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Abstract: This study proposes an improved link prediction model for predicting the “suitable for
people” relationship within the knowledge graph of tea. The relationships between various types of
tea and suitable target groups have yet to be fully explored, and the existing InteractE model still
does not adequately capture a portion of the complex information around the interactions between
entities and relationships. In this study, we integrate SENet into the feature layer of the InteractE
model to enhance the capturing of helpful information in the feature channels. Additionally, the
GCN layer is employed as the encoder, and the SENet-integrated InteractE model is used as the
decoder to further capture the neighbour node information in the knowledge graph. Furthermore,
our proposed improved model demonstrates significant improvements compared to several standard
models, including the original model from public datasets (WN18RR, Kinship). Finally, we construct
a tea dataset comprising 6698 records, including 330 types of tea and 29 relationship types. We predict
the “suitable for people” relationship in the tea dataset through transfer learning. When comparing
our model with the original model, we observed an improvement of 1.4% in H@10 for the WN18RR
dataset, a 7.6% improvement in H@1 for the Kinship dataset, and a 5.2% improvement in MRR.
Regarding the tea dataset, we achieved a 4.1% increase in H@3 and a 2.5% increase in H@10. This
study will help to fully exploit the value potential of tea varieties and provide a reference for studies
assessing healthy tea drinking.

Keywords: tea; suitable for people; knowledge graph; link prediction; knowledge graph completion;
transfer learning; deep learning

1. Introduction

Tea is a beverage traditionally considered to have health-promoting properties [1].
Tang et al. [2] showed that tea also has preventive effects on inflammation, cancer, and
obesity, providing a valuable reference for further research on tea components’” health-
related functions and mechanisms of action. Sae-Tan et al. [3] explored the effects of tea
consumption on weight loss and the prevention of metabolic syndrome (MetS) in animals
and confirmed that green tea consumption had a fat-reducing or weight-reducing effect.
The discovery of tea’s preventive and therapeutic effects was, however, accompanied by
cases of injury or illness induced by inappropriate tea consumption, such as the case of
79 patients who developed liver disease as a result of consuming green tea extracts [4].
Exploring the suitability of various types of tea for human health, taking into account the
properties of each tea variety, is essential.

According to Pan et al. [5], based on the degree of fermentation, tea tree growing
conditions, cultivation methods, and the tea-making process, tea is generally classified into
six major categories: green tea, green (oolong) tea, white tea, yellow tea, black tea, and
dark black tea. It can thus be concluded that factors such as the nature, genus, suitable
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type, and value efficacy of tea are the leading indicators through which to classify tea as
suitable for people. Mahdavi-Roshan et al. [6] studied the effects of black and green tea
beverage intake on hypertension through a search strategy. Yan et al. [7] analysed winter
tea’s value efficacy and social benefits by testing its composition and contents, aiming to
improve these features. Both of these studies utilised statistical analysis methods, and
this single form of analysis may have led to the poor comparability of their data. Lee
et al. [8] studied a recommendation service of blended tea in conjunction with a food
recommendation system and verified the feasibility of blended tea recommendations after
final consumer acceptance tests. In recent years, with the advancement and application
of artificial intelligence technology, deep learning has been incorporated into tea quality
research. Chen et al. [9] used image information and environmental parameters (EPs) to
construct convolutional neural networks and gated recursive units (GRUs) with which
to predict the moisture content and product quality of Pu-erh tea during the sun-drying
process, which has guiding significance for tea research combined with deep learning.
However, the objectives of these studies were still mainly focused on external characteristics.
They considered the components of tea leaves without a comprehensive analysis of the
six major tea types or a sufficient focus on the relationship between each tea type and the
people who consume it.

Google proposed the knowledge graph (KG) in 2012, and Hogan et al. [10] provided a
comprehensive introduction to the knowledge graph. At the same time, many knowledge
graph methods have sound application effects in various agricultural fields, such as agricul-
tural knowledge services and pest diagnoses [11]. Chen et al. [12] proposed an Agricultural
KG (AgriKG) for effectively integrating fragmented information generated using multiple
applications for agricultural entity retrieval and agricultural knowledge Q&A.

Link prediction, which uses existing relationships to infer new connections and thus
build a complete knowledge graph, is a fundamental task in knowledge graph completion.
Rossi et al. [13] classified link prediction models into three families: tensor decomposition,
geometric, and deep learning models. On the other hand, Wang et al. [14] showed that
neural network-based models demonstrate superior performance in knowledge graph
link prediction tasks compared to other traditional methods. Advanced neural network
structures are capable of generating expressive feature embeddings; for example, the ConvE
model [15] addresses the problem that previous models for knowledge graph link pre-
diction tasks had—the fact that they are primarily shallow and have a weaker ability to
learn features than deep multilayer models. It utilises a two-dimensional convolutional
neural network to extract features from the stitching matrix of entities and relations. After
linear transformation to conduct matrix multiplication with the entity matrix, the graph
obtained effectively improves the link prediction performance of the model. The ParamE
model [16] treats the neural network parameters as the embedding of relations and, using
head entities as input values and tail entities as output values, trains different networks for
different relations. The InteractE [17] model is still lacking in capturing detailed interaction
information. However, the InteractE model also achieved good results in the knowledge
graph link prediction task with feature replacement on the information matrix, “Chequer”
reshaping operations, and cyclic convolution operations. Models based on ordinary neural
networks have achieved better results in knowledge graph link prediction tasks; however,
the ability to capture interaction information still needs to be improved upon in order for
these models to be comparable to that of graph neural networks, which can fully account for
the neighbourhood information of knowledge graph entities and capture a more informa-
tive representative embedding between entities. R-GCN [18] applied graph convolutional
networks to knowledge graph link prediction tasks, using the representation of neighbour-
ing nodes as the representation of the current node, based on the idea of “information
propagation”, which takes into account the multi-relational data within the knowledge
graph and constructs an end-to-end encoder-decoder model. The KBGAT model [19] pro-
poses using graph attention for relation prediction, using neighbouring nodes to represent
the current node, further facilitating the flow of information and achieving better results on
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knowledge graph link prediction tasks. In addition, the ComplexGCN model [20] is a new
extension of standard graph convolutional networks (GCNs) in complex space; it combines
the symbolic power of complex geometry with GCNs to improve the quality of the represen-
tation of KG components. CompGCN [21] achieved excellent results in the link prediction
task, using multiple entity—relationship combination operations in the knowledge graph
embedding technique and fully demonstrating the effectiveness of combining graph neural
networks with ordinary neural networks in the link prediction task. The link prediction
models illustrate a progressive trend within CNN-based architectures, transitioning from
the initial ConvE model to the more proficient InteractE model. Similarly, in the realm
of GCN-based architectures, the evolution has advanced from the initial adoption of the
R-GCN model for link prediction to culminate in the refined and more effective CompGCN
model through the continuous efforts of researchers. However, despite the enhancement
in expressive capacity achieved with using the InteractE model through the “Chequer”
reshaping operation, such a technique disrupts the spatial information contained within
the original entity and relationship embeddings. Furthermore, it is essential to note that
the InteractE model, as part of the CNN framework, lacks the ability to effectively process
and consolidate relational information across various hierarchical levels, which is inherent
in the CompGCN model.

Link prediction methods are prominent in numerous fields. In particular, McCoy
et al. [22] developed an end-to-end machine learning pipeline through which to train and
serve link prediction models, using link prediction methods to predict missing links in
the biomedical literature for drug discovery, which can effectively suggest repurposed
drugs for emergent diseases. Huo et al. [23] proposed a personalisation-based social
influence link prediction approach with which to predict link relationships between users
by modelling personalised influences in their social networks. Nasiri et al. [24] introduced
a link prediction method based on familiar neighbours and various centrality metrics
(including degree, k-core, closeness, betweenness, Eigenvector, and PageRank) to forecast
new links in a multiplex network. By leveraging existing health conditions, Shabaz et al. [25]
employed multiple link prediction techniques to anticipate future diseases. Nasiri et al. [26]
proposed a feature selection-based random walk approach for link prediction between
proteins, enhancing the discovery of their interactions. These studies show that link
prediction algorithms have been extensively investigated in various domains yet still need
to be explored with regard to tea. Furthermore, the aforementioned studies [5-9] mainly
focused on the substance composition of specific tea types, and studies on the associated
relationships between tea and people can still be fully explored.

SENet [27] represents a network architecture designed for classification tasks through
which to enhance convolutional neural networks’ feature expression capability. Transfer
learning [28] can effectively use existing knowledge and data resources to elevate model
performance, generalisation capacity, and training efficiency. In response to the original
InteractE model’s challenge, where the “Chequer” reshaping operation disrupts the spatial
information encoded within the original entity and relationship embeddings, we integrated
SENet into the InteractE model framework. Addressing the inherent limitations of the
original InteractE model in handling relational information across different hierarchical
levels, we leveraged the GCN layers from the CompGCN model as encoders to further
capture diversified relational information across varying levels. Finally, we constructed a
tea dataset (ID_Tea) and used the improved model to predict the relationships between
types of tea and the variable “suitable for people”. The main contributions of this paper are
as follows:

e  We improved the initial InteractE model by combining it with SENet (the improved
model is called InteractE-SE) and incorporated SENet after the feature layer of the
InteractE model to enhance the capture of helpful information in the feature channel.

e  We combined the above model with GCN to improve the InteractE model so that the
GCN layer in the CompGCN model is used as an encoder and the SENet-incorporated
InteractE model is used as a decoder (the improved model is called IntGCN), which
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strengthens the model’s ability to extract complex interaction information between
entities and relationships. After several experiments, the improved model significantly
improved the prediction metrics on public datasets (WN18RR, Kinship).

e  We constructed a dataset containing 6698 records, including 330 types of tea and 29
types of relationships. Combining the improved model (IntGCN) with migration
learning, we comprehensively used the knowledge and patterns the improved model
learned in WN18RR to predict the “suitable for people” relationships in the tea dataset
and complete the tea knowledge graph using the prediction results. This study thereby
helps to explore the value potential of tea varieties and provides some references for
tea research.

2. Materials and Methods
2.1. Research Process

Figure 1 presents this study’s workflow, which included improving the InteractE link
prediction model, testing the improved model on public datasets (Step 1), and constructing
a tea knowledge graph (Step 2). In Step 2, the knowledge graph dataset was organised to
form the ID_Tea dataset. We used the IntGCN model to predict the “suitable for people”
relationships for different teas in the ID_Tea dataset, combined with transfer learning (Step
3). Specifically, the improvements made to the InteractE link prediction model involve
using the GCN layer as the encoder and integrating SENet into the InteractE model as the
decoder. The final model was named IntGCN. After training, we can obtain the pre-trained
version of the IntGCN model under the WN18RR dataset. For Step 1, we validated the
performance of the IntGCN model on public datasets (WN18RR, Kinship). Establishing
and constructing the tea knowledge graph was mainly achieved through a “bottom-up”
approach [29], and the constructed knowledge graph is stored in the Neo4j database [30].
Predicting the suitable target groups for tea involves utilising the transfer learning method.
First, we trained the pre-trained model obtained by training the IntGCN model on the
public dataset WN18RR and fine-tuning it for link prediction on the ID_Tea dataset. Then,
we used the IntGCN model to predict the “suitable for people” relationship for the ID_Tea
dataset. Through multiple iterations of model training, we obtained the suitable target
groups for each tea category based on the scores obtained by evaluating the test triplets
corresponding to that category.

Step1: Step2: Tea dataset construction
Model improvements Manual data cleaning e
Tea Data Source = Triples of Tea
Expert evaluation s ]
Encoder: GCN layer l Data storage

Code mapping

R S j Stored inthe
oo %, Neodjdatabase

-

H Tea Dataset

Decoder: InteractE+SENet

Model integration

s St€P3 - Prediction of Teas "Suitable for People”
. Tea Dataset

Final model: IntGCN ; . | I I I .
; Transfer learning i

WN18RR and Kinship : Output of predictions
public datasets

Train+Test

- Parameter

Pre-trained model : . Pre-trained fine-tuning | Results of link
__n_q(_)dfelv — " prediction

Triple scoring

Figure 1. Overall flow chart of this study’s workflow.
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2.2. Model Design

This study proposes an end-to-end structural model that progressively refines the
initial InteractE model. Initially, while the “Chequer” reshaping operation enhances the
expressive capacity of the initial InteractE model, it compromises the spatial information
embedded within entity and relationship embeddings. To address this concern, we incor-
porated SENet following the convolutional layers of the InteractE model. This integration
selectively extracts valuable feature channel information while suppressing redundant
information. The model resulting from this fusion is named InteractE-SE and is depicted in
Figure 2. Furthermore, InteractE-SE inherently follows a CNN-based structural paradigm,
limiting its ability to fully capture the intricate interaction information between entities and
relationships. We employed the graph convolutional layer from the CompGCN model as
the encoder with which to overcome this limitation. This choice facilitates the acquisition of
enriched embedded vectors representing combinations of entities and relationships. With
InteractE-SE serving as the decoder, we constructed an end-to-end IntGCN model. This
comprehensive model was subsequently utilised in link prediction experiments. The model
structure diagram of IntGCN is shown in Figure 3.
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Figure 2. Structure of the InteractE-SE model.
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Figure 3. Structure of the IntGCN model.

2.2.1. GCN Layer

The CompGCN model demonstrates superior performance in link prediction tasks,
primarily due to its unique graph convolutional layer (henceforth referred to as the GCN
layer). Compared to other graph convolution models, it offers several advantages. Firstly,
the GCN layer explicitly models the relationships between entities by utilising composition
operations to interact with entity and relationship embeddings, and this enables the model
to capture complex interactions between entities and relationships more effectively, thereby
improving the accuracy of link prediction. Secondly, the GCN layer supports multiple
composition operations, providing greater flexibility. This flexibility allows the model to
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select suitable composition operations based on the characteristics of different tasks and
datasets, further enhancing the capability of representation learning. Such flexibility helps
the model better adapt to different knowledge graph data types.

For instance, for the tea dataset (see Section 2.3 for details), the specific workflow
of the GCN layer is as follows: The initial step involves the representation of entities
and relationships. Each entity (representing a particular type of tea or its attributes) and
relationship is represented using vectors. These vectors can either be randomly initialised or
pre-trained embedding vectors. Subsequently, diverse relationship aggregation operations
are conducted to achieve relational updates. GCN layers cater to different relationships,
combining them in specific ways that involve concatenation, weighted summation, matrix
operations, and more. These approaches are employed to capture the interactive dynamics
between various relationships. Such relationship aggregations can be performed across
different layers. Within each layer, the model amalgamates different relationships to acquire
enriched representations of relationships. After relationship aggregation, the updating
of tea entity representations occurs. Then, building upon the relationship aggregation,
tea entity updates are realised by combining the entity’s representation with the updated
relationship representation, typically through concatenation. The final phase involves the
iterative stacking of GCN layers to extract more advanced features, thereby enhancing
the model’s expressive capabilities. Across each layer, the model executes relationship
aggregation and entity updating for richer information on entities and relationships. It
becomes evident that the computed tea entity and relationship embeddings through the
GCN layers for the tea dataset encapsulate significantly enriched interactive information.
This research integrates the GCN layers as the encoders of the ultimate model (IntGCN).

2.2.2. InteractE-SE

Building upon the InteractE model, this study integrates SENet into the InteractE
framework. The InteractE model captures high-order interactions between entities and
relationships by introducing feature permutation operations within entity and relationship
embeddings. This feature permutation operation enables the InteractE model to outper-
form many other link prediction models with regard to representation learning capability.
Additionally, the InteractE model possesses richer feature representations. Using cyclic
convolutional operations, the InteractE model learns interaction features between enti-
ties and relationships from various perspectives. This multi-perspective learning feature
contributes to improved accuracy in link prediction.

Notably, the InteractE model, in capturing high-order interactions and rich feature
representations in entity and relationship embeddings, exhibits good generalisation ability
across different tasks and datasets. However, the “Chequer” reshaping operation enhances
the expressive capacity of the initial InteractE model, and this compromises the spatial
information embedded within entity and relationship embeddings. To further enhance the
feature extraction capabilities of the InteractE model, we integrated SENet into the feature
map extracted using the InteractE model. SENet is a deep learning-based convolutional
neural network model that adaptively weights channel features, effectively enhancing the
network’s expression of crucial features. Through learning appropriate weights, SENet
automatically focuses on the most helpful channel features for the classification task, thereby
improving model performance. Due to its ability to adaptively weight channel features,
SENet exhibits robustness. Even in the presence of interference or noise within the input
data, SENet can correctly identify critical features. The SENet-integrated model is named
InteractE-SE, and the model architecture is depicted in Figure 2 below.

The scoring function for the InteractE-SE model is as follows:

8 (vec(se(f(¢(Px) *w)))W) - e @

where Py refers to the randomly initialised embedding, ¢(Py) refers to the feature replace-
ment of the embedding stacked with Py (Step 1), * refers to the circular convolution through
which to obtain the feature map (Step 2), and se indicates the execution of SENet on the
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obtained features (Step 3), the projection to the multidimensional space after a fully con-
nected layer (Step 4), and matching with the embedding of the candidate target in the inner
product layer (Step 5).

The InteractE-SE model, as a decoder, retains the valuable features within the channel
information and suppresses the other useless features through SENet. It can thus be
determined that InteractE-SE is an excellent CNN-based decoder model.

2.2.3. IntGCN

Due to the early random initialisation of entity and relationship embeddings in
InteractE-SE, it remains a CNN-based structural model that does not fully integrate the
graph structure information from the knowledge graph. The GCN layer can capture
neighbourhood information effectively, while the InteractE-SE model captures high-order
interactions between entities and relationships through convolutional operations and cyclic
feature matrices. Combining the GCN layer with the InteractE-SE model allows us to
leverage their respective advantages, facilitating the learning of more prosperous and
expressive representations of entities and relationships. On the one hand, the GCN layer
focuses on local structural information between entities, while the InteractE-SE model
emphasises the capture of high-order interactions between entities and relationships. By
combining the two, we can simultaneously consider high-order interactions and local
structural information, thereby improving link prediction accuracy.

Furthermore, the GCN layer and the InteractE-SE model each capture different graph
structure features. Integrating them can enhance the model’s generalisation ability when
dealing with various tasks and datasets, resulting in improved stability and robustness
in different scenarios. Therefore, for this study, we decided to fuse the GCN layer as the
encoder and InteractE-SE as the decoder. The model structure of IntGCN is illustrated in
Figure 3 below.

The scoring function for the IntGCN model is as follows:

8 (vec(se(f(¢(Prc) x w))W)) - €0 @

Similarly to the InteractE-SE model, here, Py, refers to an initial embedding that has
information about the structure of the graph, ¢(Py) refers to the feature replacement of the
embedding stacked with Py (Step 1), * refers to the circular convolution through which to
obtain the feature map (Step 2), and se indicates the execution of SENet on the obtained
features (Step 3), the projection to the multidimensional space after a fully connected layer
(Step 4), and matching with the embedding of the candidate target in the inner product
layer (Step 5).

Compared to the original InteractE-SE model, the main difference in the IntGCN
model is that its initial entity and relationship embeddings already incorporate more graph
structure information, which enriches the following interaction information. To better train
the model parameters, we employed binary cross-entropy loss with label smoothing as the
loss function in this study, as shown in Equation (3):

L(p,t) = 3 X (6 - log(pi) + (1 ~ #) - Tog(1 — py)) ©

where p denotes the score on the fact triple, and t is the smoothed label.
As seen above, IntGCN belongs to an end-to-end model that enhances the accessibility
of the graph structure information on top of InteractE-SE.

2.3. Constructing the Tea Knowledge Graph

To address the challenges of varying developmental stages in the agricultural pro-
ductive service industry across different regions, limited information flow among service
supply and demand entities, difficulties in resource allocation for large-scale service op-
erations, subjective measurement of service quality, and crucial aspects of agricultural
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production management, this study adopts a combined approach of literature research
and investigations within representative regions and industries. Taking tea production in
typical counties (districts) in China as a case study, we employed a “bottom-up” method
through which we could construct a tea knowledge graph. The primary data sources in-
clude platforms such as “China Tea Net” and “Baidu Health”. These prominent platforms
encompass an extensive repository of tea-related knowledge and health content. Renowned
for their professional and objective content, these platforms wield substantial influence
within China. Data extraction predominantly relies on manual curation, serving to mitigate
data redundancy and errors to a considerable extent. Given the relatively limited dataset,
an additional layer of refinement involves manual disambiguation, facilitated by multiple
domain experts within the tea field. The culmination of these efforts results in the formation
of a manageable collection of tea triples amenable for storage. The main tea entities include
six significant types: green tea, black tea, oolong tea, white tea, yellow tea, and dark tea.
The various attributes and relationships among these tea entities encompass tea properties,
suitable tea processing methods, value and benefits, characteristics, and places of origin.
The ‘bottom-up” approach to constructing the knowledge graph is shown in Figure 4.

Knowledge
Graph Library

Knowledge Base

| |
I [
I |
l |
I |
I |
| Knowledge Knowledge I
SHUERNE DR | Integration reasoning |
I Data attribute '
Unstructured : extraction :
. Data : | Data . B Know\ie_dge i
Semi-structured | | relationship Dissolution Quality = |
data I Data entity Assessment I
| extraction Entity |
| disambiguation

|
: Knowledge :
I ontology |
I extraction |

e Information Knowledge Knowledge

Bata Aequitmion Extraction Integration Processing

Figure 4. “Bottom-up” approach to tea knowledge graph construction.

After identification by several tea experts, the resulting tea knowledge graph included
6698 records, comprising 330 types of tea divided into six main categories—green tea,
green (oolong) tea, white tea, yellow tea, black tea, and dark black tea—with a total of
1064 entities and 29 relationships. This study combines the characteristics and value efficacy
of each type of tea. The dataset consists of 12 categories of the more common populations
summarised on the “Baidu Health” platform as obese people, frequent smokers, people
experiencing feelings of heat or dryness, people experiencing feelings of coldness, people
with constipation, people with poor stomach and intestinal health, people who are easily
fatigued, people who often drink alcohol, people with greasy diets, people who suffer
from the three highs (hypertension, hyperglycaemia, hyperlipidaemia), people with poor
immunity, and people who often use computers. Examples are included in Table 1.
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Table 1. Sample data for selected properties or relations for the six tea categories.

Entity 1 (Pictures and Tea Names)

Relations (Properties)

Entity 2 or Property Values

Suitable for tea Green tea
Tea quality Cool
. Obese people, people experiencing
Suitable for people heat,/dryness
Value Effectiveness Cooling, slows ageing, weight loss
Propagation method Asexual
Germination time Early life
Characteristics Leaves with lots of fuzz
Suitable for tea (Dark) black tea
Tea quality Hot
Suitable for people People who often drink alcohol

Value Effectiveness

Characteristics
Place of origin

Slows ageing, promotes digestion, diuretic,
relieves fatigue

Leaves with lots of fuzz, high yield

Yunnan Province

Suitable for tea
Tea quality

Place of origin

Black tea
Hot
Jianghua Yao Autonomous County,
Hunan Province

Propagation method Asexual
Germination time Mid-life
Characteristics High yield, leaves with lots of fuzz
Value Effectiveness Promotes digestion, diuretic, relieves fatigue
Suitable for people People with constipation
Suitable for tea Green (oolong) tea
Tea quality Neutral
. Jianghua Yao Autonomous County, Hunan
Place of origin .
Province
Propagation method Asexual
Germination time Late-life
Characteristics High yield, leaves with less fuzz
Value Effectiveness Slimming and fat loss, slows ageing
Suitable for people People who are easily fatigued
Suitable for tea White tea
Tea quality Cool
Place of origin Dutou Town, Fuding City, Fujian Province
Propagation method Asexual
Germination time Early birth

Characteristics

High yield, cold resistant

: s = Value Effectiveness Antidiarrhoeal, germicidal
Fuding Great White Tea Suitable for people People with poor immunity
Suitable for tea Yellow tea
Tea quality Cool
Place of origin Dongting Lake, Yueyang, Hunan Province
Category Yellow tea
= Characteristics Resembles silver needles
£ 27 Value Effectiveness Cooling, relieves fatigue
Junshanyinzhen Suitable for people People who often use computers

Images obtained from the “Baidu Baike” platform (China’s popular knowledge-sharing platform; link: https:
/ /baike.baidu.com, accessed on 20 June 2023).

Additionally, in order to clearly and visually display our constructed knowledge
graphs, we have selected some of the stored knowledge graphs for visualisation, as shown
in Figure 5.
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@ Zzobaijian
Leaves with lots of fuzz
@ Almond Tea
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Leaves with less fuzz

. Neutral
Green (oolong) tea

@ liannan tea with large leaves . People with greasy diet

@ People experiencing feelings of coldness

Meizhan

P
@ (Dark) black tea Green tea

® Sichuan Border Tea

Cooling
Slimming-and fat loss

Promotes digestion

. Foxiang No. 4

Peaple with constipation
< Hot

People who often drink alcohol

« Jianghua Bitter Tea
Figure 5. Visualisation of the tea knowledge graph.

2.4. Experimental Method Design
2.4.1. Dataset and Evaluation Metrics

This study first evaluated the performance of the IntGCN model on the publicly
available datasets WN18RR [31] and Kinship. Subsequently, the model was applied to
the tea dataset (ID_Tea) to predict the “suitable for people” relationships. Experiments
were conducted on three datasets in total. The tea dataset was randomly divided into
training, validation, and test sets in an 8:1:1 ratio. A summary statistics of the datasets is
presented in Table 2. The IntGCN model was employed to predict suitable populations for
tea. This study employed several standard link prediction task metrics through which to
evaluate the model’s performance, namely H@k, MR, and MRR. H@k refers to the average
proportion of triplets with a rank less than k in the link prediction task. It is used to signify
how many of the top k predicted results are correct. Typically, different values of k can
be used, such as H@1, H@3, or H@10. MR (mean rank) is used to evaluate the average
rank of the predicted relationship within the entire candidate set. For each test sample,
the rank of the correct relationship in the predictions is identified, and the average rank
across all samples is computed. MRR (mean reciprocal ranking) is an indicator for assessing
the ranking capability of the link prediction model, focusing on the rank of the correct
relationship in predictions. MRR is used to calculate the reciprocal rank of the correct
relationship for each test sample and then compute the average reciprocal rank across all
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samples. The MRR value lies between 0 and 1. A lower MR value, indicating that the model
can accurately place the correct relationships at the forefront, is preferred. Conversely,
higher values of H@k and MRR are desirable, as these reflect the improved performance of
the link prediction model. The formulae for H@k, MR, and MRR are presented below:

[N
H@k = LZH(ranki < k) 4)
INIH
IN|
MR = — ) rank; (5)
] &
1 M
RR= —Yy ——
M ‘ng rank; ©)

where N denotes the set of test triples, and |N| denotes the number of test triples. rank;
refers to the link prediction ranking of the i-th triple, while I denotes the INDICATOR
function (which has a value of 1 if rank; < k is accurate, and a value of 0 otherwise).

Table 2. Statistics for the three datasets.

Dataset Entities Relations Train Validation Test
WN18RR 40943 11 86835 3034 3134
Kinship 104 25 8544 1068 1074
ID_Tea 1064 29 5368 665 665

2.4.2. Training Environment and Parameter Settings

For all experiments, training was performed using the Adam optimiser [32], and the
parameters were initialised using Xavier initialisation [33]. The model training environment
utilised had an RTX 2080 Ti graphics card, Pytorch 1.6.0 framework, and Python 3.8.
Combining the InteractE model parameters with those in Table 3, we used a grid search
and trained 500 rounds to find the best set of hyperparameters for this study, and the
optimal hyperparameters for the utilised model were selected based on the MRR of the
validation set; for the WN18RR and ID_Tea datasets, the optimal parameters were as
follows: Ir = 0.001, batch = 256, k = 11, q = 8, d = 1; for the Kinship dataset, the optimal
parameters were as follows: Ir = 0.005, batch =256, k =11, q =8, d = 0.95.

Table 3. Details of the hyperparameters.

Hyperparameter Values
Learning rate (lr) {0.0001, 0.001, 0.005}
Batch size (batch) {128, 256}
Convolutional kernel size (k) {3,5,7,9, 11}
Dimensional reduction setting for SENet (q) {4,8,16}
Learning rate decay (d) {1,0.95}

2.4.3. Transfer Learning

Applying transfer learning in link prediction tasks can improve model performance,
generalisation ability, and training efficiency through leveraging existing knowledge and
data resources. In Section 2, we constructed a knowledge graph for various types of tea
and their corresponding target populations. To fully realise the prediction of the “suitable
population” relationship in tea, we employed transfer learning methods in order to transfer
the knowledge learnt from the link prediction task on the WN18RR dataset to the ID_Tea
dataset.

The IntGCN model uses transfer learning to apply the features learnt from the link
prediction task on the WN18RR dataset to the link prediction task on the ID_Tea dataset. By
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utilising the well-trained weights of the IntGCN model for the WN18RR dataset, we further
enhanced the prediction of suitable populations for different tea variations. Although the
WN18RR and ID_Tea datasets belong to different domains, they share similarities and
commonalities. Since the ultimate goal of both tasks is link prediction, transfer learning can
effectively leverage these similarities and commonalities, thereby improving the model’s
generalisation ability and performance compared to not using transfer learning methods.

3. Results
3.1. Evaluation of Public Datasets

In this segment of the study, we focus on the performance comparison of the proposed
IntGCN model with the original InteractE model and some standard base models on public
datasets (WN18RR, Kinship), as well as the ablation evaluation of the IntGCN model.

3.1.1. Comparison of Link Prediction Performance

One purpose of this study was to evaluate the performance and plausibility of the pro-
posed model by comparing the results with several existing methods developed in recent
years. The baseline mainly includes non-neural network models such as TransE [34], Dist-
Mult [35], and ComplEx [36] and neural network models such as R-GCN, ConvTransE [37],
SACN [37], ConvE, CompGCN, and InteractE.

As can be observed from Table 4, the IntGCN and InteractE + SE models significantly
outperformed the InteractE model in all indicators for the Kinship and WN18RR datasets.
Therefore, our proposed algorithms have some superiority and can be used as predictive
models for tea suitability population prediction.

Table 4. Comparison of the link prediction performance of the improved InteractE models with
several recent models for the Kinship and WN18RR datasets.

Kinship WN18RR
Model

MRR MR He10 Hel MRR MR He10 Hel

TransE 0.309 6.8 0.841 0.009 0.226 3384 0.501 -
DistMult 0.516 5.26 0.867 0.367 0.430 5110 0.490 0.390
ComplEx 0.823 2.48 0.971 0.733 0.440 5216 0.510 0.410

R-GCN 0.109 25.92 0.239 0.030 - - - -

KBGAN 0.165 - 0.347 - 0.214 - 0.472 -
ConvTransE 0.824 2.53 0.972 0.734 0.460 - 0.520 0.430
SACN 0.759 3.25 0.951 0.643 0.470 - 0.540 0.430
ConvE 0.833 2.03 0.981 0.738 0.430 4187 0.520 0.400
CompGCN 0.840 2.10 0.982 0.753 0.469 3307 0.536 0.434
InteractE 0.806 2.32 0.974 0.706 0.463 5202 0.528 0.430
Interact-SE 0.810 2.31 0.974 0.716 0.467 4900 0.530 0.436
IntGCN 0.858 1.93 0.983 0.782 0.474 3533 0.542 0.438

The bold-formatted values and those denoted as—represent the best and missing scores, respectively.

As shown in Figure 6, we conducted a visual analysis of the IntGCN and InteractE-SE
models, and all metrics of IntGCN relative to InteractE-SE on both public datasets improved
relative to the original InteractE model. In particular, we observed an improvement of
1.4% in H@10 for the WN18RR dataset, 7.6% in H@1 for the Kinship dataset, and a 5.2%
improvement in MRR.
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Figure 6. IntGCN comparative analysis on public datasets (MR* indicates MR /10000). (a) Comparison
of results for the WN18RR dataset. (b) Comparison of results for the Kinship dataset.

3.1.2. Ablation Evaluation
This study introduced the GCN layer and SENet for InteractE separately (see Section 2.2
for details). The changes in the metrics before and after adding the GCN layer and SENet

to the InteractE model for the WN18RR and Kinship datasets, respectively, are shown in
Tables 5 and 6.

Table 5. Comparison of the link prediction performance of InteractE with and without GCN layers or
SENet for the WN18RR dataset.

WN1SRR
Model GCN Layer SENet

MRR MR H@10 He1

No No 0.463 5202 0.528 0.430

No Yes 0.467 4900 0.530 0.436

InteractE: Yes No 0.472 3266 0.540 0.437

Yes Yes 0.474 3533 0.542 0.438

The bold-formatted values represent the best scores.

Table 6. Comparison of the link prediction performance of InteractE with and without GCN layers or
SENet for the Kinship dataset.

Kinship
Model GCN Layer SENet
MRR MR H@10 He1
No No 0.806 232 0.974 0.706
No Yes 0.810 231 0.974 0.716
InteractE Yes No 0.844 2.06 0.982 0.757
Yes Yes 0.858 1.93 0.983 0.782

The bold-formatted values represent the best scores.

The results presented in Tables 5 and 6 show that, for public datasets (WN18RR, Kin-
ship), the IntGCN model can significantly improve the link prediction performance of the
original model by fusing the SENet and GCN layers on top of the original InteractE model.

3.2. Evaluation of ID_Tea Dataset

In this section of the study, we focus on the performance comparison of the proposed
transfer learning-enhanced IntGCN model with the original InteractE model and some
standard neural network models for the ID_Tea dataset, as well as the ablation evaluation
of the IntGCN model.

3.2.1. Comparison of Link Prediction Performance

For this section, we applied the IntGCN model to the ID_Tea dataset for link predic-
tion. We compared the experimental results using the metrics MRR and H@k to evaluate
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the performance of the IntGCN model. Table 7 shows the comparison between the link
prediction performance of the IntGCN model and those of some recent state-of-the-art
neural network models. In Table 7, ‘noTransfer’ indicates that no transfer learning method
was used.

Table 7. Comparison of the results of IntGCN with those of common neural network models for the
ID_Tea dataset.

Model MRR (%) H@1 (%) H@3 (%) H@10 (%)
ConvE 56.4 47.6 614 729
CompGCN 60.2 53.4 63.3 72.7
InteractE 59.6 52.9 61.7 72.5
InteractE-SE 60.0 53.8 62.2 72.5
IntGCN(noTransfer) 61.3 54.3 64.9 74.2
IntGCN 61.6 54.4 65.8 75.0

From Table 7, it can be observed that the IntGCN model, with the application of
transfer learning, demonstrates better link prediction performance than other methods for
the ID_Tea dataset.

3.2.2. Ablation Evaluation

This study introduced the GCN layer and SENet for InteractE separately (see Section 2.2
for details). The changes in the metrics before and after adding the GCN layer and SENet to
the InteractE model for the ID_Tea dataset are shown in Table 8.

Table 8. Comparison of the link prediction performance of InteractE with and without GCN layers or
SENet for the ID_Tea dataset.

Model GCN Layer SENet MRR (%) H@l(%) He@3(%) H@10 (%)
No No 59.6 52.9 61.7 725
Int ‘B No Yes 60.0 53.8 62.2 725
nterac Yes No 61.0 54.2 64.2 74.0
Yes Yes 61.3 54.3 64.9 74.2

The results from Table 8 show better link prediction performance for the ID_Tea dataset
using the IntGCN model after integrating SENet and the GCN Layer.

3.2.3. Relationship Prediction and Knowledge Graph Completion

The tea knowledge graph is utilised to rank all entities related to tea in order to predict
the suitable populations for different types of tea. By predicting the missing relationship
in a given triplet (tea, relation, people), the suitability of tea for specific populations can
be determined. The experimental results listed in Table 7 indicate that, among the top 10
predicted target entities, the average probability of the target entity appearing is 75%.

Finally, 200 prediction triples, which were randomly combined from each type of
tea and each type of suitable population and were independent of the available data,
were selected for prediction in this study. The scores of each triple were calculated using
Equation (2) in Section 2.2.3, and the scores of these 200 prediction triples are shown in
Figure 7.
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Figure 7. Scores of the 200 target triples.

Where Head_Score and Tail_Score refer to the scores of the fact triple when predicting
the head entity based on the relation and the tail entity, and the scores of the fact triple
when predicting the tail entity based on the head entity and the relation, respectively, taking
into consideration the feature that there are more tea types than suitable types of people in
the tea knowledge graph. By comparing the “Head_Score” and “Tail_Score” in a realistic
situation to determine which entity pair is more likely to constitute the correct triad, this
study uses the “Head_Score” as the final score for the triad of the tea complementary
knowledge graph. After combining several experiments with reality, we set the score
threshold to 0.9. The target triad with a score greater than or equal to 0.9 was taken as
the new triplet, which was subsequently added to the original tea knowledge graph for
completion, and at the same time, we also obtained the “suitable for people” relationship.
Some of the link prediction triples and their scores are shown in Table 9.

Table 9. Prediction triples and their scores.

Prediction Triples Scores
(Zaobaijian, suitable for people, obese people) 0.952
(Foxiang No. 4, suitable for people, people who suffer from
. 0.977
three highs)

(Jianghua Bitter Tea, suitable for people, people experiencing
feelings of coldness)
(Almond Tea, suitable for people, people with greasy diet) 0.941
(Foshou, suitable for people, people experiencing feelings of heat
0.709
and dryness)

0.965

As can be seen by comparing Figure 8a,b, the link prediction experiments of the
IntGCN model, followed by the scoring function through which the predicted triple scores
are obtained, play a crucial role in determining the “suitable for people” relationship of
the tea knowledge graph to be predicted. This process assists in the decision-making
process for research studies aiming to assess tea’s impact on human health, make tea
recommendations, and realise the accurate matching of supply and demand for social tea
production services.
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4. Discussion

In this section, the experimental results obtained in this study are discussed and
compared with the results of other studies. Some of the excellent work on tea includes the
following publications: P Olha et al. [38] studied the positive antioxidant and anti-diabetic
effects of tea polyphenols on tea drinkers, P Chen et al. [39] conducted a study to analyse
the cultivation suitability of tea trees, ] Ye et al. [40] studied the effects of applying different
amounts of organic fertilisers on tea yield and quality, and XQ Zheng et al. [41] studied
the effects of tea plant chemical composition. Unlike previous work, this study used a
link prediction algorithm to link multiple types of tea and tea-suitable people, combining
some of the characteristics of tea and using an improved link prediction algorithm for the
predictive analysis of tea-suitable people.

The original InteractE model lacked the ability to capture graph structural information.
To address this, we improved the InteractE model by incorporating SENet and GCN layers,
resulting in the IntGCN model (detailed in Section 2.2). We conducted link prediction
experiments on public datasets (WN18RR and Kinship) using the IntGCN model and
observed significant improvements in MRR and H@k. Specifically, H@10 increased by 1.4%
for the WN18RR dataset and by 7.6% for the Kinship dataset, while MRR improved by
5.2% (see Section 3.1). These results convincingly demonstrate the superior performance of
the proposed IntGCN model.

In addition, more research is needed on the relationships among the six major types
of tea and their suitability for different populations, presenting an opportunity for further
exploration. In this study, we constructed a tea dataset (ID_Tea) comprising 6698 records,
330 tea types, and 29 relationship types, focusing on green tea, green (oolong) tea, white tea,
yellow tea, black tea, and dark black tea. The improved model introduced in Section 2.2
was applied to predict the “suitable for people” relationship in the ID_Tea dataset. Notably,
the performance improvements varied when the GCN layer and SENet were individually
applied to the initial InteractE model (see Sections 3.2.1 and 3.2.2).

When the training dataset is small or lacks diversity, transfer learning can leverage
the abundant data from the source task for pre-training and then transfer the learned
knowledge to the target task, thereby enhancing performance for the target task. In this
study, we utilised the feature information learnt by the IntGCN model from the WN18RR
dataset for link prediction experiments on the ID_Tea dataset. The experimental results
revealed improvements in all prediction metrics when using transfer learning compared to
training from scratch. The results prove the effectiveness of introducing transfer learning to
the IntGCN model in improving its generalisation ability, accelerating the learning process
for the target task, and saving computational resources. Lastly, we supplemented the
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knowledge graph by incorporating triplets with scores equal to or above a threshold (see
Section 3.2.3).

5. Conclusions

In the first step of this study, we introduced an improved version of the InteractE
model, the IntGCN model. It is important to note that the IntGCN model further incor-
porates graph structural information through the GCN layer and preserves more useful
feature information through SENet. For the task of link prediction, the IntGCN model
demonstrates better performance in predicting links. Additionally, we constructed a knowl-
edge graph for tea by combining the IntGCN model with transfer learning and applying
it to predict suitable populations for different types of tea. Finally, we completed the
tea knowledge graph based on the prediction results. Experimental results indicate the
feasibility of applying this model, combined with a knowledge graph, to predict the suit-
able populations for different types of tea. This approach provides valuable insights for
applying knowledge graphs in the tea field and helps us to fully explore the value potential
of tea varieties.

In the future, we will aim to collect a wider variety of textual data on tea varieties based
on the existing data. Future research will enable a more granular categorisation of suitable
populations for different types of tea, facilitating a more comprehensive investigation that
combines link prediction methods with tea research. Furthermore, we seek to expand the
application of link prediction techniques to various other domains in agriculture, including
the following:

e  Crop-soil adaptability prediction: By constructing knowledge graphs for crops and
soils and leveraging link prediction algorithms, we can forecast the adaptability
relationships between different crops and soils. This would aid farmers in selecting
the most suitable crops for cultivation and optimising soil management strategies.

e  Agricultural product quality assessment: By constructing knowledge graphs for agri-
cultural products, link prediction algorithms can forecast these products’ quality
characteristics and relevant attributes. For instance, they could predict fruit ripeness
or the nutritional values of agricultural products, thereby assisting farmers and con-
sumers in making informed decisions.

e  Agricultural disease prediction: By constructing a knowledge graph that connects
crops, diseases, and environmental conditions, it is possible to utilise link prediction
algorithms to predict the probability of crops being affected by specific diseases. This
approach can assist farmers in taking timely preventive measures and reducing dam-
age to their crops caused by diseases. A well-designed and adequately implemented
agricultural disease prediction system could significantly impact crop yields and the
agricultural industry.

e  Optimisation of agricultural supply chains: By constructing knowledge graphs for
agricultural supply chains, link prediction algorithms can predict partner relationships,
resource allocation, and the feasibility of transactions at various stages. This would
optimise the agricultural supply chain’s operational efficiency and profit distribution.

Furthermore, the application of link prediction algorithms can extend beyond agricul-
ture to other domains, such as predicting the likelihood of medical accidents or forecasting
failures in vehicles. These applications demonstrate the versatility of link prediction tech-
niques and their potential impacts across various practical fields.
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