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Abstract: The spread of infections and rot are crucial factors in the decrease in tomato production.
Accurately segmenting the affected tomatoes in real-time can prevent the spread of illnesses. However,
environmental factors and surface features can affect tomato segmentation accuracy. This study
suggests an improved YOLOv8s-Seg network to perform real-time and effective segmentation of
tomato fruit, surface color, and surface features. The feature fusion capability of the algorithm was
improved by replacing the C2f module with the RepBlock module (stacked by RepConv), adding
SimConv convolution (using the ReLU function instead of the SiLU function as the activation function)
before two upsampling in the feature fusion network, and replacing the remaining conventional
convolution with SimConv. The F1 score was 88.7%, which was 1.0%, 2.8%, 0.8%, and 1.1% higher
than that of the YOLOv8s-Seg algorithm, YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask
RCNN algorithm, respectively. Meanwhile, the segment mean average precision (segment mAP@0.5)
was 92.2%, which was 2.4%, 3.2%, 1.8%, and 0.7% higher than that of the YOLOv8s-Seg algorithm,
YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask RCNN algorithm. The algorithm can
perform real-time instance segmentation of tomatoes with an inference time of 3.5 ms. This approach
provides technical support for tomato health monitoring and intelligent harvesting.

Keywords: YOLOv8; instance segmentation; disease detection; maturity segmentation

1. Introduction

The accurate segmentation of growing and diseased tomatoes, even against complex
backgrounds, is essential for effective tomato picking, fruit monitoring, and precise evalua-
tion of tomato size and quality [1]. Accurate and timely segmentation can benefit various
applications, such as machine vision and greenhouse monitoring systems [2]. There are
several challenges faced by tomato instance segmentation at present. Environmental factors
such as changes in lighting, overlapping fruit, leaf occlusion, and variations in angles can
interfere with the process. Moreover, alterations in the surface color and features of the
tomatoes can adversely affect segmentation outcomes [3].

Over the past ten years or more, significant research and practical efforts have focussed
on detecting and segmenting target fruits. Conventional techniques involve analyzing
single features, such as color, geometric shape, and texture. For instance, Si et al. [4]
segmented apples from background images using color surface variation analysis. Meth-
ods of multi-feature fusion analysis employ either a combination of geometric shape and
color attributes or a fusion of color, intensity, edge, and orientation characteristics. Yin
et al. [5] designed an approach to recognize ripe tomatoes by initially reducing noise
in cases of occlusion and overlap of the fruit and subsequently combining their color
and shape attributes for recognition. Nonetheless, both single-feature analysis and multi-
feature fusion techniques are compromised by low robustness and extensive time con-
sumption. Detection and segmentation accuracy can be negatively impacted by changes in

Agriculture 2023, 13, 1643. https://doi.org/10.3390/agriculture13081643 https://www.mdpi.com/journal/agriculture

https://doi.org/10.3390/agriculture13081643
https://doi.org/10.3390/agriculture13081643
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-1766-0457
https://orcid.org/0009-0000-9515-4106
https://orcid.org/0009-0007-2942-8819
https://orcid.org/0009-0003-5292-4774
https://doi.org/10.3390/agriculture13081643
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture13081643?type=check_update&version=2


Agriculture 2023, 13, 1643 2 of 15

environmental conditions and variations in fruit surface color and features, especially in
unstructured environments.

The accurate, efficient, and real-time instance segmentation of growing and diseased
tomatoes is essential in the complex environment of tomato greenhouses. This enables the
timely picking of ripe fruits, helps avoid spoilage, and assists in monitoring diseased fruits
to prevent bacterial infections in the planting field. In the past several years, deep learning
technology has widely been employed for tasks such as instance segmentation and object
detection, owing to its high accuracy and efficiency. To achieve object detection and instance
segmentation, a branch for generating binary masks has been introduced to Mask RCNN [6],
serving as a prototype of Fast RCNN (Faster R-CNN: Toward real-time object detection
using region proposal networks) [7]. Jia et al. [8] used the improved Mask RCNN algorithm
for instance segmentation on overlapping apples. They fused ResNet [9] and DenseNet as
the feature extraction network of the model and achieved an accuracy rate of 97.31% on
120 images in the test set. Huang et al. [10] proposed a fuzzy Mask R-CNN to automatically
identify the maturity of tomato fruits. They distinguished the foreground and background
in the image through the fuzzy c-means model and Hough transform method, located the
edge features for automatic labeling, and achieved a 98.00% accuracy rate in 100 images.
Afonso et al. [11] used the Mask R-CNN model, with ResNet101 as the backbone, to segment
ripe and unripe tomatoes, achieving a segmentation precision of 95% and 94% for each,
respectively. Wang et al. [12] proposed an improved Mask RCNN model that integrates
the attention mechanism for segmenting apple maturity under various conditions, such as
light influence, occlusion, and overlap. The test results showed accuracy and recall rates
of 95.8% and 97.1%, respectively. In addition, the segmentation of tomato fruit [13], the
detection of tomato fruit infection areas [14], the segmentation of tomato maturity [15], and
the segmentation of Soil block [16] based on Mask RCNN have demonstrated that the high
precision and robustness of the Mask RCNN algorithm in object detection and instance
segmentation. Mask RCNN is a conventional two-stage instance segmentation model.
Masks are generated by Mask RCNN through feature positioning. The located features are
then passed to the mask predictor after performing pooling operations on the region of
interest. However, executing these operations sequentially can cause slow segmentation
speed, large model size, and an increased number of computing parameters. In contrast
to conventional instance segmentation algorithms, which rely on feature localization to
generate masks, YOLACT (You Only Look At Coefficients) [17] is a real-time method. It
can rapidly generate high-quality instance masks by parallelizing the tasks of generating
prototype masks and predicting mask coefficients. The task of instance segmentation,
which uses the YOLO framework, builds on the principles of the YOLACT network for
completion. Initially, two parallel sub-tasks are executed: generating prototype masks and
predicting mask coefficients. Subsequently, the prototype is subjected to linear weighting
based on the obtained mask coefficients, which leads to the creation of instance masks.
Mubashiru [18] proposed a lightweight YOLOv5 algorithm for accurately segmenting fruits
from four gourd family plants with similar features. The proposed algorithm achieved a
segmentation accuracy of 88.5%. Although this method attains faster segmentation speed,
there is a need to further optimize the accuracy of the segmentation. In contrast to the
anchor-based detection head of YOLOv5, YOLOv8 adopts a novel anchor-free method. This
method decreases the number of hyperparameters, which improves the model’s scalability
while enhancing segmentation performance.

This paper proposed an improved YOLOv8s-Seg algorithm for segmenting healthy
and diseased tomatoes based on research conducted by scholars worldwide. The research
consisted of the following tasks:

(1) To enhance the edge features of the tomatoes, algorithms such as Gaussian blur,
Sobel operator, and weighted superposition were used to sharpen the 1600 photos in
the original dataset. Further data enhancement operations expanded the dataset to
9600 photos;
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(2) The feature fusion capability of the algorithm was improved by adding SimConv
convolution [19] before the two upsampling operations in the feature fusion net-
work, replacing the remaining regular convolutions with SimConv convolution, and
swapping the C2f module with the RepBlock module [20];

(3) An improved YOLOv8s-Seg algorithm was proposed to address the slow running
time, high parameter count, and large number of calculations of the two-stage instance
segmentation model. This algorithm was designed with the aim of effective, real-time
instance segmentation of healthy and diseased tomatoes.

2. Materials and Methods
2.1. Data Acquisition

The dataset includes photographs of tomatoes at four stages of maturity, including
young fruit, immature, half-ripe, and ripe. It also includes images of six common tomato
diseases: grey mold, umbilical rot, crack, bacterial canker, late blight, and virus disease.
A total of 788 photos were captured from tomato cultivation plots 26 and 29 at Shenyang
Agricultural University (latitude: 41.8◦ N), with a seedling spacing of 0.3 m. Furthermore,
an additional 812 photos which demonstrate the previously mentioned five diseases,
namely grey mold, umbilical rot, bacterial canker, late blight, and virus disease, were
retrieved from Wikipedia. This brings the total number of photos in the dataset to 1600.
The images were taken using an iPhone 13, which captured them in JPG format with a
resolution of 1280 × 720 pixels. Images retrieved from Wikipedia were preserved in the
same format and resolution. The dataset was divided into training and validation sets at
a 7:3 ratio. As a result, there were 1120 photos in the training set and 480 photos in the
validation set. Example images are shown in Figure 1.
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Figure 1. Example images. (a) young fruit, (b) immature, (c) half-ripe, (d) ripe, (e,f) ripe, immature,
(g) umbilical rot, (h) grey mold, (i) crack, (j) virus disease, (k) late blight, (l) bacterial canker.

2.2. Image Preprocessing

In this study, the dataset of 1600 photos was enhanced using several techniques,
including the Sobel operator and weighted overlay. These methods aimed to improve the
clarity of tomato fruit edges for better image annotation and feature extraction. Initially,
Gaussian blur was applied to the images to reduce noise. Then, the Sobel operator was
utilized to calculate the image gradients and extract edge features. Finally, the gradient
images were combined with the original images using a weighted overlay technique to
enhance the edge features. Figure 2 compares the photos before and after the image
sharpening process.
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Figure 2. Image sharpening. (a,c) Original image. (b,d) Sharpened image.

Increasing the number of images through data enhancement can help minimize over-
fitting during the training process and improve the robustness of the model, thereby
increasing the generalization ability of the model. Lighting conditions and shooting angles
can significantly influence fruit detection and segmentation in tomato greenhouses. Bright-
ness adjustment, mirroring, and rotation operations were applied to simulate weather
changes and variations in detection equipment angles [21]. Performing data enhancement
on the sharpened dataset of 1600 photos resulted in the expansion of the dataset to 9600
photos through brightness adjustment, mirroring, and rotation, as shown in Figure 3. The
training set includes 6720 photos, and the validation set contains 2880 photos, resulting in
6744 tomato fruits. Table 1 presents the detailed structure.
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Table 1. Structure of the dataset.

Type Number of Images
after Sharpening

Train (Data
Enhancement)

Validation (Data
Enhancement)

Number of Instances
(Validation)

late blight 156 655 281 602
crack 150 630 270 740

grey mold 152 638 274 593
virus 164 689 295 589

rot 174 731 313 601
canker 166 697 299 579

ripe 161 677 289 852
half-ripe 152 638 274 778

immature 168 706 302 900
young 157 659 283 780
Total 1600 6720 2880 6744

Late blight indicates tomato late blight; crack indicates tomato crack; grey mold indicates tomato grey mold;
virus indicates tomato virus disease; rot indicates tomato umbilical rot; canker indicates tomato bacterial canker;
ripe indicates ripe tomato; half-ripe indicates half-ripe tomato; immature indicates immature tomato; and young
indicates young fruit tomato.

Ten categories of photos were manually annotated using Labelme software (version 6.1.1)
after completing the data enhancement. These categories are tomato late blight, tomato
crack, tomato grey mold, tomato virus diseases, tomato umbilical rot, tomato bacterial
canker, ripe tomatoes, half-ripe tomatoes, immature tomatoes, and young fruit. During the
annotation process, the polygon tool was selected to annotate the edges of the tomatoes
that required instance segmentation. Figure 4 displays the annotation of tomatoes.
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2.3. Tomato Instance Segmentation Based on Improved YOLOv8s-Seg

The YOLO (you only look once) series is a deep-learning model for detecting ob-
jects. YOLOv8, developed by the same authors as YOLOv5, shares a similar overall style.
YOLOv8 has made significant improvements and optimizations over the YOLOv5 network,
resulting in enhanced algorithm performance. The YOLOv8 network supports object de-
tection and tracking, as well as additional tasks, such as instance segmentation, image
classification, and key point detection. Similar to YOLOv5, YOLOv8 provides five dif-
ferent scales of models (n, s, m, l, x), with increasing depth and width from left to right.
In reference to the ELAN design philosophy [22], YOLOv8 replaces the C3 structure in
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the YOLOv5 backbone network with a C2f structure. This alteration enables YOLOv8 to
maintain its lightweight characteristics while obtaining a greater amount of gradient flow
information. Compared to YOLOv5, the head part of YOLOv8 exhibits more prominent
differences due to the implementation of the widely-used decoupled head structure. For
loss function calculation, YOLOv8 utilizes the TaskAlignedAssigner positive sample as-
signment strategy [23]. Furthermore, it introduces the distribution focal loss [24]. During
training, the strategy of disabling mosaic augmentation in the last 10 epochs is incorporated,
as introduced in YOLOX [25], to effectively improve precision in the data augmentation
process. YOLOv8s-Seg is an extension of the YOLOv8 object detection model. It is specifi-
cally designed for carrying out segmentation tasks. The YOLOv8s-Seg network draws on
the principles of the YOLACT network to achieve real-time instance segmentation of objects
and maintain a high segment mean average precision. Figure 5 displays the Structure of
the YOLACT network.
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Figure 5. Structure of YOLACT network.

The YOLOv8-Seg (ultralytics-8.0.57) network consists of two main components: back-
bone and head (which can be further divided into neck and segment). The GitHub pro-
vides five different scale models of the network, namely, YOLOv8n-Seg, YOLOv8s-Seg,
YOLOv8m-Seg, YOLOv8l-Seg, and YOLOv8x-Seg. In this study, experiments were con-
ducted on YOLOv8-Seg models of different scales to evaluate the segment mAP@0.5 and
model size. Table 2 presents the results.

Table 2. Comparison of network segmentation results.

Models Seg mAP@0.5 (%) Model Size (MB)

YOLOv8n-Seg 0.853 6.5
YOLOv8s-Seg 0.898 20.4
YOLOv8m-Seg 0.900 54.8
YOLOv8l-Seg 0.903 92.3
YOLOv8x-Seg 0.907 143.9

Table 2 shows that YOLOv8s-Seg achieved a segment mAP@0.5 of 89.8%, a 3.5%
improvement over YOLOv8n-Seg. However, it was slightly lower than YOLOv8m-Seg,
YOLOv8l-Seg, and YOLOv8x-Seg by 0.2%, 0.5%, and 0.9%, respectively. Regarding model
size, YOLOv8s-Seg occupies 20.4 MB, an increase of 13.9 MB compared to YOLOv8n-Seg.
However, it is significantly lighter than YOLOv8m-Seg, YOLOv8l-Seg, and YOLOv8x-Seg,
with reductions of 34.4 MB, 71.9 MB, and 123.5 MB, respectively. Considering the segment
mAP@0.5 performance and lightweight requirements, YOLOv8s-Seg was selected as the
model for experimentation in this study. Figure 6 illustrates the structure of the improved
YOLOv8s-Seg network.
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The backbone network of YOLOv8s-Seg consists of a 3 × 3 convolution, a C2f module,
and an SPPF (spatial pyramid pooling fusion) module. In contrast to the YOLOv5 network,
YOLOv8s-Seg replaces the initial 6 × 6 convolution with a 3 × 3 convolution in the backbone
network, making the model more lightweight. Additionally, the C3 module (Figure 7) in
YOLOv5 is replaced with the C2f module in YOLOv8s-Seg. The C2f module, designed
with skip connections and additional split operations, enriches the gradient flow during
backpropagation and improves the performance of the model. YOLOv8s-Seg utilizes two
versions of the cross stage partial network (CSP). The CSP [26] in the backbone network
employs residual connections (as shown in Figure 6), while the head part uses direct
connections. The SPPF structure in YOLOv8s-Seg remains the same as in YOLOv5 (version
6.1), utilizing cascaded 5 × 5 pooling kernels to accelerate network operation speed.
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The head module is comprised of the neck and segment parts. The neck module
incorporates the path aggregation network (PANet) [27] and feature pyramid network
(FPN) [28] as feature fusion networks. Unlike YOLOv5 and YOLOv6, YOLOv8s-Seg
removes the 1 × 1 convolution before upsampling and fuses the feature maps directly
from different stages of the backbone network. This study aimed to enhance the network
performance of YOLOv8s-Seg by improving its neck module. Specifically, before each
upsampling operation, two 1 × 1 SimConv convolutions were added, and the remaining
regular convolutions in the neck part were replaced with 3 × 3 SimConv convolutions. The
C2f module (Figure 8) was replaced with the RepBlock module (Figure 6). The RepBlock
module is composed of stacked RepConv convolutions, and the structure of the RepConv
convolution is depicted in Figure 6.
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The YOLOv5 network employs a static allocation strategy to assign positive and neg-
ative samples based on the intersection over union (IOU) between the predicted boxes
and ground truth. However, the YOLOv8s-Seg network has improved this aspect by intro-
ducing a superior dynamic allocation strategy. It incorporates the TaskAlignedAssigner
(TOOD), which selects positive samples based on a weighted score that comes from the
classification and regression scores. The computation is represented by Formula (1).

t = sα × uβ (1)

where s: prediction scores for labeled categories, u: prediction frame with the IOU of
Ground Truth, t: alignment scores for categorical regression.

During training, YOLOv8s-Seg performs online image enhancement to ensure that the
model encounters slightly different images in each epoch. Mosaic enhancement is a crucial
method of data improvement that randomly combines four images. This technique compels
the model to learn how to detect partially obstructed and differently positioned objects. In
the last 10 training epochs, the YOLOv8s-Seg network deactivates the mosaic enhancement,
a method proven to improve network precision effectively. Figure 9 demonstrates an
example of mosaic enhancement.
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2.4. Model Training and Performance Evaluation

The examinations were performed on Windows 10 using a 12 vCPU Intel(R) Xeon(R)
Platinum 8255C CPU @2.50 GHz and an Nvidia GeForce RTX 2080Ti graphics card. The
framework for deep learning was PyTorch 1.8.1 and Compute Unified DeviceArchitecture
(CUDA) 11.1, accelerated by cuDNN version 8.0.5. In this experiment, the improved
YOLOv8s-Seg, YOLOv8s-Seg, YOLOv5s-Seg, and YOLOv7-Seg were performed in the
same environment configuration and under the same hyperparameter settings, as indicated
in Table 3. The hyperparameter settings of Mask CNN: the learning rate, batch size, learning
momentum, weight decay, number of iterations, and image size were set to 0.004, 2, 0.9,
1 × 10−4, 30 epochs, and 640 × 640 pixels, respectively.
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Table 3. Hyperparameters during training.

learning rate 0.01
batch size 16

momentum 0.937
weight decay 0.0005

number of iterations 300 epochs
image size 640 × 640 pixels

In this study, we assess the performance of the improved YOLOv8s-Seg using precision,
recall, F1 score, and segment mAP@0.5. Tomato locations were assessed using precision,
recall, and F1 score, while segmentation results were evaluated using segment mAP [29].
Equations (2)–(5) are used to calculate the precision, recall, F1 score, and segment mAP
scores. The higher the four parameters are, the better the segmentation results.

precision =
TP

(TP + FP)
× 100% (2)

recall =
TP

(TP + FN)
× 100% (3)

F1 = 2 × precision × recall
precision + recall

(4)

segmAP =
c

∑
i=1

AP(i)
C

(5)

where TP denotes an actual positive sample with a positive prediction, while FP indicates
an actual negative sample with a positive prediction, and FN indicates an actual positive
sample with a negative prediction. AP represents the average precision of segmentation.
The segmentation performance of the model increases with the AP score. C represents the
number of segmentation categories.

3. Results and Discussion
3.1. Instance Segmentation between Growing and Diseased Tomatoes

To validate the performance of the improved YOLOv8s-Seg in segmenting tomato
growth stages and common diseases in fruits, we used 2880 photos containing 6744 tomato
fruits for validation. The experimental results showed that the model achieved the precision,
recall, F1 score, and segment mAP@0.5 of 91.9%, 85.8%, 89.0%, and 92.2%, respectively.
Figure 10 presents examples of instance segmentation on tomatoes affected by several
factors like leaf occlusion, fruit overlap, lighting variations, angle changes, growth stages,
and common diseases of the improved YOLOv8s-Seg network. Table 4 shows the results of
the segmentation for growing and diseased tomatoes. As shown in Figure 10, the improved
YOLOv8s-Seg algorithm accurately segments tomatoes (Figure 10d–f,j) affected by leaf
occlusion (Figure 10a), fruit overlap (Figure 10b), lighting variations (Figure 10c), and angle
changes (Figure 10g). Overall, the algorithm exhibits precise segmentation performance on
tomatoes affected by factors such as leaf occlusion, fruit overlap, lighting variations, and
angle changes. Meanwhile, the algorithm also achieves outstanding instance segmentation
results for tomatoes (Figure 10k,l) in growth stages (Figure 10h) and those affected by
disease (Figure 10i). From Table 4, it can be seen that the precision rates obtained by
the improved YOLOv8s-Seg algorithm for instance segmentation of ripe tomato, half-ripe
tomato, immature tomato, young fruit, grey mold, umbilical rot, bacterial canker, late blight,
virus disease, and crack scores were 92.7%, 92.3%, 89.9%, 91.2%, 92.6%, 92.2%, 91.5%, 92.4%,
93%, and 91.3% respectively. The analysis of instance segmentation results on tomatoes
in growth stages and diseased tomatoes reveals the effectiveness of the algorithm in
overcoming the impact of tomato surface color and features on segmentation performance.
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In conclusion, the algorithm exhibits remarkable segmentation performance on tomatoes
affected by environmental factors during growth stages and disease.
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Figure 10. Examples of instance segmentation of tomatoes. (a): ripe tomatoes and immature toma-
toes shaded by leaves, half-ripe tomatoes with intact fruit characteristics; (b): immature tomatoes
with overlapping fruit and ripe tomatoes with intact fruit characteristics; (c): immature tomatoes
affected by changes in light; (d): example segmentation of tomatoes shaded by leaves; (e): example
segmentation of overlapping fruit; (f): example segmentation of tomatoes affected by changes in light;
(g): immature and ripe tomatoes affected by changes in angle; (h): immature tomatoes, half-ripe toma-
toes, and young fruit; (i): cracked tomatoes, ripe tomatoes. (j): example segmentation of tomatoes
affected by changes in angle; (k): example segmentation for immature tomatoes, half-ripe tomatoes,
and young fruit; (l): example segmentation for cracked tomatoes and ripe tomatoes.

Table 4. Segmentation results of healthy and diseased tomatoes.

Type Canker Immature Crack Ripe Half-
Ripe

Grey
Mold

Late
Blight Rot Young

Fruit Virus

precision
(%) 91.5 89.9 91.3 92.7 92.3 92.6 92.4 92.2 91.2 93

Late blight indicates tomato late blight; crack indicates tomato crack; grey mold indicates tomato grey mold;
virus indicates tomato virus disease; rot indicates tomato umbilical rot; canker indicates tomato bacterial canker;
ripe indicates ripe tomato; half-ripe indicates half-ripe tomato; immature indicates immature tomato; and young
indicates young fruit tomato.
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3.2. Comparison with Other Instance Segmentation Algorithms

In this paper, to investigate the segmentation capabilities of the improved YOLOv8s-
Seg for tomatoes, the performance of the network was evaluated in terms of precision, recall,
F1 score, segment mAP@0.5, and inference time. This performance was then compared
with that of YOLOv8s-Seg, YOLOv7-Seg, YOLOv5s-Seg, and Mask RCNN algorithms. The
example segmentation results of the five networks were obtained using the same training
and validation sets during the training process. The hyperparameters of the five models
during the training process were set as follows: the hyperparameters of YOLOv8s-Seg, the
improved YOLOv8s-Seg, the YOLOv5s-Seg, and YOLOv7-Seg are shown in Table 3. For
Mask RCNN, the learning rate, batch size, learning momentum, weight decay, and number
of iterations were set to 0.004, 2, 0.9, 1 × 10−4, and 30 epochs, respectively. Table 5 displays
the segmentation results for the five models.

Table 5. Segmentation results for the five algorithms.

Method Precision
(%)

Recall
(%)

F1 Score
(%)

Segment
mAP@0.5

Inference Time
(ms)

Mask RCNN 89.8 85.5 87.6 0.915 90
YOLOv5s-Seg 89.0 83.0 85.9 0.890 2.5
YOLOv7-Seg 91.4 84.8 87.9 0.904 15.2
YOLOv8s-Seg 90.3 85.4 87.7 0.898 3.1

Improved YOLOv8s-Seg(ours) 91.9 85.8 88.7 0.922 3.5

In Table 5, the results show the performance of the improved YOLOv8s-Seg algorithm
compared to other models. The improved YOLOv8s-Seg algorithm achieves precision,
recall, F1 score, and segment mAP@0.5 of 91.9%, 85.8%, 88.7%, and 0.922, respectively.
Compared to the YOLOv8s-Seg algorithm, the improvements were 1.6%, 0.4%, 1.0%, and
2.4%, respectively. Compared to the YOLOv5s-Seg algorithm, the improvements were 2.9%,
2.8%, 2.8%, and 3.2%, respectively. Compared to the YOLOv7-Seg algorithm, this algorithm
showed increases of 0.5%, 1.0%, 0.8%, and 1.8%. Compared to the Mask RCNN algorithm,
this algorithm had increments of 2.1%, 0.3%, 1.1%, and 0.7%, respectively. Additionally, the
inference time of 3.5 ms signifies a minor increase over YOLOv5s-Seg and YOLOv8s-Seg
(0.4 ms and 0.6 ms) but a significant reduction over YOLOv7-Seg and Mask RCNN (11.7 ms
and 86.5 ms), supporting real-time instance segmentation. In conclusion, the improved
YOLOv8s-Seg algorithm stands out in precision, recall, F1 score, and segment mAP@0.5,
with effective inference time. Figure 11 provides the comparison of Segment mAP@0.5 for
five algorithms.

3.3. Comparison of the Improved YOLOv8s-Seg and YOLOv8s-Seg

In this paper, we proposed an improved YOLOv8s-Seg network designed for real-
time and effective instance segmentation of various tomato stages, including young fruit,
immature, half-ripe, ripe, and common diseases such as grey mold, umbilical rot, crack,
bacterial canker, late blight, and virus disease. The feature fusion capability of the algo-
rithm has been significantly improved through enhancements to the feature fusion network,
with modifications detailed in Table 6. Analysis of Tables 5 and 6 shows that the improved
YOLOv8s-Seg network achieved an F1 score of 88.7% and a segment mAP@0.5 of 92.2%,
representing improvements of 1.0% and 2.4%, respectively, over the original YOLOv8s-
Seg network. Notably, the segment mAP@0.5 improvements were achieved with only a
marginal increase in memory size (0.7 MB) and inference time (0.4 ms), highlighting
the network’s efficiency in real-time instance segmentation of both growing and
diseased tomatoes.
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Table 6. Comparison of parameter variations.

Methods Model Size ∆%
MB GFLOPs ∆%

FLOPs Parameters ∆%
Parameters

Inference
Time (ms)

YOLOv8s-Seg 20.4 42.5 11,783,470 3.1
Improved

YOLOv8s-Seg 21.1 +0.7 47.2 +4.7 10,400,750 −1,382,720 3.5

3.4. Effect of Different Image Resolutions on Tomato Segmentation

To investigate the impact of photo resolution on the segmentation results of the
improved YOLOv8s-Seg network, we experimented using different input image sizes
during training: 416 × 416 pixels, 640 × 640 pixels, 768 × 768 pixels, and 1024 × 1024 pixels.
Table 7 provides a comprehensive overview of the segment mAP@0.5 and the inference
time for each image resolution. The results reveal that as the photo resolution increases
from 416 × 416 pixels to 640 × 640 pixels, the inference time increases by 2.6 ms, while the
segment mAP@0.5 improves by 1.1%. This indicates that the model enhances the instance
segmentation performance at the cost of a slight increase in inference time. However,
when the resolution is further increased to 768 × 768 pixels and 1024 × 1024 pixels, the
inference time shows more substantial increments of 4.4 ms and 6.3 ms, respectively. In
contrast, the segment mAP@0.5 only experiences minor improvements of 0.2% and 0.3%.
It could be concluded that the resolution of 640 × 640 pixels is more suitable for training
the improved YOLOv8s-Seg network. This resolution balances achieving satisfactory
segmentation performance and maintaining reasonable inference time.
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Table 7. Comparison of network segmentation results.

Resolutions (Pixels) Segment mAP@0.5 (%) Inference Time (ms)

416 × 416 pixels 91.1 0.9
640 × 640 pixels 92.2 3.5
768 × 768 pixels 92.4 7.9

1024 × 1024 pixels 92.5 9.8

4. Conclusions

An improved YOLOv8s-Seg network based on instance segmentation for tomato
illness and maturity was suggested in this paper. The feature fusion capability of the
algorithm was improved by replacing the C2f module with the RepBlock module, adding
SimConv convolution before two upsampling in the feature fusion network, and replacing
the remaining conventional convolution with SimConv. The improved YOLOv8s-Seg
network achieved a segment mAP@0.5 of 92.2% on the validation set. This showed an
improvement of 2.4% compared to the original YOLOv8s-Seg network, an improvement of
3.2% over the YOLOv5s-Seg network, an improvement of 1.8% relative to the YOLOv7-Seg
network, and an improvement of 0.7% over the Mask RCNN network. Regarding inference
time, the improved YOLOv8s-Seg network reached a speed of 3.5 ms, an increase of 0.4 ms
and 0.6 ms compared to the YOLOv8s-Seg and YOLOv5s-Seg networks, but a significant
reduction compared to the YOLOv7-Seg and Mask RCNN algorithms, reduced by 11.7 ms
and 86.5 ms respectively. This capability facilitates the real-time segmentation of both
healthy and diseased tomatoes. Overall, the improved YOLOv8s-Seg network exhibits
precise segmentation performance on tomatoes affected by factors such as leaf occlusion,
fruit overlap, lighting variations, and angle changes. Meanwhile, the analysis of instance
segmentation results for tomatoes at different growth stages and diseases shows that the
algorithm effectively reduces the impact of surface color and features on performance.

In conclusion, the algorithm shows notable segmentation performance on tomatoes
affected by environmental factors during growth stages and disease. Future research will
continue to optimize the algorithm to improve the segment mAP@0.5. Efforts will also
be directed toward simplifying the YOLOv8s-Seg network structure to increase computa-
tional efficiency.

Author Contributions: Conceptualization, X.Y.; methodology, K.Q.; software, K.Q.; validation, X.N.
and Y.Z.; formal analysis, Y.L.; investigation, Y.L.; resources, Y.Z.; data curation, X.N.; writing—
original draft preparation, K.Q.; writing—review and editing, X.Y.; visualization, K.Q.; supervision,
C.L.; project administration, X.Y.; funding acquisition, X.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by the Youth Program of the Liaoning Education Depart-
ment under Grant LSNQN202025.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: We have no affiliations with any organization with a direct or indirect financial
interest in the subject matter discussed in the manuscript.

References
1. Lee, J.; Nazki, H.; Baek, J.; Hong, Y.; Lee, M. Artificial intelligence approach for tomato detection and mass estimation in precision

agriculture. Sustainability 2020, 12, 9138. [CrossRef]
2. Fan, Y.Y.; Zhang, Z.M.; Chen, G.P. Application of vision sensor in the target fruit recognition system of picking robot. Agric. Mech.

Res. 2019, 41, 210–214.
3. Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and systems for fruit detection and localization: A review.

Comput. Electron. Agric. 2015, 116, 8–19. [CrossRef]
4. Si, Y.; Liu, G.; Feng, J. Location of apples in trees using stereoscopic vision. Comput. Electron. Agric. 2015, 112, 68–74. [CrossRef]

https://doi.org/10.3390/su12219138
https://doi.org/10.1016/j.compag.2015.05.021
https://doi.org/10.1016/j.compag.2015.01.010


Agriculture 2023, 13, 1643 15 of 15

5. Yin, H.; Chai, Y.; Yang, S.X.; Mittal, G.S. Ripe tomato recognition and localization for a tomato harvesting robotic system. In
Proceedings of the International Conference of Soft Computing and Pattern Recognition, Malacca, Malaysia, 4–7 December 2009;
pp. 557–562. [CrossRef]

6. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 2961–2969. [CrossRef]

7. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems 28 (NIPS 2015), NeurIPS, Montreal, BC, Canada, 7–12 December 2015;
p. 28. [CrossRef]

8. Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and segmentation of overlapped fruits based on optimized mask
R-CNN application in apple harvesting robot. Comput. Electron. Agric. 2020, 172, 105380. [CrossRef]

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]

10. Huang, Y.P.; Wang, T.H.; Basanta, H. Using fuzzy mask R-CNN model to automatically identify tomato ripeness. IEEE Access
2020, 8, 207672–207682. [CrossRef]

11. Afonso, M.; Fonteijn, H.; Fiorentin, F.S.; Lensink, D.; Mooij, M.; Faber, N.; Polder, G.; Wehrens, R. Tomato fruit detection and
counting in greenhouses using deep learning. Front. Plant Sci. 2020, 11, 571299. [CrossRef]

12. Wang, D.; He, D. Fusion of Mask RCNN and Attention Mechanism for Instance Segmentation of Apples under Complex
Background. Comput. Electron. Agric. 2022, 196, 106864. [CrossRef]

13. Wang, C.; Yang, G.; Huang, Y.; Liu, Y.; Zhang, Y. A Transformer-based Mask R-CNN for Tomato Detection and Segmentation.
Intell. Fuzzy Syst. 2023, 44, 8585–8595. [CrossRef]

14. Wang, Q.; Qi, F.; Sun, M.; Qu, J.; Xue, J. Identification of Tomato Disease Types and Detection of Infected Areas Based on Deep
Convolutional Neural Networks and Object Detection Techniques. Comput. Intell. Neurosci. 2019, 2019, 9142753. [CrossRef]

15. Hsieh, K.W.; Huang, B.Y.; Hsiao, K.Z.; Tuan, Y.H.; Shih, F.P.; Hsieh, L.C.; Chen, S.; Yang, I.C. Fruit maturity and location
identification of beef tomato using R-CNN and binocular imaging technology. Food Meas. Charact. 2021, 15, 5170–5180. [CrossRef]

16. Liu, L.; Bi, Q.; Liang, J.; Li, Z.; Wang, W.; Zheng, Q. Farmland Soil Block Identification and Distribution Statistics Based on Deep
Learning. Agriculture 2022, 12, 2038. [CrossRef]

17. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. Yolact: Real-time instance segmentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, Seoul, South Korea, 27 October–2 November 2019; pp. 9157–9166. [CrossRef]

18. Mubashiru, L.O. YOLOv5-LiNet: A lightweight network for fruits instance segmentation. PLoS ONE 2023, 18, e0282297. [CrossRef]
19. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection

framework for industrial applications. arXiv 2022. [CrossRef]
20. Weng, K.; Chu, X.; Xu, X.; Huang, J.; Wei, X. EfficientRep: An Efficient Repvgg-style ConvNets with Hardware-aware Neural

Network Design. arXiv 2023. [CrossRef]
21. Magalhães, S.A.; Castro, L.; Moreira, G.; Dos Santos, F.N.; Cunha, M.; Dias, J.; Moreira, A.P. Evaluating the single-shot multibox

detector and YOLO deep learning models for the detection of tomatoes in a greenhouse. Sensors 2021, 21, 3569. [CrossRef]
[PubMed]

22. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object
Detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
18–22 June 2023; pp. 7464–7475. [CrossRef]

23. Feng, C.; Zhong, Y.; Gao, Y.; Scott, M.R.; Huang, W. Tood: Task-aligned one-stage object detection. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 3490–3499.
[CrossRef]

24. Li, X.; Wang, W.; Wu, L.; Chen, S.; Hu, X.; Li, J.; Tang, J.; Yang, J. Generalized focal loss: Learning qualified and distributed
bounding boxes for dense object detection. Adv. Neural Inf. Process. Syst. 2020, 33, 21002–21012. [CrossRef]

25. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021. [CrossRef]
26. Wang, C.Y.; Liao, H.Y.M.; Wu, Y.H.; Chen, P.Y.; Hsieh, J.W.; Yeh, I.H. CSPNet: A new backbone that can enhance learning

capability of CNN. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 390–391. [CrossRef]

27. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8759–8768. [CrossRef]

28. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.
[CrossRef]

29. Tian, Y.; Yang, G.; Wang, Z.; Li, E.; Liang, Z. Instance segmentation of apple flowers using the improved mask R–CNN model.
Biosyst. Eng. 2020, 193, 264–278. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/SoCPaR.2009.111
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.1016/j.compag.2020.105380
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/ACCESS.2020.3038184
https://doi.org/10.3389/fpls.2020.571299
https://doi.org/10.1016/j.compag.2022.106864
https://doi.org/10.3233/JIFS-222954
https://doi.org/10.1155/2019/9142753
https://doi.org/10.1007/s11694-021-01074-7
https://doi.org/10.3390/agriculture12122038
https://doi.org/10.1109/ICCV.2019.00925
https://doi.org/10.1371/journal.pone.0282297
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.48550/arXiv.2302.00386
https://doi.org/10.3390/s21103569
https://www.ncbi.nlm.nih.gov/pubmed/34065568
https://doi.org/10.48550/arXiv.2207.02696
https://doi.org/10.1109/ICCV48922.2021.00349
https://doi.org/10.48550/arXiv.2006.04388
https://doi.org/10.48550/arXiv.2107.08430
https://doi.org/10.1109/CVPRW50498.2020.00203
https://doi.org/10.1109/CVPR.2018.00913
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1016/j.biosystemseng.2020.03.008

	Introduction 
	Materials and Methods 
	Data Acquisition 
	Image Preprocessing 
	Tomato Instance Segmentation Based on Improved YOLOv8s-Seg 
	Model Training and Performance Evaluation 

	Results and Discussion 
	Instance Segmentation between Growing and Diseased Tomatoes 
	Comparison with Other Instance Segmentation Algorithms 
	Comparison of the Improved YOLOv8s-Seg and YOLOv8s-Seg 
	Effect of Different Image Resolutions on Tomato Segmentation 

	Conclusions 
	References

