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Abstract: The leaf area of pak choi is a critical indicator of growth rate, nutrient absorption, and
photosynthetic efficiency, and it is required to be precisely measured for an optimal agricultural output.
Traditional methods often fail to deliver the necessary accuracy and efficiency. We propose a method
for calculating the leaf area of pak choi based on an improved Mask R-CNN. We have enhanced
Mask R-CNN by integrating an advanced attention mechanism and a two-layer fully convolutional
network (FCN) into its segmentation branch. This integration significantly improves the model’s
ability to detect and segment leaf edges with increased precision. By extracting the contours of
reference objects, the conversion coefficient between the pixel area and the actual area is calculated.
Using the mask segmentation output from the model, the area of each leaf is calculated. Experimental
results demonstrate that the improved model achieves mean average precision (mAP) scores of
0.9136 and 0.9132 in detection and segmentation tasks, respectively, representing improvements
of 1.01% and 1.02% over the original Mask R-CNN. The model demonstrates excellent recognition
and segmentation capabilities for pak choi leaves. The error between the calculation result of the
segmented leaf area and the actual measured area is less than 4.47%. These results indicate that the
proposed method provides a reliable segmentation and prediction performance. It eliminates the
need for detached leaf measurements, making it suitable for real-life leaf area measurement scenarios
and providing valuable support for automated production technologies in plant factories.

Keywords: pak choi; instance segmentation; Mask R-CNN; leaf area

1. Introduction

A plant factory is an agricultural facility controlled by artificial means [1]. Unmanned
cultivation and production technology is a future development trend in plant factories. Auto-
matic monitoring of plant growth stages is a crucial technology currently under development.
Pak choi are a significant cultivated vegetable valued for their high nutritional content and
short cultivation cycle, making them well suited for large-scale production in plant factories [2].
The leaf area is a critical indicator of pak choi’s growth rate, yield, and varietal characteris-
tics. Currently, technologies such as digital infrared thermography and near-infrared and
hyperspectral imaging have been used to identify the photosynthetic activity, diseases, and
nutritional status of pak choi leaves. However, there is limited research on the digital and
automated assessments of the pak choi leaf area. Therefore, there is an urgent need to develop
a method that can automatically and accurately measure the leaf area of pak choi.

Recently, image processing technology has been widely applied in agriculture, en-
compassing crop classification [3,4], pest and disease identification [5,6], and yield estima-
tion [7,8]. Non-contact methods for acquiring plant phenotypic information have become a
focal point of interest [9]. Leaf segmentation, a crucial part of plant phenotypic research,
has prompted the introduction of various methods proposed to improve accuracy [10].
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With the advancement of machine learning theory, deep learning algorithms based on
convolutional neural networks (CNNs) have been widely applied in leaf segmentation [11].
A concise overview of the literature on leaf segmentation is presented in Table 1. Zhang et al.
proposed an algorithm for segmenting cucumber leaf lesions using multi-scale feature fu-
sion convolutional neural networks, which enhanced the accuracy of segmenting diseased
leaves [12]. Zhao et al. utilized the Mask R-CNN model to research the diagnosis of water
stress in greenhouse tomato leaves and fine-tuned the DenseNet169 image classification
model to classify leaf water stress [13]. Trivedi et al. utilized UNet for leaf segmentation
and calculated the total area of the segmented leaves to monitor plant growth. However,
the total leaf area may not fully reflect plant growth [14]. Liu et al. proposed an improved
SOLO V2 model for segmenting diseased tomato leaves, which involved optimizing the
convolutional structure and loss function [15]. Weyler et al. proposed a method based on
ERFNet and clustering to segment crop leaves and plants collected by UAVs (unmanned
aerial vehicles) [16]. Yuan et al. proposed an improved DeepLab v3+ deep learning network
for the segmentation of grapevine leaf black rot spots with a feature fusion branch based on
a feature pyramid network [17]. Bhagat et al. proposed a novel method called Eff-UNet++
for leaf segmentation and counting with redesigned skip connections and a residual block
in the decoder [18]. Deb et al. proposed a novel convolutional neural network called LS-Net
for the leaf segmentation of rosette plants [19]. Zhu et al. proposed a novel two-stage
DeepLabv3+ with adaptive loss, reverse attention, and a channel attention block for the
segmentation of apple leaf disease images in complex scenes [20]. Zhang et al. integrated
the Sobel operator into the segmentation branch of Mask R-CNN, improving the perfor-
mance of the segmentation branch and achieving precise segmentation of cucumber leaves,
and proposed a method for measuring the area based on cucumber leaf segmentation [21].
Banu et al. proposed a novel AWUNet (attention-gated wavelet pooled UNet) model
integrating wavelet pooling and an attention gate module for leaf area segmentation [22].
Yang et al. proposed an approach that fuses YOLOv8, and improved DeepLabv3+ for the
precise image segmentation of individual leaves [23]. In summary, the application of convo-
lutional neural networks and the enhancement of their structures have greatly contributed
to resolving leaf segmentation problems and obtaining leaf phenotype information.

Based on the aforementioned research, we propose a method for calculating the leaf
area of pak choi using an improved Mask R-CNN. We enhanced the original Mask R-CNN
model by incorporating an attention mechanism and a two-layer FCN into its segmentation
branch. This modification significantly enhances the model’s ability to detect and segment
leaf edges, leading to masks that more accurately depict the contours of the leaves. By
extracting the contours of reference objects, we calculated a conversion coefficient between
the pixel area and actual area. This allows for the calculation of the individual leaf area
using the mask segmentation output from the model. This method can provide valuable
support for the development of automated production technologies in plant factories.

Table 1. The literature focusing on leaf segmentation and areas of plant phenotyping.

No. Reference Objective Dataset Model Result

1. Zhang
et al. [12]

Cucumber leaf lesion
segmentation

760 diseased cucumber
leaf images

Multi-Scale Fusion
CNNs Mean accuracy is 93.12%

2. Zhao
et al. [13]

To diagnose water stress
of tomato leaves 2000 tomato leaf images Mask R-CNN +

DenseNet169
Segmentation accuracy is 94.37%,
Classification accuracy is 94.68%

3. Trivedi
et al. [14]

Leaf segmentation;
growth monitoring

Leaf segmentation
challenge Unet Dice accuracy is 95.05%,

MAE of growth index is 0.0019

4. Liu
et al. [15]

Diseased tomato leaf
segmentation

Plant village tomato leaf
dataset SOLO V2+ DCN v2 Mean average precision is 57.2%

5. Weyler
et al. [16] In-field phenotyping 1316 plant images ERFNet+ Clustering Average precision is 60.4

6. Yuan
et al. [17]

Diseased grape leaf
segmentation

1180 images of grape
leaves

DeepLabv3+
+ ECA Accuracy is 98.7%, mIOU is 0.848
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Table 1. Cont.

No. Reference Objective Dataset Model Result

7. Bhagat
et al. [18]

Leaf segmentation and
counting

KOMATSUNA,
MSU-PID, and
CVPPP dataset

Eff-UNet++ BestDice is 83.44, 77.17, and 78.27

8. Deb
et al. [19]

Leaf segmentation of
rosette plants

KOMATSUNA and
CVPPP LS-Net Accuracy is 98.92%,

Dice score is 96.51

9. Zhu
et al. [20]

Apple leaf disease
image segmentation

1491 diseased apple leaf
images

DeepLabv3+
+ CAB

IOU of leaf is 98.70%,
IOU of disease is 86.56%

10. Zhang
et al. [21]

To measure the area
of cucumber leaves

1025 cucumber leaf
images Mask R-CNN + Sobel Average precision is 99.1%,

Area error rate is 5.45%

11. Banu
et al. [22]

Plant leaf area
segmentation

Crop Weed Field Image
Dataset

UNet +
Wavelet Pooing IOU score is 94.81%

12. Yang
et al. [23]

Plant leaf image
segmentation

9763 plant leaf
images YOLO v8 + DeepLabv3 mIOU is 90.8%,

Pixel accuracy is 93.0%

2. Materials and Methods
2.1. Pak Choi Planting and Image Acquisition

To ensure that the image data of pak choi accurately reflect the real-world conditions
in plant factory production, we conducted a meticulous cultivation experiment at the
School of Agriculture and Biological Engineering, Shanghai Jiao Tong University, Shanghai,
China. This study was conducted during the optimal growth months of September and
October 2023. It involved the careful cultivation of two trays, each containing 20 pak
choi plants of the “Hua Wang” variety. The controlled environment within the plant
cultivation greenhouse was meticulously maintained to mirror optimal growing conditions.
These conditions included a stable day/night temperature regime set at 25 ◦C/20 ◦C,
a photoperiod consisting of a 14 h light and 10 h dark cycle, and a relative humidity
maintained between 50% and 75%. Crucially, LED lighting (Guixiang Optoelectronics
Co. Ltd., Qingzhou, China) was used to enhance natural light, ensuring optimal growth
conditions for the pak choi. Furthermore, the plants were irrigated with a rigorously
quantified regimen of a nutrient solution, specifically formulated for pak choi. This solution,
consisting of a 0.5% high-potassium water-soluble fertilizer (Duofen Agriculture Co. Ltd.,
Qingzhou, China) with a composition of 15-15-30-TE, was formulated to promote vigorous
growth. Considering the consistent planting in porous seedling trays and the workload
of image annotation, image data collection was conducted for individual pak choi. The
dataset was systematically divided, with images from 30 pak choi plants allocated to the
training and validation datasets, and images from an additional 10 plants designated for
the test dataset. To ensure the quality and stability of the images, in this study, we used a
Fujifilm X-T5 digital camera equipped with a kit lens (FUJIFILM Imaging Systems (Suzhou)
Co. Ltd., Suzhou, China), along with a tripod to ensure steady shooting. To minimize the
potential effects of external factors, such as weather changes, on image collection, shooting
was scheduled during the well-lit hours of 2–3 PM each day. To ensure the consistency
of the collected images, the height of the tripod and the angle of the camera were fixed,
essentially maintaining the same exposure settings for each shooting session. The image
collection system used in this study is shown in Figure 1. Throughout the entire growth
cycle of 40 pak choi, a total of 800 high-quality images were collected. Dataset 1 comprises
600 model training and validation images, and Dataset 2 comprises 200 images used for
model testing. Figure 2 shows images of pak choi at different growth stages. In the seedling
stage, the leaves are smaller, and there is no overlapping between them. During the growth
period, there is a slight overlap between the leaves. In the mature stage, the overlap
between the leaves becomes more severe.
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(c) mature stage.

2.2. Image Annotation and Preprocessing

To fulfill the supervised learning requirements of Mask-RCNN, detailed annotation of
the training images was initially carried out. To reduce the complexity of training, images
were uniformly resized to 720 pixels by 480 pixels. Subsequently, the open-source annotation
tool LabelMe was used for image annotation. Using the polygon tool, accurate annotations of
leaf areas and contours were created, resulting in corresponding JSON files for each image, as
shown in Figure 3. After annotating 800 original images, Dataset 1 was split into a training
dataset and a validation dataset in an 8:2 ratio, with 480 images for training and 120 images
for validation. Additionally, Dataset 2, which comprises 200 images, was used to build the
testing dataset. To improve the data diversity and generalization ability, data augmentation
techniques, as shown in Figure 4, such as horizontal and vertical mirroring and rotation were
applied. This expanded the training dataset to 1920 images and the validation dataset to
480 images. To adapt to the Mask-RCNN network input, the annotated images and JSON
files were converted into the COCO dataset format. Furthermore, for a visual demonstration
of the annotation results, Figure 5 shows the visualization of images annotated using the
LabelMe tool. Based on these annotated data, an instance segmentation network was trained
to accurately extract features such as the color characteristics and contour edges of the pak
choi leaves in the images. The network outputs individual segmentation masks for each leaf,
enabling accurate calculation of the area of each leaf.
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2.3. Improved Mask R-CNN Instance Segmentation Model
2.3.1. Mask R-CNN

Mask R-CNN [24] is an instance segmentation framework based on Faster R-CNN. It
is known for its high-precision target localization and high-quality pixel mask generation,
making it suitable for pixel-level segmentation tasks. This framework enables the acquisi-
tion of geometric attributes such as the shape, area, and contours of the target. The model
primarily consists of four components: a backbone network, a region proposal network
(RPN), a region of interest (ROI) align classifier, and output branches. The structure of the
network is shown in Figure 6.
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The backbone network comprises a feature extraction network and a feature pyramid
network (FPN). The feature extraction network is tasked with extracting features from the
input image and generating four feature maps, which contain Feature 1 (56 × 56 × 256),
Feature 2 (28 × 28 × 256), Feature 3 (14 × 14 × 256), and Feature 4 (7 × 7 × 256). The
FPN is responsible for integrating high-level semantic information with low-level feature
information. The region proposal network (RPN) generates candidate boxes using a
sliding window mechanism. During the training phase, the selection of positive and
negative samples is determined by their intersection over union (IoU) with the ground
truth labels. Subsequently, the non-maximum suppression (NMS) technique is used to
eliminate redundant anchor points for the same target as the pre-selected bounding boxes,
thereby generating initial proposal boxes. The ROI align network has been developed
to facilitate the mapping of proposal boxes of different sizes back to the original image.
This process transforms the proposal boxes into feature maps of uniform size, creating the
region of interest (ROI). The method uses bilinear interpolation to precisely calculate the
feature map locations, thereby minimizing inaccuracies caused by direct quantization. The
output branches consist of a classification branch, a regression branch, and a mask branch.
The classification branch uses fully connected layers to categorize each ROI and determine
its class. The regression branch finely tunes the position and size of each ROI. The mask
branch generates a binary mask for each identified object.

2.3.2. Improved Mask R-CNN Segmentation Branch

When addressing the segmentation of pak choi leaves, the Mask R-CNN network
often encounters challenges with low precision at the edges of the leaves. This is mainly
caused by significant fluctuations in pixel values at the boundaries between leaves and the
background, which affects the model’s accuracy in localizing edges. To address this issue,
this study incorporates an attention mechanism to optimize the segmentation network.
Specifically, an attention module and additional convolutional layers are incorporated into
the segmentation branch to improve the weighting of edge features, thereby enhancing the
model’s capability to recognize and process edges. SeNet [25] enhances the sensitivity of
CNN networks to crucial features through two steps: Squeeze (global information compres-
sion) and Excitation (feature activation). During the Squeeze phase, global average pooling
is used to aggregate features across each channel. This process condenses condensing
features in the spatial dimension of a channel into a single value, reducing the parameter
count and computational complexity. The Excitation phase utilizes two fully connected
layers to learn the nonlinear relationships between channels. Initially, it reduces the number
of features to decrease the computational load and then restores the original dimensions.
Sigmoid functions are used to determine the weight of each channel. Ultimately, these
weights are combined with the original feature map to recalibrate features, emphasizing
important information and enhancing the network’s feature detection capabilities.

In this study, the segmentation branch initially processes through four layers of 3 × 3
convolutional layers to deeply extract features of the leaves. Subsequently, the feature map
is input into the SeNet module for attention weighting, adjusting its spatial dimensions
and expanding the receptive field to enhance the global perception of leaf edges. This is
followed by further enhancement of edge feature representation through an additional two
3 × 3 convolutional layers, thereby enhancing the segmentation accuracy. In this study,
a 256-channel feature representation is maintained from the ROI align output to ensure
the effectiveness of features after dimension reduction. Meanwhile, considering both the
model’s performance and efficiency, the reduction ratio of the SeNet module is set to 16 to
optimize the leaf edge segmentation results. The improved segmentation branch is shown
in Figure 7.
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2.3.3. Loss Function

The loss function of Mask R-CNN, LMask R-CNN, comprises the classification loss Lcls,
the bounding box regression loss Lreg, and the mask branch loss Lmask, as illustrated in
Equation (1). The classification loss Lcls primarily represents the extent of loss in the target’s
category classification, as illustrated in Equation (2). The bounding box regression loss
Lreg characterizes the extent of loss in the target’s detection box coordinates, as illustrated
in Equation (3). The mask branch loss Lmask is a binary cross-entropy loss, which is used
to quantify the discrepancy between the predicted mask and the ground truth. This
component of the loss represents the segmentation loss generated during the model’s
training process, as illustrated in Equation (4).

LMask R−CNN = Lcls + Lreg + Lmask (1)

Lcls = −log[pi p∗i − (1 − p∗i )(1 − pi)] (2)

where pi and p∗i represent the probability and expected probability values that a candidate
region contains a target, respectively.

Lreg = SmoothL1(x) =
{

0.5 x2, if |x| < 1
|x| − 0.5, other

(3)

Lmask = −∑
y
[y log(1 − ŷ) + (1 − y) log(1 − ŷ)] (4)

where y and ŷ represent the actual leaf mask and the network-predicted output mask,
respectively.

2.4. Algorithm for Calculating the Leaf Area of Pak Choi

Firstly, the pixel area of the pak choi leaves is extracted. The collected pak choi
images, after being processed by the Mask R-CNN network, generate corresponding
mask information for each leaf. These masks encompass both image category and pixel
segmentation information. In these masks, pixels identified as pak choi leaves are marked
with values ranging from 0 to 1, while non-leaf pixels are marked as 0. By setting a
threshold value of T = 0.5, the number of pixels exceeding this threshold is calculated,
which determines the pixel area of the mask and, consequently, the pixel area of each
segmented pak choi leaf, as illustrated in Equation (5).

Secondly, the conversion coefficient between the pixel area and the actual area is
calculated, as illustrated in Equation (6). Considering the uniformity of the seedling pot
area, in this study, the seedling pot is utilized as a standard reference object for calculating
the conversion coefficient. In the first step, the collected images of complete seedling pots
are converted from RGB color mode to grayscale, followed by bilateral binarization and
Gaussian blur to reduce image noise. In the second step, the Canny operator is used for
edge detection to identify the edges of the seedling pot in the image. In the third step, a
series of image contours is extracted post-edge detection using the FindContours function
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in OpenCV. In the fourth step, contours that represent seedling pots based on specific shape
and size thresholds are filtered. The ContourArea function is used to calculate the pixel
area. Finally, the average pixel area of thirty seedling pots is calculated. The actual diameter
of the seedling pot is 10 cm, and the conversion coefficient between the pixel area and the
actual area is calculated, as illustrated in Equation (6).

Finally, the pak choi’s leaf area is calculated. Using the conversion coefficient obtained
in the previous step, the pixel area of each leaf is converted to its actual area, as illustrated
in Equation (7).

Lea f Areapixel =
Mmask

∑
i=1

Nmask

∑
j=1

1
(

Mij > T
)

(5)

where Mmask and Nmask are the number of rows and columns in the mask, Mij is the value
of the pixel at row i and column j in the mask, and 1

(
Mij > T

)
is an indicator function that

equals 1 if Mij > T and 0 otherwise.

Lpixel−actual =
Actual area o f re f erence object

Average pixel area o f re f erence objects
(6)

Lea f areaactual = Arealea f _pixel × Lpixel_actual (7)

The algorithm flowchart is shown in Figure 8.
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2.5. Experimental Environment

Experiments involving the Mask R-CNN model and its enhancements were carried
out on a Windows 10 system. For model training, transfer learning was initially utilized
with pre-trained weights from the COCO dataset to initialize the network parameters.
Subsequently, the self-constructed pak choi leaf dataset was converted into the COCO
dataset format for network training. Network training in this study was conducted using
an NVIDIA GeForce RTX 4060Ti graphics card; the input image was an RGB three-channel
color image with dimensions of 720 × 480 × 3. The experimental environments and
parameter settings of the model during the training process are presented in Table 2.



Agriculture 2024, 14, 101 9 of 18

Table 2. Parameter settings of the pak choi leaf instance segmentation model.

Parameter Value

CPU Intel Core i5-11400F
Memory/GB 32 GB

GPU NVIDIA GeForce RTX 4060Ti
System Windows 10

Development tool PyCharm
Network framework Python 3.8.17 + PyTorch 1.13.1

Batch size 8
Epoch 40

Optimizer SGD
Momentum 0.9

Weight decay coefficient 0.0001
Basic learning rate 0.004

Learning rate decay coefficient 0.1
Epoch of learning rate decay 15, 25

Input image size 720 × 480 × 3

2.6. Evaluation Metrics

The task of calculating leaf area involves segmenting a single leaf and subsequently
calculating its area. To evaluate the method’s performance in the task, it is crucial to assess
both the instance segmentation performance and the accuracy of the leaf area calculation.

The dataset format for the instance segmentation task of the leaf is COCO. The mean
average precision (mAP) was employed to evaluate the algorithm’s performance in leaf
detection and leaf segmentation. The precise definitions are presented in Equations (8)–(11).
In the task of calculating leaf area, the evaluation metric is the area error rate, which is
precisely defined in Equation (12).

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

where TP (True Positive) represents the number of samples correctly identified as leaves;
FP (False Positive) refers to the number of samples incorrectly identified as leaves when
they are background; FN (False Negative) represents the number of samples incorrectly
identified as background when they are leaves.

AP =
∫ 1

0
P(R)dR (10)

where AP represents the area under the precision–recall (PR) curve, reflecting the recall
rate corresponding to different precision outcomes for leaves.

mAP =
1

10

10

∑
i=1

APIoU=Ti (11)

where Ti represents the IoU threshold and ranges from 0.50 to 0.95 in increments of 0.05.

Aer =

∣∣∣∣1 − SC
ST

∣∣∣∣ (12)

where SC represents the calculated area of the pak choi leaf after segmentation, and ST rep-
resents the true area of the pak choi leaf which was acquired by measuring the leaf area
with a CI-203 handheld laser leaf area meter.
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3. Results and Discussion
3.1. Comparative Experiments Based on Different Backbone Networks

To determine the optimal model performance on the dataset, we conducted train-
ing comparisons using four backbone networks of varying depths: EffcientNet_B0, Mo-
bileNet_V3, ResNet 50, and ResNet 101. Models equipped with these different backbone
networks were trained and tested on the pak choi leaf dataset. Post-convergence loss data
and training times were recorded, and the mean average precision (mAP) values of leaf
detection and leaf segmentation were calculated on the test dataset. Five rounds of training
and testing were conducted on the dataset, and the results were averaged to reduce errors.
The total loss of Mask R-CNN with different backbone networks is shown in Figure 9. The
comparative test results of different backbone networks are presented in Table 3.
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Table 3. Results of experiments with different backbone networks.

Backbone Training
Time/min Average Loss mAP

(Detection)
mAP

(Segmentation)

EffcientNet_B0 38 0.5475 0.8258 0.8175
MobileNet_V3 40 0.3254 0.8411 0.8280

ResNet 50 80 0.0955 0.9035 0.9030
ResNet101 200 0.0920 0.9050 0.9040

Bold indicates the best value of each index.

The results in Figure 10 and Table 3 indicate that Mask R-CNN with ResNet101 as
the backbone network demonstrates a superior performance in detecting and segmenting
pak choi leaves. Compared to ResNet101, the mean average precision of leaf detection
decreases by 8.02% with EffcientNet_B0, 6.24% with MobileNet_V3, and 0.15% with ResNet
50. Similarly, the mean average precision of leaf segmentation decreases by 9.28% with Eff-
cientNet_B0, 7.65% with MobileNet_V3, and 0.1% with ResNet 50. However, the increased
depth and parameter count of ResNet 101 resulted in a 150% increase in the training time.
Considering factors such as model precision and lightweight deployment, ResNet 50 was
selected as the backbone network for Mask R-CNN in the following experiments.
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3.2. Comparative Experiments Based on the Improved Segmentation Branch

According to the results of the comparative experiments on backbone networks,
ResNet 50 + FPN was selected as the backbone network for Mask R-CNN. Comparative ex-
periments were conducted on the pak choi leaf dataset to compare the original segmentation
branch with the improved mask branch of the model.

To visually illustrate the mean accuracy of the models before and after optimization,
the training results of the models were plotted on the same graph. Figure 10 shows the
changes in the total loss and learning rate of the instance segmentation model before and
after the segmentation branch improvement, while Figure 11 shows the changes in mean
average precision (mAP) during the training process.
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Figure 10 shows that as the number of iterations increases, both the original and the
optimized models exhibit a gradual decrease in loss values, followed by stabilization. The
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training loss of the optimized model demonstrates a more pronounced downward trend,
converging around the 20th training epoch with a lower total loss, indicating that the
increased complexity of the segmentation branch did not result in increased loss.

Figure 11 shows that as the training epochs progress, the mAP of the instance seg-
mentation model with the improved segmentation branch begins to stabilize from the 10th
epoch and finally stabilizes at 0.9136. In contrast, the mAP of the original model begins
to stabilize around the 14th epoch and finally stabilizes at 0.9032. The optimized model
shows earlier cessation of fluctuations, reaching a stable value more rapidly and achieving
a higher stable value. This demonstrates improved stability and convergence.

Training and testing were conducted on the dataset. Post-convergence loss information
was recorded, and metrics such as the mAP for leaf detection, the mAP for leaf segmentation,
and Aer were calculated, as presented in Table 4.

Table 4. Results of leaf detection and segmentation experiments with different branch structures.

Model Average Loss mAP
(Detection)

mAP
(Segmentation) Aer

Mask R-CNN 0.0955 0.9035 0.9030 5.15%
Mask R-CNN + Improved

Segmentation Branch 0.0922 0.9136 0.9132 4.47%

Bold indicates the best value of each index.

The results presented in Table 4 indicate that Mask R-CNN with an improved seg-
mentation branch outperforms the original Mask R-CNN across various metrics, including
average loss, the mean average precision (mAP) for leaf detection and segmentation, and
the area error rate. Specifically, the modified model shows a decrease in the average loss of
0.0033, an increase in the mAP for leaf detection of 1.01%, an increase in the mAP for leaf
segmentation of 1.02%, and a decrease in the area error rate of 0.68%.

To reduce the influence of a single dataset split on the performance and generalizability
of the improved Mask R-CNN, a five-fold cross-validation approach was utilized (Table 5).
This methodological decision was made to evaluate the performance and stability of the
model. The experimental findings presented in Table 5 illustrate the good generalization
abilities of the model and its consistent and stable outcomes.

Table 5. Results of the five-fold cross-validation experiment.

Experiment Number mAP (Detection) mAP (Segmentation) Aer

Experiment 1 (Original) 0.9136 0.9132 4.47%
Experiment 2 0.9158 0.9153 4.42%
Experiment 3 0.9124 0.9121 4.48%
Experiment 4 0.9147 0.9143 4.45%
Experiment 5 0.9115 0.9112 4.52%

Average 0.9136 0.9132 4.47%

When there are only 800 images in the pak choi dataset, Experiments 6–8 were con-
ducted to explore the impact of different splitting ratios on the model performance of the
improved Mask R-CNN. These experiments were set up with training set and validation set
ratios of 7:3, 6:4, and 5:5, respectively. The number of training and test sets and the results
of experiments are shown in Table 6. As shown in Table 6, with a training data proportion
of 70% (Experiment 6), the mean average precision (mAP) for detection remained at 0.9103
and that of segmentation at 0.9101, with an area error (Aer) of 4.65%. These metrics indicate
minimal deviation from the original experiment (Experiment 1). When the training data
proportion was decreased to 60% (Experiment 7), the mean average precision (mAP) for de-
tection slightly decreased to 0.9027 and that for segmentation decreased to 0.9022, with the
average error rate (Aer) increasing to 5.17%. Further decreasing the proportion of training
data to 50% (Experiment 8) resulted in a mAP for detection of 0.8952 and segmentation of
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0.8950, with an Aer of 5.68%. Compared to the original experiment, Experiments 7 and 8
showed a decrease in the mAP and Aer, but the mAP values remained above 0.8952 and
0.8950. Analysis of these results suggests that with a dataset of only 800 images, reducing
the proportion of the training set below 70%, even with data augmentation, leads to a
decrease in feature diversity. Nevertheless, the improved Mask R-CNN model consistently
maintained the mAP above 0.8952 and 0.8950 across all splitting ratios, and the area error
rate remained below 5.68%, confirming the model’s generalizability. Future work will
involve expanding the pak choi leaf dataset further.

Table 6. Comparison of experimental performance between different splitting ratios.

Experiment
Number

Split
Ratio

Train Set Size after
Augmentation

Test Set
Size

mAP
(Detection)

mAP
(Segmentation) Aer

Experiment 1
(Original) 8:2 1920 200 0.9136 0.9132 4.47%

Experiment 6 7:3 1680 200 0.9103 0.9101 4.65%
Experiment 7 6:4 1440 200 0.9027 0.9022 5.17%
Experiment 8 5:5 1200 200 0.8952 0.8950 5.68%

Bold indicates the best value of each index.

To further evaluate the leaf segmentation performance of the improved Mask R-CNN,
specifically across different growth stages of pak choi, the test dataset was systematically
divided into three subsets: the seedling stage, the growth stage, and the mature stage.
Subsequently, the performance of the model was quantitatively assessed on these datasets.
The results presented in Table 7 demonstrate that the improved model exhibits commend-
able segmentation performance across different growth stages of pak choi. Significantly,
the model achieves the highest accuracy in segmentation and the lowest error rate in the
area during the seedling stage. In contrast, the precision of segmentation is at its lowest
during the maturity stage, while also being accompanied by the highest area error rate.
The variation in performance can be ascribed to the gradual occlusion of leaves. At the
seedling stage, there is minimal overlap among leaves. However, as the plant grows, slight
leaf occlusions begin to appear during the growth stage, eventually leading to significant
overlap in the mature stage.

Table 7. Segmentation performance at different growth stages.

Stage mAP Aer

Seeding stage 0.9221 2.85%
Growth stage 0.9162 3.48%
Mature stage 0.9013 4.47%

Bold indicates the best value of each index.

Figure 12 shows a compelling visual comparison of the segmentation results of the
original Mask R-CNN model and its improved version when applied to identical pak
choi leaf images. In this comparison, the original model demonstrates commendable
segmentation capabilities, with the generated mask aligning reasonably well with the
actual leaf edges. However, as indicated by the red dotted boxes in the images, there is
still a noticeable discrepancy between the mask edges and the actual leaf boundaries. This
small gap highlights an area for potential improvement in the model’s accuracy in edge
detection. In contrast, the improved segmentation branch of the modified Mask R-CNN
model shows a significant enhancement in edge delineation. The masks produced by this
improved model demonstrate a much closer alignment with the actual contours of the leaf.
This heightened precision in edge detection represents a notable advancement, indicating
the model’s improved ability to recognize features, particularly in accurately identifying
leaf edges. The criticality of this advancement lies in its direct impact on the accuracy
of leaf area calculations. As the segmentation mask more precisely reflects the actual
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leaf periphery, the computed leaf area becomes more accurate, resulting in a consequent
reduction in the leaf area error rate.
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To validate the superiority of the segmentation performance of the improved model
presented in this paper, a comparative analysis was conducted against three mainstream
open-source instance segmentation models: BlendMask [26], PolarMask [27], and SOLO [28].
Firstly, a comprehensive overview of the characteristics of the models is presented in Ta-
ble 8. The comparison experiments utilized quantitative metrics, including mean average
precision (mAP), the area error rate (Aer), and the average segmentation time. The re-
sults are presented in Table 9. The indices corresponding to the bold data indicate the
best performance.

Table 8. Comparison of methods’ characteristics.

Model Key Features Advantage Limitation

PolarMask Modeling Contours Based on a
Polar Coordinate System

High Efficiency,
Simplified Process

Challenges with Extreme
Cases

BlendMask Blended Attention Mechanism,
Flexible Area Masks

High Precision,
Good Performance
on Small Objects

Challenges with Extreme
Cases

SOLO Direct Instance Segmentation,
Class-Agnostic Segmentation

High Efficiency,
Simplified Process Challenges with Small Objects

Mask R-CNN
ROI Align layer,

Simultaneous Detection and
Segmentation

High Precision Segmentation,
Adaptability to Different Objects High Computational Cost
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Table 9. Leaf segmentation results of different models.

Model Backbone mAP
(Segmentation) Aer Time (s)

PolarMask ResNet 50 0.8257 7.28% 0.092
BlendMask ResNet 50 0.8668 6.76% 0.099

SOLO ResNet 50 0.8861 6.30% 0.076
Mask R-CNN ResNet 50 0.9030 5.15% 0.078

Improved Mask R-CNN ResNet 50 0.9132 4.47% 0.079
Bold indicates the best value of each index.

Table 9 demonstrates that the improved Mask R-CNN model outperforms all com-
pared methods in terms of mean average precision (mAP) and area error rate (Aer), with
scores of 0.9132 and 4.47%, respectively. The image segmentation time is 0.079 s per image,
representing a slight increase of 0.001 s compared to the original Mask R-CNN, and at 0.003
s longer than the fastest model, SOLO. This increase in segmentation time is attributed
to the augmented computational load caused by the additional model parameters in the
improved segmentation branch. In contrast, the SOLO model, with its fewer parameters
and simpler structure, achieves faster segmentation times. However, it falls short in per-
formance metrics, with a 2.71% decrease in mAP and a 1.83% increase in Aer compared to
the improved Mask R-CNN. The comparative results indicate that the improved model
proposed in this study demonstrates a commendable segmentation performance. Future
work should focus on refining the architecture of the model to decrease its parameter count
and computational load. The goal is to achieve a better balance between segmentation
precision and processing speed, thereby improving the overall performance and usefulness
of the model in real-world applications.

3.3. Analysis of Leaf Area Calculation Results

To evaluate the effectiveness of the improved Mask R-CNN in calculating leaf area, 60
samples were randomly selected from the test dataset, ensuring comprehensive coverage
across different growth stages of pak choi, including 20 images of pak choi leaves during the
seedling stage, 20 images from the growth stage, and 20 images from the mature stage. Both
manual measurements and model-based estimations of leaf area were conducted, and a
linear correlation analysis was performed between these two sets of data. The comparative
results are shown in Figure 13.

Figure 13 depicts a comparative analysis of the manually measured leaf area (x-axis)
and the model-calculated leaf area (y-axis), showing a strong linear relationship across
different growth stages of pak choi. This strong correlation indicates the model’s robustness
in accurately estimating leaf area, confirming its effectiveness across different stages of pak
choi development. The analysis also reveals a notable trend: as the leaves grow larger, there
is a growing disparity between the model-generated leaf area and the actual measurements.
This observation can be attributed to several factors inherent in the dynamic nature of
pak choi growth. One significant factor is the growing likelihood of leaves overlapping
or obstructing each other as they grow, which can hinder the model’s ability to accurately
recognize and segment each leaf. Additionally, the leaf plane is not entirely parallel to
the camera plane, and there is a certain angle. As the leaf grows, this angle will change,
leading to an increase in error in the leaf area. Future work will aim to address these
limitations by adopting a more comprehensive approach to leaf analysis. One promising
approach is to collect leaf images from multiple angles, which would provide a more
comprehensive understanding of each leaf’s structure and orientation. Analyzing leaf
angles and integrating this information into the model could greatly reduce the errors
caused by different leaf orientations.
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Figure 13. Comparison of manually measured and model-estimated leaf area of pak choi. (a) The
seedling stage; (b) the growth stage; (c) the mature stage.

3.4. Discussion of the Method

The results of quantitative and qualitative tests indicate that integrating the attention
mechanism into the segmentation branch of Mask R-CNN significantly improves the
model’s accuracy in recognizing and segmenting the edges of pak choi leaves. Comparative
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experiments with open-source algorithms also validate the effectiveness of the model
enhancements. Testing with images of pak choi at various growth stages demonstrates
that the proposed method performs well in estimating leaf area throughout different stages
of growth. A linear regression analysis between manually measured leaf areas and those
calculated by the algorithm reveals a strong linear relationship, with minimal error in the
algorithm’s calculations. This precision enables accurate monitoring of pak choi’s growth
stages and conditions, making it suitable for use in plant factories. The method is not
limited to pak choi but can be applied to other leafy crops, provided that sufficient image
data of various vegetables are collected to train the model and improve its generalizability.

However, the current method relies on 2D images, which may not always ensure
a consistent alignment between the leaf plane and the camera’s focal plane. In actual
production, the angle between these planes can significantly impact the accuracy of leaf
area measurements, with larger angles resulting in an underestimation of leaf area. Future
work will involve collecting images from various angles to analyze how leaf angles impact
area calculations. Additionally, the research will focus on developing leaf segmentation
models based on 3D point clouds to enhance the accuracy of area calculations for precise
segmentation and phenotypic monitoring.

4. Conclusions

This paper proposes a method for calculating the leaf area of pak choi based on an im-
proved Mask R-CNN. Training and testing datasets were established using images captured
throughout the entire growth cycle of pak choi. This study compared the performance of
different backbone networks and incorporated an attention mechanism and a two-layer
FCN into the segmentation branch to enhance the model’s ability to recognize leaf edges.
The improved model achieved mean Average precision (mAP) scores of 0.9136 and 0.9132
in detection and segmentation tasks, respectively, indicating improvements of 1.01% and
1.02% over the original Mask R-CNN. This demonstrates the excellent recognition and
segmentation of pak choi leaves. The area of pak choi leaves was calculated using the seg-
mented mask information, revealing that the predicted leaf area closely matched the actual
leaf area with an area error rate of less than 4.47%. There is a strong linear relationship
between the area calculated by the model and the manually measured area, eliminating
the need for detached leaf measurements and making it more suitable for real-life leaf
area measurements. Compared with other open-source models, our method demonstrates
a better segmentation performance, providing valuable support for the development of
automated production technologies in plant factories.
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