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Abstract: Apples, as the fourth-largest globally produced fruit, play a crucial role in modern agri-
culture. However, accurately identifying apple diseases remains a significant challenge as failure in
this regard leads to economic losses and poses threats to food safety. With the rapid development
of artificial intelligence, advanced deep learning methods such as convolutional neural networks
(CNNs) and Transformer-based technologies have made notable achievements in the agricultural
field. In this study, we propose a dual-branch model named DBCoST, integrating CNN and Swin
Transformer. CNNs focus on extracting local information, while Transformers are known for their
ability to capture global information. The model aims to fully leverage the advantages of both in
extracting local and global information. Additionally, we introduce the feature fusion module (FFM),
which comprises a residual module and an enhanced Squeeze-and-Excitation (SE) attention mech-
anism, for more effective fusion and retention of both local and global information. In the natural
environment, there are various sources of noise, such as the overlapping of apple branches and leaves,
as well as the presence of fruits, which increase the complexity of accurately identifying diseases on
apple leaves. This unique challenge provides a robust experimental foundation for validating the
performance of our model. We comprehensively evaluate our model by conducting comparative
experiments with other classification models under identical conditions. The experimental results
demonstrate that our model outperforms other models across various metrics, including accuracy,
recall, precision, and F1 score, achieving values of 97.32%, 97.33%, 97.40%, and 97.36%, respectively.
Furthermore, detailed comparisons of our model’s accuracy across different diseases reveal accuracy
rates exceeding 96% for each disease. In summary, our model performs better overall, achieving
balanced accuracy across different apple leaf diseases.

Keywords: dual branch; feature fusion; image classification; CNN; Transformer

1. Introduction

China, a major global producer and importer of apples, faces substantial impacts on
agricultural yields due to diseases affecting apple crops [1]. Failure to accurately detect
these diseases may result in considerable economic losses to the apple industry. Traditional
methods for disease identification, reliant on manual field observations, incur substantial
human and resource costs in large-scale cultivation and may miss optimal intervention
windows. Therefore, there is an urgent need for a convenient and accurate methodology
for apple disease classification.

The development of machine learning has provided effective solutions to the problem
of disease classification, including Support Vector Machine (SVM) [2], K-Nearest Neighbors
(K-NN) [3], Random Forest [4], Genetic Algorithms [5], and Principal Component Analysis
(PCA) [6], which have been employed for disease classification in the past few years.

With the advancement of deep learning, notably the outstanding performance of
convolutional neural networks (CNNs) and Transformers in computer vision, scholars
have progressively applied these methodologies to tasks related to leaf diseases.
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1.1. CNN-Based Methods

Several notable CNN-based models [7–12] have been developed for leaf disease recog-
nition. Yan et al. [13] proposed an enhanced VGG16 model for classifying apple leaf
diseases. This model reduces the number of parameters by replacing the fully connected
layer with a global average pooling layer and incorporates a batch normalization layer to
enhance convergence speed. The experimental results demonstrate the model’s ability to
classify apple leaf diseases with an accuracy of 99.01%. Helong Yu et al. [14] introduced
MSOResNet, a novel apple leaf disease recognition model, built upon the ResNet50 residual
neural network foundation. The experimental results illustrate that the proposed model
achieves an average precision, recall, and F1 score of 95.7%, 95.8%, and 95.7%, respectively.
Yuanqiu Luo et al. [15] proposed an apple disease classification model based on multi-scale
feature fusion. They enhanced the model’s effectiveness by optimizing the information
flow within the ResNet architecture and substituting standard convolutions with pyramid
and dilated convolutions. The model achieved an impressive classification accuracy of
94.24% on a dataset comprising apple disease leaf images. Lili Fu et al. [16] introduced a
convolutional neural network based on the AlexNet architecture. This network incorpo-
rates an attention mechanism to adapt to channel features and mitigate the influence of
complex backgrounds. Additionally, it reduces the number of parameters by replacing two
fully connected layers with global pooling. The model achieves a commendable recognition
accuracy of 97.36%. Helong Yu et al. [17] proposed a lightweight ResNet model for the
recognition of apple diseases. Building upon the deep residual network, they constructed
a multi-scale feature extraction layer using group convolution. Additionally, an efficient
channel attention module was incorporated to suppress noise originating from complex
backgrounds. The experimental results revealed that LW-ResNet achieved an impressive
average precision, recall, and F1 score of 97.80%, 97.92%, and 97.85%, respectively, on the
test dataset.

While the preceding research has achieved success, it is not without limitations. Due
to the presence of receptive fields, shared parameters, and inductive biases, CNNs excel at
extracting local features but lack the ability to capture global information and establish long-
range dependencies. Some studies have proposed effective solutions, such as enlarging
the receptive field or employing deeper network architectures. However, these approaches
come with the drawback of requiring increased computational resources and hardware.

1.2. Transformer-Based Methods

Transformer [18], originating in natural language processing, introduced the self-
attention mechanism, significantly enhancing its ability to handle long-range dependencies.
Subsequently, this concept has been successfully applied in computer vision, leading to the
development of a series of Transformer models [18–21]. Alexey et al. [19] proposed the first
Transformer model for computer vision, named Vision Transformer (ViT). ViT partitions
images into fixed-size non-overlapping patches, flattening them into one-dimensional
vectors while incorporating positional encoding information. Leveraging the self-attention
mechanism, ViT effectively captures global information from images. However, ViT also
has its limitations, including a quadratic relationship between computational complex-
ity and input feature size, demanding substantial data and computational resources for
training. Self-attention mechanisms generally require significant computational resources,
potentially resulting in longer training and inference times and a higher hardware resource
burden. In response to these challenges, Ze Liu et al. [21] proposed Swin Transformer,
a hierarchical Transformer based on a shift window design. It introduces a window-based
self-attention mechanism and a shift window self-attention mechanism. The first attention
mechanism aims to reduce the computational complexity of self-attention, while the second
one addresses the limitation of non-interaction between information from different win-
dows imposed by the window-based self-attention mechanism. These two self-attention
mechanisms help the model to better integrate local and global information, contributing
to the enhancement of model performance.
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Based on the preceding discussion, it is evident that CNNs and Transformers em-
phasize different aspects. CNNs inherently excel in processing local features through
operations such as convolution and pooling layers, yet they face challenges in capturing
global information due to limited receptive fields. In contrast, Transformers excel in captur-
ing global information and establishing long-range dependencies through the self-attention
mechanism, but they lack the ability to effectively extract local features.

1.3. The Contributions of This Study

To address their individual deficiencies, we propose a dual-branch model, denoted as
DBCoST, which integrates CNN and Transformer architectures for the purpose of apple
disease recognition. In this study, the CNN branch, designed on the foundation of ResNet-
18, is tasked with extracting localized features and contextual information. Concurrently,
the Transformer branch, built upon Swin Transformer Tiny, is specifically tailored to capture
global information and establish long-range dependencies.

Furthermore, we introduce a feature fusion module with the objective of amalgamating
the distinctive characteristics of both branches. Through the amalgamation of features
and subsequent refinement via residual layers, a more enriched set of features is obtained.
Following the acquisition of feature representations from the individual branches, a channel
attention mechanism is introduced to autonomously learn and adjust the importance
weights among feature channels. This mechanism enhances the fusion of information
within the model, thereby significantly augmenting its performance and generalization
capabilities. The primary contributions of this paper are delineated as follows:

(1) We propose DBCoST, a dual-branch model integrating CNN and Swin Transformer.
The CNN branch is designed based on ResNet18, and the Transformer branch adopts
the structure of Swin Transformer Tiny. This model harnesses the capabilities of
both CNN and Transformer to capture local features and global information with
long-range dependencies. It demonstrates noteworthy results, particularly in chal-
lenging environments.

(2) An effective feature fusion mechanism is introduced, comprising a residual structure
and a channel attention mechanism. By integrating features from the CNN and
Transformer branches and further refining them through a residual structure, channel
attention mechanisms autonomously learn and adjust importance weights between
feature channels. This facilitates improved integration of information from both
branches, leading to enhanced performance and generalization.

(3) Under consistent conditions, we conducted a comparative evaluation against se-
lected traditional state-of-the-art (SOTA) models. The experimental results clearly
demonstrate the commendable performance of our model.

2. Materials and Methods
2.1. Dataset

Our study employed the publicly available dataset “Plant Pathology 2021 - FGVC8” [22]
sourced from Kaggle, which comprises 18,632 high-quality images with dimensions of
4000 × 2672 pixels. To ensure the precision of our research, we concentrated on five specifi-
cally defined disease types, excluding any unspecified disease types present in the dataset.
Figure 1 illustrates the selected disease types, and Table 1 provides detailed information on
these disease types and their respective quantities used in our study.
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(a) (b) (c) (d) (e)

Figure 1. The selected apple disease category. (a) Frog eye spot; (b) powdery mildew; (c) scab; (d) rust;
(e) healthy.

Table 1. The distribution of apple leaf disease name and quantity.

Categories Original After Process

frog eye spot 3181 3181
powdery mildew 4624 4394

rust 1184 4003
scab 1860 4004

healthy 4826 4121

2.2. Image Preprocessing

The collected data have a fixed size of 4000 × 2672, which does not meet the require-
ments of our model. Therefore, we used the OpenCV method to resize the images to
224 × 224. Additionally, the dataset exhibits an imbalance in quantity, and some images
suffer from overexposure, which poses learning challenges for the model. Consequently,
we removed overexposed images of diseases. To address the imbalance, the following
operations were applied to expand the dataset: (1) random rotation images; (2) mirroring
images; (3) adding Gaussian noise; (4) applying color jitter to modify image saturation,
brightness, and contrast. The results of these operations are illustrated in Figure 2. After ex-
pansion and trimming, the dataset’s total size is 19,703 images, including 3181 images of
frog eye leaf spot, 4393 healthy images, 4003 images of powdery mildew, 4004 images of
rust, and 4121 images of scab. The data quantity for each category is shown in Table 1.

Random Rotation Mirror Gaussian noise Color jitter

Figure 2. Image after data enhancement.

Furthermore, in our experiments, we applied data augmentation techniques to the
dataset using torchvision’s provided methods. Specifically, we employed operations includ-
ing horizontal flipping, vertical flipping, random rotation, color jitter, and normalization.
The objective of these data augmentation techniques is to mitigate the risk of overfitting
and enhance the model’s generalization capability.

2.3. Methods
2.3.1. Model Design

We acknowledge that different apple leaf diseases exhibit significant variations in their
characteristics. For example, frog eye spot typically presents as punctate lesions, indicating
a concentrated distribution of disease features, while scab manifests in a strip-like pattern,
indicating a more dispersed distribution of disease features. Furthermore, images obtained
from natural environments often contain background noise, which may influence the
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accuracy of classification. This necessitates a model capable of integrating local features
and global information while addressing noise.

In this section, the paper proposes a network that leverages the advantages of both
CNN and Swin Transformer structures to enhance recognition accuracy. The overall
structure, depicted in Figure 3, is divided into four layers. Each layer comprises multiple
CNN and Swin Transformer blocks, as well as a feature fusion module (FFM). The CNN
branch is employed to extract local features from the images, while Transformer is utilized
to capture global information. The FFM module further refines and extracts information
from both branches, incorporating attention mechanisms to highlight crucial information
and suppress irrelevant details.

Figure 3. The architecture of DBCoST model.

In summary, our proposed model integrates the strengths of CNN and Swin Trans-
former, utilizes the FFM module to combine local and global information, and addresses noise.

The initial input image has dimensions of H × W × C, where H, W, and C denote the
image’s height, width, and channels, respectively. After passing through the patch embed
and stem modules, the input is split into two branches. Within each layer, images from
the Transformer and CNN branches undergo fusion processing before re-entering their
respective branches for additional learning. The fusion process combines features from
both branches, facilitating the extraction of distinctive features.

2.3.2. CNN Branch

We designed the CNN branch based on the structure of ResNet18, aiming to extract lo-
cal features and contextual information from images. With the progression of model depth,
the resolution gradually decreases while the number of channels increases. The overall
structure is divided into four layers, each containing 2 ResBlocks. The structure of each
ResBlock is illustrated in Figure 4a. Each ResBlock consists of three convolutional blocks:
a 1 × 1 downsampling convolution, a 3 × 3 spatial convolution, and a 1 × 1 upsampling
convolution. Additionally, there is a residual module connecting the input and output. The
distinctive feature of Swin Transformer is its approach of dividing the input image into
fixed-size patches for processing. Each patch contains only a portion of local information,
potentially leading to the loss of some local details. Traditional CNNs capture local features
by sliding convolutional kernels over the image, allowing them to better capture local
information. This supplements the Transformer branch with finer local details.

2.3.3. Transformer Branch

In this branch, we adopted the original Swin Transformer structure as the backbone
for the Transformer branch, responsible for capturing global information and long-range
dependencies. The number of Swin Transformers at each stage is set as 2, 2, 6, 2. The struc-



Agriculture 2024, 14, 142 6 of 20

ture is illustrated in Figure 4b. The Swin Transformer module comprises two sub-modules.
The first sub-module includes layer normalization (LN) and a multi-layer perceptron (MLP)
along with a window-based multi-head attention mechanism (W-MSA). The second sub-
module is similar but utilizes a shifted window-based multi-head attention mechanism
(SW-SWA) instead of the window-based multi-head attention mechanism. A Patch Merging
module is employed for downsampling.

Assuming the input image is of size H ×W × 3, in the first layer, the model utilizes the
Patch Partition module, inspired by ViT, to divide the image into non-overlapping patches
of size 4 × 4. These patches are then flattened along the channel direction. Each patch has a
feature dimension of 16. After flattening across the R, G, and B channels, the feature di-
mension becomes 48. Consequently, the image size transforms to H/4 × W/4 × 48. Finally,
a Linear Embedding layer is applied to perform a linear transformation on the channel
data of each pixel. This final step changes the shape of the image from H/4 × W/4 × 48 to
H/4 × W/4 × C.

From the second to fourth layers, the Patch Merging module is used for downsampling.
Assuming the input feature map is 4 × 4, the Patch Merging partitions adjacent 2 × 2
image blocks in the feature map into multiple patches, which are then concatenated along
the channel dimension and subjected to dimensionality reduction through a linear layer.
In summary, as we move from the second to the fourth layers, the resolution of the feature
map is halved progressively, while the number of channels increases to C, 2C, 4C, and 8C,
respectively.

(a) (b)
Figure 4. The details of residual block and Swin Transformer block. (a) Residual block; (b) Swin
Transformer block.

2.3.4. Window-Based Multi-Head Self-Attention

The self-attention [18] mechanism originated in the field of NLP, where it treats text
data as a sequence of individual words, each considered as a unit. This approach effectively
captures contextual relationships in computations. In computer vision, a similar strategy
is applied, where images are divided into fixed-size patches. These patches are then
flattened and mapped into a one-dimensional vector S, generating three learnable matrices:
Queries (WQ), Keys (WK), and Values (WV). For the generated sequence, these matrices
are multiplied to obtain the Q, K, and V parameters. The attention mechanism computes
the dot product of Q and K, normalizes the result using SoftMax to produce an attention
weight matrix, and finally multiplies it with V to yield the updated weighted matrix.
The computation formula is shown below:

Attention = softmax(
QKT
√

dk
)× V (1)
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Traditional self-attention mechanisms require calculating relationships for all elements,
resulting in high computational complexity. However, the Swin Transformer introduces a
window-based multi-head self-attention mechanism shown in Figure 5a. It first divides
the image into fixed-size patches and then applies attention individually to each patch,
significantly reducing computational complexity.

Figure 5. Illustration of the operation of the window-based attention mechanism and the shift
window-based attention mechanism. (a) The window partition process based on W-MSA; (b) The
shift window process based on SW-MSA; (c) Window cyclic shift process based on SW-MSA; (d) The
results with masks

2.3.5. Shifted Window-Based Multi-Head Self-Attention

When employing the Window Self-Attention mechanism (W-MSA), despite the re-
duction in computational complexity achieved through the split operation, attention com-
putation remains confined within individual windows, which hinders the information
interaction between different windows. To address this limitation, the Swin Transformer
introduces the Shifted Window Attention Mechanism, as depicted in Figure 5b. Through
window shifting, the image is initially divided into nine parts. Figure 5c illustrates the
cyclic shift mechanism, aimed at reorganizing the image into four parts similar to those in
Figure 5a. The regions labeled as A, B, and C correspond to the top-left corner. Subsequently,
these parts undergo cyclic shifts to align with the respective yellow areas. The primary
objective of SW-SMA is to facilitate information exchange between adjacent windows.
However, the split process leads to an increased number of windows, requiring additional
computational resources and potentially introducing ambiguity when computing attention
mechanisms for non-adjacent regions. To address these issues, the authors introduced a
masking mechanism, as depicted in Figure 5d. This mechanism is designed to mask patches
from different regions, only computing attention for patches within the same window.The
described measures not only address the issue of the inability for interaction between dif-
ferent windows but also substantially reduce computational workload, thereby mitigating
the demand for computational resources.

2.3.6. FFM

Different types of diseases may manifest multi-level abstract features in images, span-
ning from subtle texture differences to the overall structure of the leaves. Therefore,
during the training process, the importance of both local details and global contextual infor-
mation is acknowledged. Due to the distinct focuses of information extraction between the
CNN and Swin Transformer branches, the fusion of these two types of information becomes
imperative. The absence of such fusion may impact the accuracy of disease recognition.

To effectively integrate the local features extracted by the CNN branch and the global
features captured by the Transformer branch, we propose a feature fusion module, as illus-
trated in Figure 6.
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Figure 6. The architecture of FFM.

The FFM module operates as follows. Firstly, we establish bidirectional connections
for features extracted from independent branches. Specifically, features extracted from the
CNN branch and Transformer branch at the ith block are denoted as di and ki, respectively.
We use Fusion Module M f use to aggregate these two feature maps as

fi = Mi
f use(reshape(ki)||di) 1 ≤ i ≤ N (2)

where fi ∈ R2c×h×w denotes the fused feature, reshape represents reshaping the character-
istics of the feature map from the Transformer branch, and || denotes concatenation. We
construct our Feature Fusion using two 1 × 1 convolutions and one 3 × 3 convolution for
channel-wise fusion. Then, a channel attention mechanism is applied to suppress noise and
highlight important features. Finally, the fused features are split into two along the channel
dimension ki ∈ Rc×h×w and di ∈ Rc×h×w. Each fused feature is then directed back to its
respective branch and added to the initial inputs di and ki.

Our feature fusion module consists of two parts, each serving a distinct function.
The first part is the Concatenation and Residual Block (CRB). CRB is designed to fuse and
extract features from both branches. Specifically, ki and di represent the feature maps from
the Swin Transformer branch and the CNN branch, respectively. Assume that di ∈ Rh×w×c,
while the 2D (two-dimensional) Swin branch feature ki ∈ R(h×w)×c, where h × w denotes
the patch size, and c represents the number of channels in the feature map.

In this module, we first use a reshape operation to convert ki of size (h × w) × c
to h × w × c, then concatenate di and ki along the channel direction to obtain the fused
feature. Subsequently, this fused feature is input into a residual structure for learning.
The processing steps of CRB are defined by the following equations:

fi = cat(di, ki) (3)

f 1
i = conv( fi) (4)

f 2
i = residual( fi) (5)

f 3
i = f 2

i + f 1
i (6)

Here, cat represents the concatenation operation, conv represents the convolution
operation, residual represents the residual block, and the final summation denotes the
residual connection. Equation (3) is used to concatenate features from both branches, while
Equations (4) and (5) further extract features from the concatenated features. Equation (6)
forms the residual connection, alleviating the vanishing gradient problem associated with
increasing depth.

The second part is the improved channel attention (ICA) module. The different
channels of the feature map contain various information, but not all of it is necessary.
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We need to highlight important regions and ignore environmental factors. Therefore,
we propose an improved channel attention mechanism. The experiments in ECA [23]
revealed that the use of two fully connected layers by SE [24] has certain drawbacks.
While this strategy reduces the model’s complexity, it disrupts the direct correspondence
between channels and their weights. Consequently, we chose to adopt a single fully
connected layer to mitigate the impact. We input the feature map processed through
CRB into the ICA module, which combines local information and global information.
Firstly, we use the global average pooling (GAP) operation to transform it into a one-
dimensional vector. Subsequently, it undergoes a mapping through the fully connected
layer to generate attention weights. Finally, the weighted matrix is obtained by performing
a dot product operation with the input features. The processing steps of ICA are defined by
the following equations:

gi = GAP( f 3
i ) (7)

g2
i = fc(gi) (8)

g3
i = f 3

i × sigmoid(relu(g2
i )) (9)

Finally, we partition the feature map along the channel dimension and then add it
to the feature map from the original branch to continue training. It is worth noting that
reshaping is necessary when incorporating features from the Transformer branch.

In summary, our FFM module effectively integrates channel attention and self-attention
mechanisms, incorporating information from both branches. This enables the model to
better capture correlations between features.

2.4. Experimental Enviroment and Parameter Settings
Equipment

The devices and parameters used in the experiment are as follows, as shown in
Table 2. The base operating system is Ubuntu 20.04.4, with an NVIDIA GeForce RTX 3090
graphics card. The CPU utilized is the Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz.
The Python 3.9.16 compiler was employed for training, with the PyTorch 2.0.0 framework
for deep learning.

Table 2. The parameters of training environments.

Experimental Tool Specific Model

CPU Intel(R) Xeon(R) Gold 6330
GPU NVIDIA GeForce RTX 3090

Operating System Ubuntu 20.04.4
Programing Language Python 3.9.16

Deep Learning Framework Pytorch 2.0.0

Table 3 presents the hyperparameters used in the experiments. In this experiment, we
split the dataset into a training set and a test set in an 8:2 ratio. The training set consists of
15,811 samples, while the test set contains 3892 samples. Following the requirements for
training and testing the network, we preprocessed the images by resizing them to 224 × 224.
To enhance the training speed and stability of the model, we performed standardization on
the images in the dataset.

During training, we utilized the cross-entropy loss function. The AdamW optimizer
was employed with a batch size of 128, an initial learning rate of 1 × 10−4, and a cosine
annealing algorithm to control the learning rate decay. The weight decay was set to 0.05,
and the minimum learning rate was set to 1 × 10−6. The total number of training epochs
was 100.
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Table 3. Training environment parameter configuration.

Parameter Value

Epochs 100
Batch Size 128
Optimizer AdamW

Weight deacy 0.05
Initial learning rate 0.0001

Minimum learning rate 0.000001
Scheduler CosineAnnealingLR

Loss function The cross-entropy loss function

3. Experiment and Results
3.1. Experimental Evaluation Indices

In this experimental study, Accuracy serves as the primary evaluation metric for apple
disease classification. To further analyze the model’s performance, we introduced F1 score,
Precision, Recall, and model size as metrics for evaluating the apple disease identification
model. The calculation methods for these metrics are shown in Equations (10)–(13)·

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1-Score =
2 × Precision × Recall

Precision + Recall
(13)

When using these metrics, the following parameters are employed: true positives (TP),
which represents the number of instances where the model correctly classified leaves as
healthy. True negatives (TN) represents the number of instances where the model correctly
classified leaves as diseased. False positives (FP) represents the number of instances where
the model incorrectly classified healthy leaves as diseased. False negatives (FN) represents
the number of instances where the model incorrectly classified diseased leaves as healthy.

3.2. Experiments on the Effectiveness of DBCoST

To assess the effectiveness of our proposed model, we conducted an analysis of the
accuracy and loss of DBCoST. The dataset was divided with an 8:2 ratio for training and
validation. As depicted in Figure 7, the results after 100 training epochs indicate that our
model initiated convergence around the 20th epoch and stabilized by the 100th epoch,
achieving a final accuracy of 97.32%.

Additionally, we conducted a comparative analysis between our model and the base-
line, which comprises ResNet18 and Swin Tiny models. Table 4 illustrates the disparities in
various evaluation metrics between our model and the baseline. For ResNet18, the base-
line achieved accuracy, precision, recall, and F1 score values of 93.21%, 93.54%, 93.21%,
and 93.33%, respectively. On the other hand, Swin Tiny attained values of 94.78%, 95.08%,
94.75%, and 94.84%. In comparison, our model exhibited superior performance, reaching
values of 97.32%, 97.33%, 97.40%, and 97.36%, indicating a significant improvement.

Table 5 presents a comprehensive performance analysis for each model across various
disease types. ResNet18 achieved accuracies ranging from 88.15% to 98.10%, while Swin
Tiny exhibited a range of 91.58% to 98.75%. In contrast, our model achieved a minimum
accuracy of 96.26% and a maximum of 99.25%, with a fluctuation range of 3%, indicating
that our model provides more stable recognition performance for specific disease types.
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(a) (b)

Figure 7. The accuracy and loss curves of the DBCoST model. (a) Accuracy curve; (b) loss curve.

Table 4. Comparision with the baseline model.

Model Accuracy Precision Recall F1 Score Parameters

ResNet18 93.75% 94% 93.74% 93.84% 19.9 M
Swin Tiny 95.91% 96.08% 95.92% 95.98% 28 M

Ours 97.32% 97.33% 97.40% 97.36% 45 M

In summary, our model is better suited for the detection of apple diseases in com-
plex environments.

Table 5. Comparison with the baseline model across different disease types.

Model Frog Eye Spot Powdery Mildew Healthy Scab Rust

ResNet18 95.21% 95.69% 92.83% 88.15% 98.10%
Swin Tiny 97.71% 97.01% 95.34% 91.58% 98.75%

Ours 96.74% 97.77% 96.26% 96.65% 99.25%

3.3. Comparison with State-of-the-Art Methods

To validate the effectiveness of our proposed model for apple disease classification,
we conducted a comparative analysis with various CNN and Transformer models, includ-
ing EfficientNet V2S, ResNet, MobileNetV3L, Vision Transformer, and Swin Transformer.
Figure 8 illustrates the accuracy and loss values obtained by these models in our experi-
ments. Our model achieved the highest metrics for accuracy, precision, recall, and F1 score,
scoring 97.32%, 97.33%, 97.40%, and 97.37%, respectively. These results indicate that our
model outperforms other models in recognizing apple disease leaf patterns, especially in
complex environments.

As shown in the Table 6, EfficientNetV2-Small reached an accuracy of 97.04%, ranking
second only to our proposed model. MobileNetV3L exhibited the lowest accuracy, with a
value of 92.42%. Among the Transformer-based models, Swin Transformer outperformed
Vit Transformer in terms of accuracy. In the CNN-based models, ResNet101 demonstrated
lower accuracy compared to ResNet50. With similar parameter counts, our model achieved
a higher accuracy compared to Swin Small and ResNet101 by 1.14% and 2.82%, respectively.
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(a) (b)

Figure 8. The comparison of accuracy and loss curves among different models. (a) Accuracy curve;
(b) Loss curve.

Table 6. Comparision with other state-of-the-art methods.

Model Accuracy Precision Recall F1 Score Parameters

Vit Small 93.06% 93.07% 93.01% 93.03% 22 M
Vit Base 92.75% 92.72% 92.76% 92.71% 86 M

Swin Tiny 95.91% 96.08% 95.92% 95.98% 28 M
Swin Small 96.17% 96.23% 96.19% 96.20% 48 M

Resnet50 95.42% 95.69% 95.42% 95.51% 25.6 M
Resnet101 94.50% 94.65% 94.62% 94.62% 44.5 M

MobilenetV3L 92.42% 92.88% 92.49% 92.64% 5.5 M
EfficientnetV2S 97.04% 97.09% 97.06% 97.07% 21 M

Ours 97.32% 97.33% 97.40% 97.37% 45 M

3.4. Model Performance on Different Disease Categories

To evaluate the model’s performance in recognizing specific disease types, we con-
ducted experiments, and the results are outlined in Table 7. Our proposed model achieved
precision rates of 96.74%, 97.77%, 96.26%, 96.65%, and 99.25% for each disease type,
with particularly notable values for healthy and scab. Notably, the model also attained a
99.25% accuracy for rust, marginally below Swin Small’s 99.36%.

ResNet, a classical CNN model, utilized residual connections to mitigate the gradient
vanishing problem inherent in deep models. While ResNet50 achieved precision rates of
97.25%, 98.07%, 95.46%, 89.31%, and 98.37%, the deeper variant, ResNet101, did not surpass
these metrics, yielding precision rates of 94.26%, 97.96%, 93.25%, 89.04%, and 98.48%.

MobileNetV3L, characterized by depth-wise separable convolutions and designed as
a lightweight model with fewer parameters, exhibited relatively lower accuracy, with rates
of 94.75%, 97.57%, 88.75%, 85.62%, and 97.72%.

EfficientNetV2S, incorporating max-pooling and dropout for feature map random
dropout, achieved competitive accuracies of 96.89%, 98.39%, 96.25%, 94.83%, and 99.12%,
notably demonstrating 98.39% accuracy for powdery mildew.

ViT, leveraging self-attention mechanisms to process image features, performed well
on powdery mildew and rust but exhibited lower accuracy for other types. Specifically, ViT
Small achieved precision rates of 89.43%, 97.36%, 89.94%, 89.87%, and 98.73%, while ViT
Base achieved rates of 86.21%, 97.77%, 89.13%, 91.65%, and 98.84%.

Swin Transformer, employing window-based attention mechanisms for global infor-
mation capture, demonstrated robust accuracy across various disease types. Swin Tiny
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achieved precision rates of 97.71%, 97.01%, 95.34%, 91.85%, and 98.75%, while Swin Small
achieved rates of 96.03%, 96.99%, 95.83%, 92.92%, and 99.36%.

Table 7. Comparison with other state-of-the-art methods on different disease types.

Model Frog Eye Spot Powdery Mildew Healthy Scab Rust

Vit Small 89.43% 97.36% 89.94% 89.87% 98.73%
Vit Base 86.21% 97.77% 89.13% 91.65% 98.84%

Swin Tiny 97.71% 97.01% 95.34 % 91.85% 98.75%
Swin Small 96.03% 96.99% 95.83% 92.92% 99.36%

Resnet50 97.25% 98.07% 95.46% 89.31% 98.37%
Resnet101 94.26% 97.96% 93.25% 89.04% 98.48%

MobilenetV3L 94.75% 97.57% 88.75% 85.62% 97.72%
EfficientnetV2S 96.89% 98.39% 96.25% 94.83% 99.12%

Ours 96.74% 97.77% 96.26% 96.65% 99.25%

It is crucial to note that the images in our dataset were captured in natural environ-
ments, inevitably containing some noise. Additionally, different diseases exhibit distinct
characteristics, and the sensitivity of various models to lesion areas may differ. Conse-
quently, variations in the accuracy of recognizing different diseases could arise. In the
dataset we employed, lesions caused by frog eye spot are relatively small and scattered
on the leaf surface. The frog-eye-like texture makes models such as CNN, which excel at
handling local features, more sensitive to these characteristics. On the other hand, rust
disease lesions have a larger area, and the vibrant color of the infection results in both CNN
and Transformer models achieving high accuracy.

Powdery mildew typically covers the leaf surface, presenting a powdery appearance.
This distinctive feature enables both CNN and Transformer models to achieve good results
in distinguishing infected leaves from healthy ones. Regarding scab, its early symptoms
are not prominent and are distributed radially or in band-like patterns on the leaf surface.
Transformer models, adept at capturing global information, generally outperform CNN-
based models in this scenario. In summary, in complex environments, these models have
not proven to be the optimal choice. Our proposed model outperforms others across all five
diseases, indicating its effectiveness in recognizing apple disease leaves. The visualization
of the model output results was conducted using ScoreCam [25], as depicted in Figure 9.
The portion inside the red area in the figure represents the location of the disease. The figure
illustrates the attention levels of different models, highlighting that other models overly
focus on background images. In contrast, our model prioritizes most of the disease areas,
disregarding irrelevant complex backgrounds, leading to higher recognition accuracy.

3.5. Ablation Experiment

In this paper, we introduce the dual-branch model and FFM module. To assess their
effectiveness, we implemented several modifications to the model. We employed accuracy,
precision, recall, and F1 score as evaluation metrics, and the dataset was partitioned into a
training set and a testing set in an 8:2 ratio. Table 8 provides the performance metrics for our
five schemes. Schemes 1 and 2 utilized the original ResNet18 and Swin Tiny architectures,
while Schemes 3–4 incorporated the dual-branch structure with the exclusion of ICA and
CBR modules. Scheme 5 represents our comprehensive model. Figure 10 depicts the
accuracy and loss values of different models on the testing and training sets.

In Schemes 1 and 2, utilizing only ResNet18 and Swin Tiny, Scheme 1 achieved accu-
racy, precision, recall, and F1 score values of 93.75%, 94%, 93.74%, and 93.84%, respectively.
Scheme 2 achieved accuracy, precision, recall, and F1 score of 95.91%, 96.08%, 95.92%,
and 95.98%, respectively.

Scheme 3 introduced the ICA attention mechanism and removed the CRB module
on top of the dual-branch model, exhibiting significant improvements over Scheme 2 in
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accuracy, precision, recall, and F1 score by 1.65%, 1.59%, 1.63%, and 1.63%, respectively. This
indicates a notable enhancement in performance due to the introduced attention mechanism.

In Scheme 4, the dual-branch model was combined with the CRB module, and the
ICA attention module was removed, resulting in further performance improvements.
Compared to Scheme 3, accuracy, precision, recall, and F1 score increased by 0.79%, 0.7%,
0.88%, and 0.79%, respectively.

Figure 9. Visualized results of different models in recognizing apple leaf diseases. The red box
indicates the presence of the diseased area (a) Frog eye spot; (b) powdery mildew; (c) rust; (d) scab.

Table 8. Results of ablation experiment.

Schemes
FFM

ResNet Transformer Accuracy Precision Recall F1 Score
Attention ResBlock

Scheme 1 - - ✓ - 93.75% 94% 93.74% 93.84%
Scheme 2 - - - ✓ 95.91% 96.08% 95.92% 95.98%
Scheme 3 ICA - ✓ ✓ 96.17% 96.27% 96.16% 96.21%
Scheme 4 - CBR ✓ ✓ 96.96% 96.97% 97.04% 97%
Scheme 5 ICA CBR ✓ ✓ 97.32% 97.33% 97.40% 97.36%

- indicates removal of this module; ✓ indicates addition of this module.

(a) (b)

Figure 10. The comparison of accuracy and loss curves of different schemes. (a) Accuracy curve;
(b) Loss curve.
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Finally, in Scheme 6, incorporating the dual-branch structure and FFM module,
the model achieved the maximum values across all metrics: 97.32% accuracy, 97.33% preci-
sion, 97.40% recall, and 97.36% F1 score. This indicates the effectiveness of the proposed
FFM module in enhancing the overall model performance.

3.6. Experiments on the Effectiveness of Each FFM

In this paper, we introduced the feature fusion module (FFM) to integrate local and
global information. While the preceding ablation experiments verified the impact of the
two branches of DBCoST and various components of FFM on the model, a comprehensive
validation of the influence of each FFM module on the model is still lacking. In this section,
we adopted the following method to assess the effectiveness of the FFM, as illustrated in
Figure 3. From left to right, there are four modules. Initially, all the modules were removed.
Subsequently, each time, one module was retained, while the other three were excluded,
allowing us to assess their respective impacts on the model’s performance. The results are
presented in Table 9.

The experiments indicate a notable improvement in model accuracy compared to the
removal of all modules. Specifically, retaining the first FFM module resulted in accuracy,
precision, recall, and F1 score of 96.12%, 96.08%, 96.16%, and 96.10%, respectively, represent-
ing improvements of 1.87%, 1.4%, 1.63%, and 1.52%. Retaining the third module led to peak
performance, with accuracy, precision, recall, and F1 score reaching 97.04%, 97.11%, 97.02%,
and 97.06%, respectively, showcasing improvements of 2.79%, 2.43%, 2.49%, and 2.48%.
However, retaining the second and fourth modules resulted in comparable accuracies.

The primary function of the FFM module is to fuse features from the CNN and
Transformer branches, followed by channel-wise splitting and addition to the original
branch for further training. Therefore, we conjecture that the relatively lower performance
when retaining the second module may stem from insufficient information. Conversely,
retaining the fourth module could result in information redundancy as it lacks the preceding
modules’ further feature extraction. This leads to similar accuracy between the second and
fourth modules.

Table 9. FFM module ablation study.

Strategy Accuracy Precision Recall F1 Score

Remove all 94.25% 94.68% 94.53% 94.58%
Module1 96.12% 96.08% 96.16% 96.10%
Module2 96.76% 96.87% 96.72% 96.79%
Module3 97.04% 97.11% 97.02% 97.06%
Module4 96.78% 96.78% 96.85% 96.81%

3.7. Generalization Performance of DBCoST

The results presented in Table 6 indicate that EfficientNetV2S performs similarly to
our model. To further validate the generalization performance of DBCoST, we conducted
extended experiments on another dataset named AppleLeaf9, obtained from Ref. [26].
This dataset comprises 417 images of Alternaria leaf spot, 411 images of brown spot,
339 images of gray spot, 371 images of mosaic, 3181 images of frog eye spot, 2757 images
of rust, 516 images of health, 5410 images of scab, and 1184 images of powdery mildew,
covering a total of nine disease types. Due to partial overlap with the previously used
dataset, we selected four disease types, namely Alternaria leaf spot, brown spot, gray spot,
and mosaic. Additionally, we introduced 120 images of mixed disease (rust and frog eye
spot) and 636 images of mixed disease (scab and frog eye spot) from the Plant Pathology
2021 dataset [22] to enhance the complexity of our dataset. Similarly, to prevent overfitting,
we employed data augmentation techniques such as Gaussian noise, salt-and-pepper noise,
mirroring, and rotation, thereby expanding the dataset size. The experimental results are
presented in Tables 10 and 11.
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Table 10. Comparision using AppleLeaf9.

Model Accuracy Precision Recall F1 Score Parameters

Vit Small 95.34% 94.75% 92.97% 93.65% 22 M
Vit Base 94.09% 92.87% 91.5% 92.04% 86 M

Swin Tiny 95.98% 95.8% 93.56% 94.38% 28M
Swin Small 95.89% 95.4% 93.53% 94.24% 48 M

Resnet50 94.18% 93.70% 91.41% 92.22% 25.6 M
Resnet101 92.15% 91.03% 88.72% 89.44% 44.5 M

MobilenetV3L 89.02% 88.69% 83.87% 84.49% 5.5 M
EfficientnetV2S 96.07% 95.54% 93.93% 94.57% 21 M

Ours 98.06% 97.67% 97.56% 97.61% 45 M

In summary, compared to the second-ranked EfficientnetV2S model, our model demon-
strates improvements of 1.99%, 2.13%, 3.63%, and 3.04% in accuracy, precision, recall, and F1
score, respectively. Notably, our model significantly outperforms others in the recall met-
ric, indicating increased stability in disease classification. Across various disease types,
our model attains the highest accuracy in Alternaria leaf spot, mosaic, rust frog eye spot,
and scab frog eye spot. Notably, in the mixed disease types of rust frog eye spot and scab
frog eye spot, our model exhibits significantly higher accuracy than other models. We
conjecture that this difference may stem from the necessity to integrate both local and
global information in identifying mixed disease types. Models based on a singular CNN or
Transformer structure excel in handling either local or global information. In contrast, our
model integrates both global information and local features, resulting in higher precision.

Table 11. Comparing the accuracy of different disease types on AppleLeaf9.

Model Alternaria Leaf Spot Brown Spot Gray Spot Mosaic Rust Frog Eye Spot Scab Frog Eye Spot

Vit Small 97.15% 99.5% 95.8% 99.25% 88.81% 87.98%
Vit Base 94.01% 99.75% 96.22% 98.99% 81.88% 86.37%

Swin Tiny 97.95% 99.97% 97.49 % 98.52% 92.97% 87.89%
Swin Small 97.45% 99.98% 97.26% 99.26% 90.23% 88.18%

Resnet50 94.44% 99.5% 94.28% 99% 88.71% 86.32%
Resnet101 93.09% 98.28% 92.68% 97.29% 81.2% 83.68%

MobilenetV3L 87.12% 99% 87.13% 94.66% 84.51% 79.71%
EfficientnetV2S 98.47% 99.97% 97.74% 99.01% 89.86% 88.15%

Ours 98.96% 99.75% 97.3% 99.5% 93.98% 96.55%

4. Discussion

This paper introduces a dual-branch model that integrates CNN and Swin Transformer
for the classification of apple leaf diseases in complex environments. The CNN and Swin
Transformer branches in the model are employed to extract local features and capture global
information, respectively. Feature fusion modules are incorporated to fuse these two types
of information, enabling the model to capture more comprehensive information. In terms
of experimental results, compared to other models, our approach demonstrates notable
performance in complex environments, showing significant accuracy and robustness in
disease identification.

Currently, some studies on plant disease classification commonly utilize either a single
CNN or Transformer architecture. Due to the distinct focus of these models, certain crucial
features may be overlooked when dealing with different types of diseases. To address this
issue, Ref. [27] investigated the complementarity between CNN and Transformer in image
classification, introducing the convolutional Swin Transformer (CST) model for detecting
different plant diseases. It achieved an accuracy of over 92.2% on various plant disease
datasets. However, as the selected datasets were mainly from laboratory environments,
the accuracy showed some fluctuation. Ref. [28] introduced ConViT, a lightweight model for
recognizing apple leaf diseases based on Vision Transformer. By combining the strengths of
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both convolutional and Transformer structures, the model achieved an impressive accuracy
of 96.85% in identifying apple diseases in complex environments. Due to its lightweight
architecture, there was significant variability in accuracy among different disease types.
These research findings indicate that integrating CNN and Transformer structures resulted
in varying degrees of improvement in accuracy.

In our study, we also explored the complementarity between CNN and Transformer
models, introducing a dual-branch structure composed of CNN and Transformer branches
along with multiple feature fusion modules. Ablation experiments were conducted to assess
their impact on the foundational model, as depicted in the table. The results indicate that,
compared to using only ResNet or Swin Transformer single-branch structures and a dual-
branch structure without the added feature fusion module, our model achieved respective
improvements of 3.57%, 1.41%, and 3.07% in accuracy. Furthermore, Table 9 provides
additional validation of the influence of integrating CNN and Transformer information
on the model. Fusing information from any layer significantly enhanced the model’s
performance compared to strategies without fusion.

Some studies have incorporated attention mechanisms, proven effective in enhancing
model performance. In Ref. [29], researchers combined attention mechanisms such as
CBAM [30] and SE with a lightweight CNN model for tomato disease recognition, achieving
an exceptional accuracy of 99.69%. In Ref. [31], Coordinate Attention was incorporated
into the EfficientNet-B4 network, integrating spatial and channel information to facilitate
learning important features from both types of information. In this study, the accuracy
rate for identifying apple leaf diseases reached 98.92%. These research findings indicate
that incorporating attention mechanisms can result in different levels of improvement
in model accuracy. In our research, we observed an increase in redundancy due to the
growing complexity of images and the deepening of channels. Therefore, in our feature
fusion module, we introduced the ICA module to enable the model to focus on key features
and reduce the impact of redundancy. Ablation experiments demonstrated significant
improvements in all metrics (accuracy, precision, recall, and F1 score) compared to scenarios
without the ICA module, with increases of 1.65%, 1.59%, 1.63%, and 1.63%, respectively.
These experimental results clearly demonstrate that our model has a distinct advantage in
classifying apple leaf diseases.

5. Conclusions

The DBCoST model proposed in this paper demonstrates better performance in rec-
ognizing apple leaf diseases under natural environments, with stable accuracy across all
disease types.

Our model utilizes CNN for local feature extraction and Swin Transformer for captur-
ing global information and establishing long-range dependencies. During the input phase,
local features are extracted by the CNN branch, while global information and long-range
dependencies are extracted by the Transformer branch. These features are then further
extracted through the feature fusion module, combined with the results of the original
branch, and subsequently input back into the original branch for further learning.

First, we validated the effectiveness of the model proposed in this paper. We initially
trained the model on the apple leaf disease dataset for 100 epochs. The results showed
that our model began to converge after approximately 20 epochs and stabilized around
100 epochs. We then conducted a comparative analysis with two baseline models, ResNet18
and Swin Transformer Tiny, which constitute the two branches of our model. The results
indicated that our model outperformed the selected baseline models across four key metrics:
accuracy, precision, recall, and F1 score.

Secondly, we compared the performance of the model proposed in this paper with
select CNN- and Transformer-based models. Our experiments showed that our proposed
model attained the highest values in accuracy, precision, F1 score, and recall, indicating its
strong performance compared to select CNN- and Transformer-based network models.
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Thirdly, we assessed the accuracy of our model and other models across various
diseases and conducted generalization tests on additional datasets. The results revealed that
Swin Tiny achieved the highest accuracy of 97.71% for frog eye spot disease. For powdery
mildew disease, EfficientnetV2S achieved the highest accuracy at 98.39%. Our model
demonstrated the best accuracies on healthy and scab diseases, reaching 96.26% and
96.65%, respectively. Compared to the second-highest EfficientnetV2S, our model exhibited
a significant improvement of 1.82% on scab disease, which is particularly crucial as it
impacts both leaves and fruits. Regarding rust disease, Swin Small outperformed with a
high accuracy of 99.36%, while our model slightly lagged behind at 99.25%. On the second
dataset, our model achieved optimal performance and excelled in handling mixed diseases.
Overall, our model consistently maintained accuracy levels between 93% and 99% across
all diseases, underscoring the stability of our model in identifying apple leaf diseases.

Finally, we conducted both ablation experiments and efficacy experiments on the FFM
module using the DBCoST network. The results demonstrated that each component within
our proposed methodology contributed to the model’s performance, with a particular
emphasis on FFM. Following the integration of feature maps from both the CNN and
Transformer branches, the model exhibited significant improvements in accuracy, precision,
recall, and F1 score across these four evaluation metrics.

In summary, the combination of CNN and Transformer has effectively enhanced the
model’s performance, increasing its robustness and stability. We propose an approach for
diagnosing apple leaf diseases based on a dual-branch model of CNN and Transformer. Our
experimental results indicate that, compared to traditional convolutional neural networks
and Transformer-based models, our model exhibits more stable recognition across various
diseases. However, challenges arise from the high computational complexity of the Trans-
former branch and the significant computational load of the feature fusion module, posing
obstacles to portability to mobile devices. In the future, we plan to employ lightweight tech-
niques, considering the use of depthwise separable convolutions or adjusting the model’s
depth to reduce model parameters. These strategies aim to facilitate deployment on mobile
platforms while maintaining effective disease diagnosis.
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