the simulated parameter combinations. The results showed
that the contact parameter calibration method for fresh tea leaves was feasible and could
provide a basis for the discrete element study of machine-picked fresh tea leaf sorting and
other work.
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